zephyr/arch/arc/core/cache.c

691 lines
16 KiB
C
Raw Permalink Normal View History

/* cache.c - d-cache support for ARC CPUs */
/*
* Copyright (c) 2016 Synopsys, Inc. All rights reserved.
* Copyright (c) 2025 GSI Technology, All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief d-cache manipulation
*
* This module contains functions for manipulation of the d-cache.
*/
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/sys/util.h>
#include <zephyr/toolchain.h>
#include <zephyr/cache.h>
#include <zephyr/linker/linker-defs.h>
#include <zephyr/arch/arc/v2/aux_regs.h>
#include <kernel_internal.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/init.h>
#include <stdbool.h>
#if defined(CONFIG_DCACHE_LINE_SIZE_DETECT)
size_t sys_cache_line_size;
#endif
#define DC_CTRL_DC_ENABLE 0x0 /* enable d-cache */
#define DC_CTRL_DC_DISABLE 0x1 /* disable d-cache */
#define DC_CTRL_INVALID_ONLY 0x0 /* invalid d-cache only */
#define DC_CTRL_INVALID_FLUSH 0x40 /* invalid and flush d-cache */
#define DC_CTRL_ENABLE_FLUSH_LOCKED 0x80 /* locked d-cache can be flushed */
#define DC_CTRL_DISABLE_FLUSH_LOCKED 0x0 /* locked d-cache cannot be flushed */
#define DC_CTRL_FLUSH_STATUS 0x100 /* flush status */
#define DC_CTRL_DIRECT_ACCESS 0x0 /* direct access mode */
#define DC_CTRL_INDIRECT_ACCESS 0x20 /* indirect access mode */
#define DC_CTRL_OP_SUCCEEDED 0x4 /* d-cache operation succeeded */
#define DC_CTRL_INVALIDATE_MODE 0x40 /* d-cache invalidate mode bit */
#define DC_CTRL_REGION_OP 0xe00 /* d-cache region operation */
#define MMU_BUILD_PHYSICAL_ADDR_EXTENSION 0x1000 /* physical address extension enable mask */
#define SLC_CTRL_DISABLE 0x1 /* SLC disable */
#define SLC_CTRL_INVALIDATE_MODE 0x40 /* SLC invalidate mode */
#define SLC_CTRL_BUSY_STATUS 0x100 /* SLC busy status */
#define SLC_CTRL_REGION_OP 0xe00 /* SLC region operation */
#if defined(CONFIG_ARC_SLC)
/*
* spinlock is used for SLC access because depending on HW configuration, the SLC might be shared
* between the cores, and in this case, only one core is allowed to access the SLC register
* interface at a time.
*/
static struct k_spinlock slc_lock;
#endif
static bool dcache_available(void)
{
unsigned long val = z_arc_v2_aux_reg_read(_ARC_V2_D_CACHE_BUILD);
val &= 0xff; /* extract version */
return (val == 0) ? false : true;
}
static void dcache_dc_ctrl(uint32_t dcache_en_mask)
{
if (dcache_available()) {
z_arc_v2_aux_reg_write(_ARC_V2_DC_CTRL, dcache_en_mask);
}
}
static bool pae_exists(void)
{
uint32_t bcr = z_arc_v2_aux_reg_read(_ARC_V2_MMU_BUILD);
return 1 == FIELD_GET(MMU_BUILD_PHYSICAL_ADDR_EXTENSION, bcr);
}
#if defined(CONFIG_ARC_SLC)
static void slc_enable(void)
{
uint32_t val = z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL);
val &= ~SLC_CTRL_DISABLE;
z_arc_v2_aux_reg_write(_ARC_V2_SLC_CTRL, val);
}
static void slc_high_addr_init(void)
{
z_arc_v2_aux_reg_write(_ARC_V2_SLC_RGN_END1, 0);
z_arc_v2_aux_reg_write(_ARC_V2_SLC_RGN_START1, 0);
}
static void slc_flush_region(void *start_addr_ptr, size_t size)
{
uintptr_t start_addr = (uintptr_t)start_addr_ptr;
uintptr_t end_addr;
uint32_t ctrl;
K_SPINLOCK(&slc_lock) {
ctrl = z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL);
