This adds support for using coredump with Xtensa DC233C core,
which are being used by qemu_xtensa and qemu_xtensa_mmu.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
The old CONFIG_UART_NS16550_ACCESS_IOPORT has been used to
indicate whether to access the NS16550 UART via IO port
before device tree is used to describe hardware. Now we have
device tree, and we can specify whether a particular UART
needs to be accessed via IO port using property io-mapped.
Therefore, CONFIG_UART_NS16550_ACCESS_IOPORT is no longer
needed (and thus also CONFIG_UART_NS16550_SIMULT_ACCESS).
Remove these two kconfigs and modify code to use device tree
to figure out how to access the UART hardware.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
arch_switch() is basically an alias to xtensa_switch() so
we can mark arch_switch() as ALWAYS_INLINE to avoid another
function call, especially when no optimization is used when
debugging.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Let's make this official: we use the suffix `_MASK` for the define
carrying the GENMASK for the attributes, and the suffix `_GET(x)` for
the actual macro extracting the attributes.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
To make the stack guard works well, clean and refine the MPU code. To
save the MPU regions (the number of MPU regions are limited), we choose
to remove the guard region. Comparing to add an individual region to
guard the stack, removing the guard region can at least save 2 regions
per core.
Similarly with userspace, the stack guard will leverage the dynamic
regions switching mechanism which means we need a region switch during
the context switch. Otherwise, the other option is using stack guard
region, but this is very limited since the number of MPU regions is
limited.
Signed-off-by: Jaxson Han <jaxson.han@arm.com>
Refactor the stack relevant macros to prepare to introduce the stack
guard. Also add comments about the changes related to stack layout.
Signed-off-by: Jaxson Han <jaxson.han@arm.com>
Add the stack check function z_arm64_stack_corruption_check at
z_arm64_fatal_error to handle the stack overflow triggered by the
hardware region.
Signed-off-by: Jaxson Han <jaxson.han@arm.com>
Introduce the ARM64_STACK_PROTECTION config. This option leverages the
MMU or MPU to cause a system fatal error if the bounds of the current
process stack are overflowed. This is done by preceding all stack areas
with a fixed guard region. The config depends on MPU for now since MMU
stack protection is not ready.
Signed-off-by: Jaxson Han <jaxson.han@arm.com>
Clean the thread->arch during the arch_new_thread to avoid unexpected
behavior. If the thread struct is allocated from heap or in stack, the
data in thread->arch might be dirty.
Signed-off-by: Jaxson Han <jaxson.han@arm.com>
Accessing mem before mmu or mpu init will cause a cache coherence issue.
To avoid such a problem, move the safe exception stack init function
after the mmu or mpu is initiated.
Also change the data section attribute from INNER_SHAREABLE to
OUTER_SHAREABLE. Otherwise there will be a cache coherence issue during
the memory regions switch. Because we are using background region to do
the regions switch, and the default background region is
OUTER_SHAREABLE, if we use INNER_SHAREABLE as the foreground region,
then we have to flush all cache regions to make sure the cached values
are right. However, flushing all regions is too heavy, so we set
OUTER_SHAREABLE to fix this issue.
Signed-off-by: Jaxson Han <jaxson.han@arm.com>
Dom0less is Xen mode without privileged domain. All guests are created
according to hypervisor device tree configuration on boot. Thus, there
is no Dom0 with console daemon, that usually manages console output
from domains.
Zephyr OS contains 2 serial drivers related to Xen hypervisor: regular
with console shared page and consoleio-based. The first one is for
setups with console daemon and usually was used for Zephyr DomU guests.
The second one previously was used only for Zephyr Dom0 and had
corresponding Kconfig options. But consoleio is also used as interface
for DomU output on Dom0less setups and should be configurable without
XEN_DOM0 option.
Add corresponding XEN_DOM0LESS config to Xen Kconfig files and proper
dependencies in serial drivers.
