zephyr/drivers/usb/udc/udc_stm32.c
Armin Brauns 3ca157e76f drivers: usb: stm32: fix logic for USB clock configuration
- If the peripheral is OTG_HS with ULPI, enable the OTG_HS ULPI clock
  - The constant has a slightly different name on stm32h7
- Otherwise, if the peripheral is OTG_HS:
  - Disable the OTG_HS ULPI clock in sleep/low power mode,
  - If the peripheral is OTG_HS with PHYC[1], enable the PHYC clock.
- Otherwise, if the peripheral is OTG_FS[2] on stm32h7, also disable the
  OTG_FS ULPI clock in sleep mode (in the device/ driver, this is done in
  usb_dc_stm32_init()),

[1]: Internal HS PHY in stm32f7x2xx and (some) stm32f730xx
[2]: "OTG_FS" on stm32h7 is really just another OTG_HS peripheral, but
without any way to actually connect a HS PHY

Signed-off-by: Armin Brauns <armin.brauns@embedded-solutions.at>
2024-05-14 17:04:49 +02:00

1149 lines
28 KiB
C

/*
* Copyright (c) 2023 Linaro Limited
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file udc_stm32.c
* @brief STM32 USB device controller (UDC) driver
*/
#include <soc.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_system.h>
#include <string.h>
#include <zephyr/irq.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/usb/usb_device.h>
#include "udc_common.h"
#include "stm32_hsem.h"
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(udc_stm32, CONFIG_UDC_DRIVER_LOG_LEVEL);
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otghs)
#define DT_DRV_COMPAT st_stm32_otghs
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otgfs)
#define DT_DRV_COMPAT st_stm32_otgfs
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_usb)
#define DT_DRV_COMPAT st_stm32_usb
#endif
struct udc_stm32_data {
PCD_HandleTypeDef pcd;
const struct device *dev;
uint32_t irq;
uint32_t occupied_mem;
void (*pcd_prepare)(const struct device *dev);
int (*clk_enable)(void);
int (*clk_disable)(void);
};
struct udc_stm32_config {
uint32_t num_endpoints;
uint32_t pma_offset;
uint32_t dram_size;
uint16_t ep0_mps;
uint16_t ep_mps;
};
static int udc_stm32_lock(const struct device *dev)
{
return udc_lock_internal(dev, K_FOREVER);
}
static int udc_stm32_unlock(const struct device *dev)
{
return udc_unlock_internal(dev);
}
#define hpcd2data(hpcd) CONTAINER_OF(hpcd, struct udc_stm32_data, pcd);
void HAL_PCD_ResetCallback(PCD_HandleTypeDef *hpcd)
{
struct udc_stm32_data *priv = hpcd2data(hpcd);
const struct device *dev = priv->dev;
const struct udc_stm32_config *cfg = dev->config;
struct udc_ep_config *ep;
/* Re-Enable control endpoints */
ep = udc_get_ep_cfg(dev, USB_CONTROL_EP_OUT);
if (ep && ep->stat.enabled) {
HAL_PCD_EP_Open(&priv->pcd, USB_CONTROL_EP_OUT, cfg->ep0_mps,
EP_TYPE_CTRL);
}
ep = udc_get_ep_cfg(dev, USB_CONTROL_EP_IN);
if (ep && ep->stat.enabled) {
HAL_PCD_EP_Open(&priv->pcd, USB_CONTROL_EP_IN, cfg->ep0_mps,
EP_TYPE_CTRL);
}
udc_submit_event(priv->dev, UDC_EVT_RESET, 0);
}
void HAL_PCD_ConnectCallback(PCD_HandleTypeDef *hpcd)
{
struct udc_stm32_data *priv = hpcd2data(hpcd);