ctrl &= ~SLC_CTRL_REGION_OP;
z_arc_v2_aux_reg_write(_ARC_V2_SLC_CTRL, ctrl);
/*
* END needs to be setup before START (latter triggers the operation)
* END can't be same as START, so add (l2_line_sz - 1) to sz
*/
end_addr = start_addr + size + CONFIG_ARC_SLC_LINE_SIZE - 1;
z_arc_v2_aux_reg_write(_ARC_V2_SLC_RGN_END, end_addr);
/* Align start address to cache line size, see STAR 5103816 */
z_arc_v2_aux_reg_write(_ARC_V2_SLC_RGN_START,
start_addr & ~(CONFIG_ARC_SLC_LINE_SIZE - 1));
/* Make sure "busy" bit reports correct status, see STAR 9001165532 */
z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL);
while (z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL) & SLC_CTRL_BUSY_STATUS) {
/* Do Nothing */
}
}
}
static void slc_invalidate_region(void *start_addr_ptr, size_t size)
{
uintptr_t start_addr = (uintptr_t)start_addr_ptr;
uintptr_t end_addr;
uint32_t ctrl;
K_SPINLOCK(&slc_lock) {
ctrl = z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL);
ctrl &= ~SLC_CTRL_INVALIDATE_MODE;
ctrl &= ~SLC_CTRL_REGION_OP;
ctrl |= FIELD_PREP(SLC_CTRL_REGION_OP, 0x1);
z_arc_v2_aux_reg_write(_ARC_V2_SLC_CTRL, ctrl);
/*
* END needs to be setup before START (latter triggers the operation)
* END can't be same as START, so add (l2_line_sz - 1) to sz
*/
end_addr = start_addr + size + CONFIG_ARC_SLC_LINE_SIZE - 1;
z_arc_v2_aux_reg_write(_ARC_V2_SLC_RGN_END, end_addr);
/* Align start address to cache line size, see STAR 5103816 */
z_arc_v2_aux_reg_write(_ARC_V2_SLC_RGN_START,
start_addr & ~(CONFIG_ARC_SLC_LINE_SIZE - 1));
/* Make sure "busy" bit reports correct status, see STAR 9001165532 */
z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL);
while (z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL) & SLC_CTRL_BUSY_STATUS) {
/* Do Nothing */
}
}
}
static void slc_flush_and_invalidate_region(void *start_addr_ptr, size_t size)
{
uintptr_t start_addr = (uintptr_t)start_addr_ptr;
uintptr_t end_addr;
uint32_t ctrl;
K_SPINLOCK(&slc_lock) {
ctrl = z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL);
ctrl |= SLC_CTRL_INVALIDATE_MODE;
ctrl &= ~SLC_CTRL_REGION_OP;
ctrl |= FIELD_PREP(SLC_CTRL_REGION_OP, 0x1);
z_arc_v2_aux_reg_write(_ARC_V2_SLC_CTRL, ctrl);
/*
* END needs to be setup before START (latter triggers the operation)
* END can't be same as START, so add (l2_line_sz - 1) to sz
*/
end_addr = start_addr + size + CONFIG_ARC_SLC_LINE_SIZE - 1;
z_arc_v2_aux_reg_write(_ARC_V2_SLC_RGN_END, end_addr);
/* Align start address to cache line size, see STAR 5103816 */
z_arc_v2_aux_reg_write(_ARC_V2_SLC_RGN_START,
start_addr & ~(CONFIG_ARC_SLC_LINE_SIZE - 1));
/* Make sure "busy" bit reports correct status, see STAR 9001165532 */
z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL);
while (z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL) & SLC_CTRL_BUSY_STATUS) {
/* Do Nothing */
}
}
}
static void slc_flush_all(void)
{
K_SPINLOCK(&slc_lock) {
z_arc_v2_aux_reg_write(_ARC_V2_SLC_FLUSH, 0x1);
/* Make sure "busy" bit reports correct status, see STAR 9001165532 */
z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL);
while (z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL) & SLC_CTRL_BUSY_STATUS) {