Signed-off-by: Dmytro Firsov <dmytro_firsov@epam.com>
Co-authored-by: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
This is the final step in making the `zephyr,memory-attr` property
actually useful.
The problem with the current implementation is that `zephyr,memory-attr`
is an enum type, this is making very difficult to use that to actually
describe the memory capabilities. The solution proposed in this PR is to
use the `zephyr,memory-attr` property as an OR-ed bitmask of memory
attributes.
With the change proposed in this PR it is possible in the DeviceTree to
mark the memory regions with a bitmask of attributes by using the
`zephyr,memory-attr` property. This property and the related memory
region can then be retrieved at run-time by leveraging a provided helper
library or the usual DT helpers.
The set of general attributes that can be specified in the property are
defined and explained in
`include/zephyr/dt-bindings/memory-attr/memory-attr.h` (the list can be
extended when needed).
For example, to mark a memory region in the DeviceTree as volatile,
non-cacheable, out-of-order:
mem: memory@10000000 {
compatible = "mmio-sram";
reg = <0x10000000 0x1000>;
zephyr,memory-attr = <( DT_MEM_VOLATILE |
DT_MEM_NON_CACHEABLE |
DT_MEM_OOO )>;
};
The `zephyr,memory-attr` property can also be used to set
architecture-specific custom attributes that can be interpreted at run
time. This is leveraged, among other things, to create MPU regions out
of DeviceTree defined memory regions on ARM, for example:
mem: memory@10000000 {
compatible = "mmio-sram";
reg = <0x10000000 0x1000>;
zephyr,memory-region = "NOCACHE_REGION";
zephyr,memory-attr = <( DT_ARM_MPU(ATTR_MPU_RAM_NOCACHE) )>;
};
See `include/zephyr/dt-bindings/memory-attr/memory-attr-mpu.h` to see
how an architecture can define its own special memory attributes (in
this case ARM MPU).
The property can also be used to set custom software-specific
attributes. For example we can think of marking a memory region as
available to be used for memory allocation (not yet implemented):
mem: memory@10000000 {
compatible = "mmio-sram";
reg = <0x10000000 0x1000>;
zephyr,memory-attr = <( DT_MEM_NON_CACHEABLE |
DT_MEM_SW_ALLOCATABLE )>;
};
Or maybe we can leverage the property to specify some alignment
requirements for the region:
mem: memory@10000000 {
compatible = "mmio-sram";
reg = <0x10000000 0x1000>;
zephyr,memory-attr = <( DT_MEM_CACHEABLE |
DT_MEM_SW_ALIGN(32) )>;
};
The conventional and recommended way to deal and manage with memory
regions marked with attributes is by using the provided `mem-attr`
helper library by enabling `CONFIG_MEM_ATTR` (or by using the usual DT
helpers).
When this option is enabled the list of memory regions and their
attributes are compiled in a user-accessible array and a set of
functions is made available that can be used to query, probe and act on
regions and attributes, see `include/zephyr/mem_mgmt/mem_attr.h`
Note that the `zephyr,memory-attr` property is only a descriptive
property of the capabilities of the associated memory region, but it
does not result in any actual setting for the memory to be set. The
user, code or subsystem willing to use this information to do some work
(for example creating an MPU region out of the property) must use either
the provided `mem-attr` library or the usual DeviceTree helpers to
perform the required work / setting.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
Add Xen domctl API implementation for Zephyr as control domain.
Previously Zephyr OS was used as unprivileged Xen domain (Domain-U),
but it also can be used as lightweight Xen control domain (Domain-0).
To implement such fuctionality additional Xen interfaces are needed.
One of them is Xen domain controls (domctls) - it allows to create,
configure and manage Xen domains.
Also, used it as a possibility to update files copyright and licenses
identifiers in touched files.
Signed-off-by: Dmytro Firsov <dmytro_firsov@epam.com>
Xen-related Kconfig options were highly dependand on BOARD/SOC xenvm.