udc_submit_event(priv->dev, UDC_EVT_VBUS_READY, 0);
}
void HAL_PCD_DisconnectCallback(PCD_HandleTypeDef *hpcd)
{
struct udc_stm32_data *priv = hpcd2data(hpcd);
udc_submit_event(priv->dev, UDC_EVT_VBUS_REMOVED, 0);
}
void HAL_PCD_SuspendCallback(PCD_HandleTypeDef *hpcd)
{
struct udc_stm32_data *priv = hpcd2data(hpcd);
udc_set_suspended(priv->dev, true);
udc_submit_event(priv->dev, UDC_EVT_SUSPEND, 0);
}
void HAL_PCD_ResumeCallback(PCD_HandleTypeDef *hpcd)
{
struct udc_stm32_data *priv = hpcd2data(hpcd);
udc_set_suspended(priv->dev, false);
udc_submit_event(priv->dev, UDC_EVT_RESUME, 0);
}
static int usbd_ctrl_feed_dout(const struct device *dev, const size_t length)
{
struct udc_stm32_data *priv = udc_get_private(dev);
struct udc_ep_config *cfg = udc_get_ep_cfg(dev, USB_CONTROL_EP_OUT);
struct net_buf *buf;
buf = udc_ctrl_alloc(dev, USB_CONTROL_EP_OUT, length);
if (buf == NULL) {
return -ENOMEM;
}
net_buf_put(&cfg->fifo, buf);
HAL_PCD_EP_Receive(&priv->pcd, cfg->addr, buf->data, buf->size);
return 0;
}
void HAL_PCD_SetupStageCallback(PCD_HandleTypeDef *hpcd)
{
struct udc_stm32_data *priv = hpcd2data(hpcd);
struct usb_setup_packet *setup = (void *)priv->pcd.Setup;
const struct device *dev = priv->dev;
struct net_buf *buf;
int err;
buf = udc_ctrl_alloc(dev, USB_CONTROL_EP_OUT,
sizeof(struct usb_setup_packet));
if (buf == NULL) {
LOG_ERR("Failed to allocate for setup");
return;
}
udc_ep_buf_set_setup(buf);
memcpy(buf->data, setup, 8);
net_buf_add(buf, 8);
udc_ctrl_update_stage(dev, buf);
if (!buf->len) {
return;
}
if (setup->bRequest == USB_SREQ_SET_ADDRESS) {
/* HAL requires we set the address before submitting status */
HAL_PCD_SetAddress(&priv->pcd, setup->wValue);
}
if (udc_ctrl_stage_is_data_out(dev)) {
/* Allocate and feed buffer for data OUT stage */
err = usbd_ctrl_feed_dout(dev, udc_data_stage_length(buf));
if (err == -ENOMEM) {
udc_submit_ep_event(dev, buf, err);
}
} else if (udc_ctrl_stage_is_data_in(dev)) {
udc_ctrl_submit_s_in_status(dev);
} else {
udc_ctrl_submit_s_status(dev);
}
}
void HAL_PCD_SOFCallback(PCD_HandleTypeDef *hpcd)
{
struct udc_stm32_data *priv = hpcd2data(hpcd);
udc_submit_event(priv->dev, UDC_EVT_SOF, 0);
}
static int udc_stm32_tx(const struct device *dev, uint8_t ep,
struct net_buf *buf)
{
struct udc_stm32_data *priv = udc_get_private(dev);
const struct udc_stm32_config *cfg = dev->config;
uint8_t *data; uint32_t len;
HAL_StatusTypeDef status;
LOG_DBG("TX ep 0x%02x len %u", ep, buf->len);
if (udc_ep_is_busy(dev, ep)) {
return 0;
}
data = buf->data;
len = buf->len;
if (ep == USB_CONTROL_EP_IN) {
len = MIN(cfg->ep0_mps, buf->len);
}
buf->data += len;
buf->len -= len;
status = HAL_PCD_EP_Transmit(&priv->pcd, ep, data, len);
if (status != HAL_OK) {
LOG_ERR("HAL_PCD_EP_Transmit failed(0x%02x), %d", ep, (int)status);
return -EIO;
}
udc_ep_set_busy(dev, ep, true);
if (ep == USB_CONTROL_EP_IN && len > 0) {
/* Wait for an empty package from the host.
* This also flushes the TX FIFO to the host.