/* Do Nothing */
}
}
}
static void slc_invalidate_all(void)
{
uint32_t ctrl;
K_SPINLOCK(&slc_lock) {
ctrl = z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL);
ctrl &= ~SLC_CTRL_INVALIDATE_MODE;
z_arc_v2_aux_reg_write(_ARC_V2_SLC_CTRL, ctrl);
z_arc_v2_aux_reg_write(_ARC_V2_SLC_INVALIDATE, 0x1);
/* Make sure "busy" bit reports correct status, see STAR 9001165532 */
z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL);
while (z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL) & SLC_CTRL_BUSY_STATUS) {
/* Do Nothing */
}
}
}
static void slc_flush_and_invalidate_all(void)
{
uint32_t ctrl;
K_SPINLOCK(&slc_lock) {
ctrl = z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL);
ctrl |= SLC_CTRL_INVALIDATE_MODE;
z_arc_v2_aux_reg_write(_ARC_V2_SLC_CTRL, ctrl);
z_arc_v2_aux_reg_write(_ARC_V2_SLC_INVALIDATE, 0x1);
/* Make sure "busy" bit reports correct status, see STAR 9001165532 */
z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL);
while (z_arc_v2_aux_reg_read(_ARC_V2_SLC_CTRL) & SLC_CTRL_BUSY_STATUS) {
/* Do Nothing */
}
}
}
#endif /* CONFIG_ARC_SLC */
void arch_dcache_enable(void)
{
dcache_dc_ctrl(DC_CTRL_DC_ENABLE);
#if defined(CONFIG_ARC_SLC)
slc_enable();
#endif
}
void arch_dcache_disable(void)
{
/* nothing */
}
#if defined(CONFIG_ARC_DCACHE_REGION_OPERATIONS)
static void dcache_high_addr_init(void)
{
z_arc_v2_aux_reg_write(_ARC_V2_DC_PTAG_HI, 0);
}
static void dcache_flush_region(void *start_addr_ptr, size_t size)
{
size_t line_size = sys_cache_data_line_size_get();
uintptr_t start_addr = (uintptr_t)start_addr_ptr;
uintptr_t end_addr;
uint32_t ctrl;
unsigned int key;
key = arch_irq_lock(); /* --enter critical section-- */
ctrl = z_arc_v2_aux_reg_read(_ARC_V2_DC_CTRL);
ctrl &= ~DC_CTRL_REGION_OP;
z_arc_v2_aux_reg_write(_ARC_V2_DC_CTRL, ctrl);
end_addr = start_addr + size + line_size - 1;
z_arc_v2_aux_reg_write(_ARC_V2_DC_ENDR, end_addr);
z_arc_v2_aux_reg_write(_ARC_V2_DC_STARTR, start_addr);
while (z_arc_v2_aux_reg_read(_ARC_V2_DC_CTRL) & DC_CTRL_FLUSH_STATUS) {
/* Do nothing */
}
arch_irq_unlock(key); /* --exit critical section-- */
}
static void dcache_invalidate_region(void *start_addr_ptr, size_t size)
{
size_t line_size = sys_cache_data_line_size_get();
uintptr_t start_addr = (uintptr_t)start_addr_ptr;
uintptr_t end_addr;
uint32_t ctrl;
unsigned int key;
key = arch_irq_lock(); /* --enter critical section-- */
ctrl = z_arc_v2_aux_reg_read(_ARC_V2_DC_CTRL);
ctrl &= ~DC_CTRL_INVALIDATE_MODE;
ctrl &= ~DC_CTRL_REGION_OP;
ctrl |= FIELD_PREP(DC_CTRL_REGION_OP, 0x1);
z_arc_v2_aux_reg_write(_ARC_V2_DC_CTRL, ctrl);
end_addr = start_addr + size + line_size - 1;
z_arc_v2_aux_reg_write(_ARC_V2_DC_ENDR, end_addr);
z_arc_v2_aux_reg_write(_ARC_V2_DC_STARTR, start_addr);
arch_irq_unlock(key); /* --exit critical section-- */
}
static void dcache_flush_and_invalidate_region(void *start_addr_ptr, size_t size)
{
size_t line_size = sys_cache_data_line_size_get();
uintptr_t start_addr = (uintptr_t)start_addr_ptr;
uintptr_t end_addr;
uint32_t ctrl;
unsigned int key;
key = arch_irq_lock(); /* --enter critical section-- */
ctrl = z_arc_v2_aux_reg_read(_ARC_V2_DC_CTRL);
ctrl |= DC_CTRL_INVALIDATE_MODE;