It is not correct because Xen support may be used on any board and SoC.
So, Kconfig structure was refactored, now CONFIG_XEN is located in
arch/ directory (same as in Linux kernel) and can be selected for
any Cortex-A arm64 setup (no other platforms are currently supported).
Also remove confusion in Domain 0 naming: Domain-0, initial domain,
Dom0, privileged domain etc. Now all options related to Xen Domain 0
will be controlled by CONFIG_XEN_DOM0.
Signed-off-by: Dmytro Firsov <dmytro_firsov@epam.com>
After 79d0bf39b8 was merged, the inclusion
of <zephyr/acpi/acpi.h> with CONFIG_ACPI=n caused a build failure because
<acpica/source/include/acpi.h> could no longer be included due to the
inlcude path not being injected anymore.
Fix this by guarding the header inclusion when CONFIG_ACPI
is not set.
Fixes#62679.
Signed-off-by: Carles Cufi <carles.cufi@nordicsemi.no>
This commit provides the users a way to disconnect dynamic
interrupts. This is needed because we don't want to keep
piling up ISR/arg pairs until the number of registrable
clients is reached.
This feature is only relevant for shared and dynamic interrupts.
Signed-off-by: Laurentiu Mihalcea <laurentiu.mihalcea@nxp.com>
This works by overwriting z_isr_install()'s definition
(possible since the symbol is now weak) with our own definiton.
Whenever trying to register a new ISR/arg pair, z_isr_install()
will check to see if the interrupt line is already in use. If it's
not then it will not share the interrupt and will work exactly
as the old z_isr_install(), meaning it will just write the new
ISR/arg pair to _sw_isr_table.
If the interrupt line is already being used by an ISR/arg pair
then that line will become shared, meaning we'll overwrite
_sw_isr_table with our own (z_shared_isr, z_shared_sw_isr_table[irq])
pair.
Signed-off-by: Laurentiu Mihalcea <laurentiu.mihalcea@nxp.com>
Since the shared IRQ code will also use the same logic to compute
the _sw_isr_table index, move the computing logic to a separate
function: z_get_sw_isr_table_idx(), which can be used by other
modules.
Signed-off-by: Laurentiu Mihalcea <laurentiu.mihalcea@nxp.com>
This commit introduces all the necessary changes for
enabling the usage of shared interrupts.
This works by using a second interrupt table: _shared_sw_isr_table
which keeps track of all of the ISR/arg pairs sharing the same
interrupt line. Whenever a second ISR/arg pair is registered
on the same interrupt line using IRQ_CONNECT(), the entry in
_sw_isr_table will be overwriten by a
(shared_isr, _shared_sw_isr_table[irq]) pair. In turn, shared_isr()
will invoke all of the ISR/arg pairs registered on the same
interrupt line.
This feature only works statically, meaning you can only make use
of shared interrupts using IRQ_CONNECT(). Attempting to dynamically
register a ISR/arg pair will overwrite the hijacked _sw_isr_table
entry.
Signed-off-by: Laurentiu Mihalcea <laurentiu.mihalcea@nxp.com>
LLVM LLD fills empty spaces (created using ALIGN() or moving the
location counter) in executable segments with TrapInstr pattern,
e.g. for ARM the TrapInstr pattern is 0xd4d4d4d4. GNU LD fills
empty spaces with 0x00 pattern.
We may want to have some section (e.g. rom_start) filled with 0x00,
e.g. because MCU can interpret the pattern as a configuration data.
Signed-off-by: Patryk Duda <pdk@semihalf.com>
This commit separates kernel_arch_func.h into two header file,
'cortex_a_r/kernel_arch_func.h' and 'cortex_m/kernel_arch_func.h', it
also removes some functions which is empty.