*/
usbd_ctrl_feed_dout(dev, 0);
}
return 0;
}
static int udc_stm32_rx(const struct device *dev, uint8_t ep,
struct net_buf *buf)
{
struct udc_stm32_data *priv = udc_get_private(dev);
HAL_StatusTypeDef status;
LOG_DBG("RX ep 0x%02x len %u", ep, buf->size);
if (udc_ep_is_busy(dev, ep)) {
return 0;
}
status = HAL_PCD_EP_Receive(&priv->pcd, ep, buf->data, buf->size);
if (status != HAL_OK) {
LOG_ERR("HAL_PCD_EP_Receive failed(0x%02x), %d", ep, (int)status);
return -EIO;
}
udc_ep_set_busy(dev, ep, true);
return 0;
}
void HAL_PCD_DataOutStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum)
{
uint32_t rx_count = HAL_PCD_EP_GetRxCount(hpcd, epnum);
struct udc_stm32_data *priv = hpcd2data(hpcd);
const struct device *dev = priv->dev;
uint8_t ep = epnum | USB_EP_DIR_OUT;
struct net_buf *buf;
LOG_DBG("DataOut ep 0x%02x", ep);
udc_ep_set_busy(dev, ep, false);
buf = udc_buf_get(dev, ep);
if (unlikely(buf == NULL)) {
LOG_ERR("ep 0x%02x queue is empty", ep);
return;
}
net_buf_add(buf, rx_count);
if (ep == USB_CONTROL_EP_OUT) {
if (udc_ctrl_stage_is_status_out(dev)) {
udc_ctrl_update_stage(dev, buf);
udc_ctrl_submit_status(dev, buf);
} else {
udc_ctrl_update_stage(dev, buf);
}
if (udc_ctrl_stage_is_status_in(dev)) {
udc_ctrl_submit_s_out_status(dev, buf);
}
} else {
udc_submit_ep_event(dev, buf, 0);
}
buf = udc_buf_peek(dev, ep);
if (buf) {
udc_stm32_rx(dev, ep, buf);
}
}
void HAL_PCD_DataInStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum)
{
struct udc_stm32_data *priv = hpcd2data(hpcd);
const struct device *dev = priv->dev;
uint8_t ep = epnum | USB_EP_DIR_IN;
struct net_buf *buf;
LOG_DBG("DataIn ep 0x%02x", ep);
udc_ep_set_busy(dev, ep, false);
buf = udc_buf_peek(dev, ep);
if (unlikely(buf == NULL)) {
return;
}
if (ep == USB_CONTROL_EP_IN && buf->len) {
const struct udc_stm32_config *cfg = dev->config;
uint32_t len = MIN(cfg->ep0_mps, buf->len);
HAL_PCD_EP_Transmit(&priv->pcd, ep, buf->data, len);
buf->len -= len;
buf->data += len;
return;
}
udc_buf_get(dev, ep);
if (ep == USB_CONTROL_EP_IN) {
if (udc_ctrl_stage_is_status_in(dev) ||
udc_ctrl_stage_is_no_data(dev)) {
/* Status stage finished, notify upper layer */
udc_ctrl_submit_status(dev, buf);
}
/* Update to next stage of control transfer */
udc_ctrl_update_stage(dev, buf);
if (udc_ctrl_stage_is_status_out(dev)) {
/*
* IN transfer finished, release buffer,
* control OUT buffer should be already fed.