ctrl &= ~DC_CTRL_REGION_OP;
ctrl |= FIELD_PREP(DC_CTRL_REGION_OP, 0x1);
z_arc_v2_aux_reg_write(_ARC_V2_DC_CTRL, ctrl);
end_addr = start_addr + size + line_size - 1;
z_arc_v2_aux_reg_write(_ARC_V2_DC_ENDR, end_addr);
z_arc_v2_aux_reg_write(_ARC_V2_DC_STARTR, start_addr);
while (z_arc_v2_aux_reg_read(_ARC_V2_DC_CTRL) & DC_CTRL_FLUSH_STATUS) {
/* Do nothing */
}
arch_irq_unlock(key); /* --exit critical section-- */
}
#else /* CONFIG_ARC_DCACHE_REGION_OPERATIONS */
static void dcache_flush_lines(void *start_addr_ptr, size_t size)
{
size_t line_size = sys_cache_data_line_size_get();
uintptr_t start_addr = (uintptr_t)start_addr_ptr;
uintptr_t end_addr;
unsigned int key;
end_addr = start_addr + size;
start_addr = ROUND_DOWN(start_addr, line_size);
key = arch_irq_lock(); /* --enter critical section-- */
do {
z_arc_v2_aux_reg_write(_ARC_V2_DC_FLDL, start_addr);
__builtin_arc_nop();
__builtin_arc_nop();
__builtin_arc_nop();
/* wait for flush completion */
do {
if ((z_arc_v2_aux_reg_read(_ARC_V2_DC_CTRL) &
DC_CTRL_FLUSH_STATUS) == 0) {
break;
}
} while (1);
start_addr += line_size;
} while (start_addr < end_addr);
arch_irq_unlock(key); /* --exit critical section-- */
}
static void dcache_invalidate_lines(void *start_addr_ptr, size_t size)
{
size_t line_size = sys_cache_data_line_size_get();
uintptr_t start_addr = (uintptr_t)start_addr_ptr;
uintptr_t end_addr;
unsigned int key;
uint32_t ctrl;
end_addr = start_addr + size;
start_addr = ROUND_DOWN(start_addr, line_size);
key = arch_irq_lock(); /* -enter critical section- */
ctrl = z_arc_v2_aux_reg_read(_ARC_V2_DC_CTRL);
ctrl &= ~DC_CTRL_INVALIDATE_MODE;
z_arc_v2_aux_reg_write(_ARC_V2_DC_CTRL, ctrl);
do {
z_arc_v2_aux_reg_write(_ARC_V2_DC_IVDL, start_addr);
__builtin_arc_nop();
__builtin_arc_nop();
__builtin_arc_nop();
start_addr += line_size;
} while (start_addr < end_addr);
irq_unlock(key); /* -exit critical section- */
}
static void dcache_flush_and_invalidate_lines(void *start_addr_ptr, size_t size)
{
size_t line_size = sys_cache_data_line_size_get();
uintptr_t start_addr = (uintptr_t)start_addr_ptr;
uintptr_t end_addr;
unsigned int key;
uint32_t ctrl;
end_addr = start_addr + size;
start_addr = ROUND_DOWN(start_addr, line_size);
key = arch_irq_lock(); /* -enter critical section- */
ctrl = z_arc_v2_aux_reg_read(_ARC_V2_DC_CTRL);
ctrl |= DC_CTRL_INVALIDATE_MODE;
z_arc_v2_aux_reg_write(_ARC_V2_DC_CTRL, ctrl);
do {
z_arc_v2_aux_reg_write(_ARC_V2_DC_IVDL, start_addr);
__builtin_arc_nop();
__builtin_arc_nop();
__builtin_arc_nop();
start_addr += line_size;
} while (start_addr < end_addr);
irq_unlock(key); /* -exit critical section- */
}
#endif /* CONFIG_ARC_DCACHE_REGION_OPERATIONS */
int arch_dcache_flush_range(void *start_addr_ptr, size_t size)
{
size_t line_size = sys_cache_data_line_size_get();
if (!dcache_available() || (size == 0U) || line_size == 0U) {
return -ENOTSUP;
}
#if defined(CONFIG_ARC_DCACHE_REGION_OPERATIONS)
dcache_flush_region(start_addr_ptr, size);
#else
dcache_flush_lines(start_addr_ptr, size);
#endif
#if defined(CONFIG_ARC_SLC)
slc_flush_region(start_addr_ptr, size);
#endif
return 0;
}
int arch_dcache_invd_range(void *start_addr_ptr, size_t size)
{
size_t line_size = sys_cache_data_line_size_get();