Signed-off-by: Huifeng Zhang <Huifeng.Zhang@arm.com>
This commit separates cpu_idle.S into two asm files,
'cortex_a_r/cpu_idle.S' and 'cortex_m/cpu_idle.S'.
Signed-off-by: Huifeng Zhang <Huifeng.Zhang@arm.com>
This commit separates thread.c into two source files,
'cortex_a_r/thread.c' and 'cortex_m/thread.c, it also introduces some
changes.
1. Migrate 'thread.c' and 'cortex_m/thread.c'.
2. Migrate 'thread.c' and 'cortex_a_r/thread.c'
3. Remove the 'z_arm_mpu_stack_guard_and_fpu_adjust' function as this is
obviously written for Cortex-M architecture.
4. Remove the 'z_arm_prepare_switch_to_main' function as this is only
used by Cortex-M architecture.
Signed-off-by: Huifeng Zhang <Huifeng.Zhang@arm.com>
This commit Separate 'prep_c.c' into two file based on the architecture,
one is 'cortex_m/prep_c.c', the other is 'cortex_a_r/prep_c.c'
Signed-off-by: Huifeng Zhang <Huifeng.Zhang@arm.com>
There are too many differences between Cortex-A/R and Cortex-M on irq
code, e.g. Cortex-A/R use GIC and Cortex-M uses NVIC. For reducing
the complexity and easier to maintain, this commit separates irq_manage.c
and isr_wrapper.S into two different parts based on the architecture.
This commit also Removes the part related to the option
'CONFIG_ARM_SECURE_FIRMWARE' in 'cortex_a_r/irq_manage.c' because
this code is written for the Cortex-M architecture.
Signed-off-by: Huifeng Zhang <Huifeng.Zhang@arm.com>
There are too many differences between Cortex-A/R and Cortex-M on swap
code. For reducing the complexity and easier to maintain, this commit
introduces the following major changes
1. Separate swap.c and swap_helper.S into two different parts based on
the architecture.
2. Rename 'z_arm_pendsv' to 'z_arm_do_swap' for Cortex-A/R.
3. Removes the part related to the option 'CONFIG_BUILTIN_STACK_GUARD'
in 'cortex_a_r/swap_helper.S' because this code is written for
the Cortex-M architecture.
Signed-off-by: Huifeng Zhang <Huifeng.Zhang@arm.com>
'irq_relay.S' is only used for Arm Cortex-M architecture, so it's better
to place it to the 'arch/arm/core/cortex_m' directory.
Signed-off-by: Huifeng Zhang <Huifeng.Zhang@arm.com>
This commit follows the parent commit work.
This commit introduces the following major changes.
1. Move all directories and files in 'include/zephyr/arch/arm/aarch32'
to the 'include/zephyr/arch/arm' directory.
2. Change the path string which is influenced by the changement 1.
Signed-off-by: Huifeng Zhang <Huifeng.Zhang@arm.com>
It doesn't make sense to keep the aarch32 directory in the
'arch/arm/core' directory as the aarch64 has been moved out.
This commit introduces the following major changes.
1. Move all directories and files in 'arch/arm/core/aarch32' to
'arch/arm/core' and remove the 'arch/arm/core/aarch32' directory.
2. Move all directories and files in 'arch/include/aarch32' to
'arch/include' and remove the 'arch/include/aarch32' directory.
3. Remove the nested including in the 'arch/include/kernel_arch_func.h'
and 'arch/include/offsets_short_arch.h' header files.
4. Change the path string which is influenced by the changement 1
and 2.
Signed-off-by: Huifeng Zhang <Huifeng.Zhang@arm.com>
The prep_c.c source doesn't depend on the ACPI library. As ACPI support
now requires the ACPICA module, the extra header breaks projects using
x86 without ACPI support.
Signed-off-by: Keith Short <keithshort@google.com>
The old acpi implimentation is replaced with acpica interface
and updated x86 arch porting with the new interface.