*/
net_buf_unref(buf);
}
return;
}
udc_submit_ep_event(dev, buf, 0);
buf = udc_buf_peek(dev, ep);
if (buf) {
udc_stm32_tx(dev, ep, buf);
}
}
static void udc_stm32_irq(const struct device *dev)
{
const struct udc_stm32_data *priv = udc_get_private(dev);
/* HAL irq handler will call the related above callback */
HAL_PCD_IRQHandler((PCD_HandleTypeDef *)&priv->pcd);
}
int udc_stm32_init(const struct device *dev)
{
struct udc_stm32_data *priv = udc_get_private(dev);
HAL_StatusTypeDef status;
if (priv->clk_enable && priv->clk_enable()) {
LOG_ERR("Error enabling clock(s)");
return -EIO;
}
priv->pcd_prepare(dev);
status = HAL_PCD_Init(&priv->pcd);
if (status != HAL_OK) {
LOG_ERR("PCD_Init failed, %d", (int)status);
return -EIO;
}
HAL_PCD_Stop(&priv->pcd);
return 0;
}
#if defined(USB) || defined(USB_DRD_FS)
static inline void udc_stm32_mem_init(const struct device *dev)
{
struct udc_stm32_data *priv = udc_get_private(dev);
const struct udc_stm32_config *cfg = dev->config;
priv->occupied_mem = cfg->pma_offset;
}
static int udc_stm32_ep_mem_config(const struct device *dev,
struct udc_ep_config *ep,
bool enable)
{
struct udc_stm32_data *priv = udc_get_private(dev);
const struct udc_stm32_config *cfg = dev->config;
uint32_t size;
size = MIN(ep->mps, cfg->ep_mps);
if (!enable) {
priv->occupied_mem -= size;
return 0;
}
if (priv->occupied_mem + size >= cfg->dram_size) {
LOG_ERR("Unable to allocate FIFO for 0x%02x", ep->addr);
return -ENOMEM;
}
/* Configure PMA offset for the endpoint */
HAL_PCDEx_PMAConfig(&priv->pcd, ep->addr, PCD_SNG_BUF,
priv->occupied_mem);
priv->occupied_mem += size;
return 0;
}
#else
static void udc_stm32_mem_init(const struct device *dev)
{
struct udc_stm32_data *priv = udc_get_private(dev);
const struct udc_stm32_config *cfg = dev->config;
int words;
LOG_DBG("DRAM size: %ub", cfg->dram_size);
if (cfg->ep_mps % 4 || cfg->ep0_mps % 4) {
LOG_ERR("Not a 32-bit word multiple: ep0(%u)|ep(%u)",
cfg->ep0_mps, cfg->ep_mps);
return;
}
/* The documentation is not clear at all about RX FiFo size requirement,
* Allocate a minimum of 0x40 words, which seems to work reliably.
*/
words = MAX(0x40, cfg->ep_mps / 4);
HAL_PCDEx_SetRxFiFo(&priv->pcd, words);
priv->occupied_mem = words * 4;
/* For EP0 TX, reserve only one MPS */
HAL_PCDEx_SetTxFiFo(&priv->pcd, 0, cfg->ep0_mps / 4);
priv->occupied_mem += cfg->ep0_mps;
/* Reset TX allocs */
for (unsigned int i = 1U; i < cfg->num_endpoints; i++) {
HAL_PCDEx_SetTxFiFo(&priv->pcd, i, 0);
}
}
static int udc_stm32_ep_mem_config(const struct device *dev,
struct udc_ep_config *ep,
bool enable)
{
struct udc_stm32_data *priv = udc_get_private(dev);
const struct udc_stm32_config *cfg = dev->config;
unsigned int words;
if (!(ep->addr & USB_EP_DIR_IN) || !USB_EP_GET_IDX(ep->addr)) {
return 0;
}
words = MIN(ep->mps, cfg->ep_mps) / 4;
words = (words <= 64) ? words * 2 : words;
if (!enable) {
if (priv->occupied_mem >= (words * 4)) {
priv->occupied_mem -= (words * 4);
}
HAL_PCDEx_SetTxFiFo(&priv->pcd, USB_EP_GET_IDX(ep->addr), 0);
return 0;
}
if (cfg->dram_size - priv->occupied_mem < words * 4) {
LOG_ERR("Unable to allocate FIFO for 0x%02x", ep->addr);
return -ENOMEM;
}
HAL_PCDEx_SetTxFiFo(&priv->pcd, USB_EP_GET_IDX(ep->addr), words);
priv->occupied_mem += words * 4;
return 0;
}
#endif
static int udc_stm32_enable(const struct device *dev)
{