if (!dcache_available() || (size == 0U) || line_size == 0U) {
return -ENOTSUP;
}
#if defined(CONFIG_ARC_DCACHE_REGION_OPERATIONS)
dcache_invalidate_region(start_addr_ptr, size);
#else
dcache_invalidate_lines(start_addr_ptr, size);
#endif
#if defined(CONFIG_ARC_SLC)
slc_invalidate_region(start_addr_ptr, size);
#endif
return 0;
}
int arch_dcache_flush_and_invd_range(void *start_addr_ptr, size_t size)
{
size_t line_size = sys_cache_data_line_size_get();
if (!dcache_available() || (size == 0U) || line_size == 0U) {
return -ENOTSUP;
}
#if defined(CONFIG_ARC_DCACHE_REGION_OPERATIONS)
dcache_flush_and_invalidate_region(start_addr_ptr, size);
#else
dcache_flush_and_invalidate_lines(start_addr_ptr, size);
#endif
#if defined(CONFIG_ARC_SLC)
slc_flush_and_invalidate_region(start_addr_ptr, size);
#endif
return 0;
}
int arch_dcache_flush_all(void)
{
size_t line_size = sys_cache_data_line_size_get();
unsigned int key;
if (!dcache_available() || line_size == 0U) {
return -ENOTSUP;
}
key = irq_lock();
z_arc_v2_aux_reg_write(_ARC_V2_DC_FLSH, 0x1);
while (z_arc_v2_aux_reg_read(_ARC_V2_DC_CTRL) & DC_CTRL_FLUSH_STATUS) {
/* Do nothing */
}
irq_unlock(key);
#if defined(CONFIG_ARC_SLC)
slc_flush_all();
#endif
return 0;
}
int arch_dcache_invd_all(void)
{
size_t line_size = sys_cache_data_line_size_get();
unsigned int key;
uint32_t ctrl;
if (!dcache_available() || line_size == 0U) {
return -ENOTSUP;
}
key = irq_lock();
ctrl = z_arc_v2_aux_reg_read(_ARC_V2_DC_CTRL);
ctrl &= ~DC_CTRL_INVALIDATE_MODE;
z_arc_v2_aux_reg_write(_ARC_V2_DC_CTRL, ctrl);
z_arc_v2_aux_reg_write(_ARC_V2_DC_IVDC, 0x1);
irq_unlock(key);
#if defined(CONFIG_ARC_SLC)
slc_invalidate_all();
#endif
return 0;
}
int arch_dcache_flush_and_invd_all(void)
{
size_t line_size = sys_cache_data_line_size_get();
unsigned int key;
uint32_t ctrl;
if (!dcache_available() || line_size == 0U) {
return -ENOTSUP;
}
key = irq_lock();
ctrl = z_arc_v2_aux_reg_read(_ARC_V2_DC_CTRL);
ctrl |= DC_CTRL_INVALIDATE_MODE;
z_arc_v2_aux_reg_write(_ARC_V2_DC_CTRL, ctrl);
z_arc_v2_aux_reg_write(_ARC_V2_DC_IVDC, 0x1);
while (z_arc_v2_aux_reg_read(_ARC_V2_DC_CTRL) & DC_CTRL_FLUSH_STATUS) {
/* Do nothing */
}
irq_unlock(key);
#if defined(CONFIG_ARC_SLC)
slc_flush_and_invalidate_all();
#endif
return 0;
}
#if defined(CONFIG_DCACHE_LINE_SIZE_DETECT)
static void init_dcache_line_size(void)
{
uint32_t val;
val = z_arc_v2_aux_reg_read(_ARC_V2_D_CACHE_BUILD);
__ASSERT((val&0xff) != 0U, "d-cache is not present");
val = ((val>>16) & 0xf) + 1;
val *= 16U;
sys_cache_line_size = (size_t) val;
}
size_t arch_dcache_line_size_get(void)
{
return sys_cache_line_size;
}
#endif
void arch_icache_enable(void)
{
/* nothing */
}
void arch_icache_disable(void)
{
/* nothing */
}
int arch_icache_flush_all(void)
{
return -ENOTSUP;
}
int arch_icache_invd_all(void)
{
return -ENOTSUP;
}
int arch_icache_flush_and_invd_all(void)
{
return -ENOTSUP;
}
int arch_icache_flush_range(void *addr, size_t size)
{
ARG_UNUSED(addr);
ARG_UNUSED(size);
return -ENOTSUP;
}
int arch_icache_invd_range(void *addr, size_t size)
{
ARG_UNUSED(addr);
ARG_UNUSED(size);
return -ENOTSUP;
}
int arch_icache_flush_and_invd_range(void *addr, size_t size)
{