Signed-off-by: Najumon B.A <najumon.ba@intel.com>
RISC-V Spec requires minimum alignment of trap handling code to be
dependent from MTVEC.BASE field size. Minimum alignment for RISC-V
platforms is 4 bytes, but maximum is platform or application-specific.
Currently there is no common approach to align the trap handling
code for RISC-V and some platforms use custom wrappers to align
_isr_wrapper properly.
This change introduces a generic solution,
CONFIG_RISCV_TRAP_HANDLER_ALIGNMENT configuration option which sets
the alignment of a RISC-V trap handling code.
The existing custom solutions for some platforms remain operational,
since the default alignment is set to minimal possible (4 bytes)
and will be overloaded by potentially larger alignment of custom solutions.
Signed-off-by: Alexander Razinkov <alexander.razinkov@syntacore.com>
Add a property to the native_simulator target, to collect
the libraries we want to link with the runner, instead of
abusing the link options to pass them.
Signed-off-by: Alberto Escolar Piedras <alberto.escolar.piedras@nordicsemi.no>
As per #26393, Local APIC is using Kconfig based option for
the base address. This patch adds DTS binding support in the driver,
just like its conunter part I/O APIC.
Signed-off-by: Umar Nisar <umar.nisar@intel.com>
Disable d-cache on the fvp_baser_aemv8r_aarch32 platform because there
are some issues when d-cache is enabled for now.
Signed-off-by: Huifeng Zhang <Huifeng.Zhang@arm.com>
This header is private and included only in architecture code, no need for
it to be in the top of the public include directory.
Note: This might move to a more private location later. For now just
cleaning up the obvious issues.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
During Zephyr boot with SMP enabled,
while z_smp_init is not completed yet and only boot core is running,
incorrect code in broadcast_ipi API will cause following:
1. Generate IPI even if other cores are not booted.
2. Incorrect setting of sgi1r register.
3. All the affinity(1/2/3) value will be incorrect.
Signed-off-by: Chirag Kochar <chirag.kochar@intel.com>
Enhanced arch_start_cpu so if a core is not available based on pm_cpu_on
return value, booting does not halt. Instead the next core in
cpu_node_list will be tried. If the number of CPU nodes described in the
device tree is greater than CONFIG_MP_MAX_NUM_CPUS then the extra cores
will be reserved and used if any previous cores in the cpu_node_list fail
to power on. If the number of cores described in the device tree matches
CONFIG_MP_MAX_NUM_CPUS then no cores are in reserve and booting will
behave as previous, it will halt.
Signed-off-by: Chad Karaginides <quic_chadk@quicinc.com>
In some shared-memory use cases between Zephyr and other parallel
running OS, for data coherent, the non-cacheable normal memory
mapping is needed.
Signed-off-by: Hou Zhiqiang <Zhiqiang.Hou@nxp.com>
This adds a function arch_xtensa_mmu_post_init() which can
be implemented on the SoC layer to perform additional MMU
initialization steps if necessary.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
...VECBASE during MMU initialization. This is to make sure
that we can use the TLB miss handling in the exception
vector after we have moved back the VECBASE during MMU
initialization. Or else we would be forever stuck in ITLB
miss because the exception vectors are not in TLB and we
cannot populate the TLB because those vectors are not in
TLB.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
...and move it to xtensa_mmu_priv.h.
This would allow the SoC layer to use the RING number if needed.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
This adds arch_reserved_pages_update() which is called in
k_mem_manage_init() to reserve some physical pages so they
are not re-mapped. This is due to Zephyr's linker scripts
for Xtensa which often puts something before z_mapped_start
(aka .text, for example, vecbase). That space needs to be
reserved or else k_mem_map() would be mapping those that
could result in faults.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Instead of only handling data TLB misses for VECBASE, change it
to handle all data TLB misses in the double exception handler.
It is because we may encounter data TLB misses when trying to
preload page table entries inside user exception handler.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>