Implement a set of per-cpu trampoline stacks which all
interrupts and exceptions will initially land on, and also
as an intermediate stack for privilege changes as we need
some stack space to swap page tables.
Set up the special trampoline page which contains all the
trampoline stacks, TSS, and GDT. This page needs to be
present in the user page tables or interrupts don't work.
CPU exceptions, with KPTI turned on, are treated as interrupts
and not traps so that we have IRQs locked on exception entry.
Add some additional macros for defining IDT entries.
Add special handling of locore text/rodata sections when
creating user mode page tables on x86-64.
Restore qemu_x86_64 to use KPTI, and remove restrictions on
enabling user mode on x86-64.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
We don't need to set up GDT data descriptors for setting
%gs. Instead, we use the x86 MSRs to set GS_BASE and
KERNEL_GS_BASE.
We don't currently allow user mode to set %gs on its own,
but later on if we do, we have everything set up to issue
'swapgs' instructions on syscall or IRQ.
Unused entries in the GDT have been removed.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Promote the private z_arch_* namespace, which specifies
the interface between the core kernel and the
architecture code, to a new top-level namespace named
arch_*.
This allows our documentation generation to create
online documentation for this set of interfaces,
and this set of interfaces is worth treating in a
more formal way anyway.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
The page tables to use are now stored in the cpuboot struct.
For the first CPU, we set to the flat page tables, and then
update later in z_x86_prep_c() once the runtime tables have
been generated.
For other CPUs, by the time we get to z_arch_start_cpu()
the runtime tables are ready do go, and so we just install
them directly.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
It's possible to have multiple processors configured without using the
SMP scheduler, so don't make definitions dependent on CONFIG_SMP.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
In non-SMP MP situations, the interrupt stacks might not exist, so
do not assume they do. Instead, initialize the TSS IST1 from the
cpuboot[] vector (meaning, on APs, the stack from z_arch_start_cpu).
Eliminates redundancy at the same time.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
Add duplicate per-CPU data structures (x86_cpuboot, tss, stacks, etc.)
for up to 4 total CPUs, add code in locore and z_arch_start_cpu().
The test board, qemu_x86_long, now defaults to 2 CPUs.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
Take a dummy first argument, so that the BSP entry point (z_x86_prep_c)
has the same signature as the AP entry point (smp_init_top).
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
A new 'struct x86_cpuboot' is created as well as an instance called
'x86_cpuboot[]' which contains per-CPU boot data (initial stack,
entry function/arg, selectors, etc.). The locore now consults this
table to set up per-CPU registers, etc. during early boot.
Also, rename tss.c to cpu.c as its scope is growing.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
2019-10-07 19:46:55 -04:00
Renamed from arch/x86/core/intel64/tss.c (Browse further)