ARG_UNUSED(addr);
ARG_UNUSED(size);
return -ENOTSUP;
}
init: remove the need for a dummy device pointer in SYS_INIT functions The init infrastructure, found in `init.h`, is currently used by: - `SYS_INIT`: to call functions before `main` - `DEVICE_*`: to initialize devices They are all sorted according to an initialization level + a priority. `SYS_INIT` calls are really orthogonal to devices, however, the required function signature requires a `const struct device *dev` as a first argument. The only reason for that is because the same init machinery is used by devices, so we have something like: ```c struct init_entry { int (*init)(const struct device *dev); /* only set by DEVICE_*, otherwise NULL */ const struct device *dev; } ``` As a result, we end up with such weird/ugly pattern: ```c static int my_init(const struct device *dev) { /* always NULL! add ARG_UNUSED to avoid compiler warning */ ARG_UNUSED(dev); ... } ``` This is really a result of poor internals isolation. This patch proposes a to make init entries more flexible so that they can accept sytem initialization calls like this: ```c static int my_init(void) { ... } ``` This is achieved using a union: ```c union init_function { /* for SYS_INIT, used when init_entry.dev == NULL */ int (*sys)(void); /* for DEVICE*, used when init_entry.dev != NULL */ int (*dev)(const struct device *dev); }; struct init_entry { /* stores init function (either for SYS_INIT or DEVICE*) union init_function init_fn; /* stores device pointer for DEVICE*, NULL for SYS_INIT. Allows * to know which union entry to call. */ const struct device *dev; } ``` This solution **does not increase ROM usage**, and allows to offer clean public APIs for both SYS_INIT and DEVICE*. Note that however, init machinery keeps a coupling with devices. **NOTE**: This is a breaking change! All `SYS_INIT` functions will need to be converted to the new signature. See the script offered in the following commit. Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no> init: convert SYS_INIT functions to the new signature Conversion scripted using scripts/utils/migrate_sys_init.py. Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no> manifest: update projects for SYS_INIT changes Update modules with updated SYS_INIT calls: - hal_ti - lvgl - sof - TraceRecorderSource Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no> tests: devicetree: devices: adjust test Adjust test according to the recently introduced SYS_INIT infrastructure. Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no> tests: kernel: threads: adjust SYS_INIT call Adjust to the new signature: int (*init_fn)(void); Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
2022-10-19 09:33:44 +02:00
static int init_dcache(void)
{
sys_cache_data_enable();
#if defined(CONFIG_DCACHE_LINE_SIZE_DETECT)
init_dcache_line_size();
#endif
/*
* Init high address registers to 0 if PAE exists, cache operations for 40 bit addresses not
* implemented
*/
if (pae_exists()) {
#if defined(CONFIG_ARC_DCACHE_REGION_OPERATIONS)
dcache_high_addr_init();
#endif
#if defined(CONFIG_ARC_SLC)
slc_high_addr_init();
#endif
}
return 0;
}
void arch_cache_init(void)
{
init_dcache();
}