struct udc_stm32_data *priv = udc_get_private(dev);
const struct udc_stm32_config *cfg = dev->config;
HAL_StatusTypeDef status;
int ret;
LOG_DBG("Enable UDC");
udc_stm32_mem_init(dev);
status = HAL_PCD_Start(&priv->pcd);
if (status != HAL_OK) {
LOG_ERR("PCD_Start failed, %d", (int)status);
return -EIO;
}
ret = udc_ep_enable_internal(dev, USB_CONTROL_EP_OUT,
USB_EP_TYPE_CONTROL, cfg->ep0_mps, 0);
if (ret) {
LOG_ERR("Failed enabling ep 0x%02x", USB_CONTROL_EP_OUT);
return ret;
}
ret |= udc_ep_enable_internal(dev, USB_CONTROL_EP_IN,
USB_EP_TYPE_CONTROL, cfg->ep0_mps, 0);
if (ret) {
LOG_ERR("Failed enabling ep 0x%02x", USB_CONTROL_EP_IN);
return ret;
}
irq_enable(priv->irq);
return 0;
}
static int udc_stm32_disable(const struct device *dev)
{
struct udc_stm32_data *priv = udc_get_private(dev);
HAL_StatusTypeDef status;
irq_disable(DT_INST_IRQN(0));
status = HAL_PCD_Stop(&priv->pcd);
if (status != HAL_OK) {
LOG_ERR("PCD_Stop failed, %d", (int)status);
return -EIO;
}
return 0;
}
static int udc_stm32_shutdown(const struct device *dev)
{
struct udc_stm32_data *priv = udc_get_private(dev);
HAL_StatusTypeDef status;
status = HAL_PCD_DeInit(&priv->pcd);
if (status != HAL_OK) {
LOG_ERR("PCD_DeInit failed, %d", (int)status);
/* continue anyway */
}
if (priv->clk_disable && priv->clk_disable()) {
LOG_ERR("Error disabling clock(s)");
/* continue anyway */
}
if (irq_is_enabled(priv->irq)) {
irq_disable(priv->irq);
}
return 0;
}
static int udc_stm32_set_address(const struct device *dev, const uint8_t addr)
{
struct udc_stm32_data *priv = udc_get_private(dev);
HAL_StatusTypeDef status;
LOG_DBG("Set Address %u", addr);
status = HAL_PCD_SetAddress(&priv->pcd, addr);
if (status != HAL_OK) {
LOG_ERR("HAL_PCD_SetAddress failed(0x%02x), %d",
addr, (int)status);
return -EIO;
}
return 0;
}
static int udc_stm32_host_wakeup(const struct device *dev)
{
struct udc_stm32_data *priv = udc_get_private(dev);
HAL_StatusTypeDef status;
status = HAL_PCD_ActivateRemoteWakeup(&priv->pcd);
if (status != HAL_OK) {
LOG_ERR("HAL_PCD_ActivateRemoteWakeup, %d", (int)status);
return -EIO;
}
/* Must be active from 1ms to 15ms as per reference manual. */
k_sleep(K_MSEC(2));
status = HAL_PCD_DeActivateRemoteWakeup(&priv->pcd);
if (status != HAL_OK) {
return -EIO;
}
return 0;
}
static inline int eptype2hal(enum usb_dc_ep_transfer_type eptype)
{
switch (eptype) {
case USB_DC_EP_CONTROL:
return EP_TYPE_CTRL;
case USB_DC_EP_ISOCHRONOUS:
return EP_TYPE_ISOC;
case USB_DC_EP_BULK:
return EP_TYPE_BULK;
case USB_DC_EP_INTERRUPT:
return EP_TYPE_INTR;
default:
return -EINVAL;
}
return -EINVAL;
}
static int udc_stm32_ep_enable(const struct device *dev,
struct udc_ep_config *ep)
{
enum usb_dc_ep_transfer_type type = ep->attributes & USB_EP_TRANSFER_TYPE_MASK;
struct udc_stm32_data *priv = udc_get_private(dev);
HAL_StatusTypeDef status;
int ret;
LOG_DBG("Enable ep 0x%02x", ep->addr);
ret = udc_stm32_ep_mem_config(dev, ep, true);
if (ret) {
return ret;
}
status = HAL_PCD_EP_Open(&priv->pcd, ep->addr, ep->mps,
eptype2hal(type));
if (status != HAL_OK) {
LOG_ERR("HAL_PCD_EP_Open failed(0x%02x), %d",
ep->addr, (int)status);
return -EIO;
}
return 0;
}
static int udc_stm32_ep_disable(const struct device *dev,
struct udc_ep_config *ep)
{
struct udc_stm32_data *priv = udc_get_private(dev);
HAL_StatusTypeDef status;
LOG_DBG("Disable ep 0x%02x", ep->addr);
status = HAL_PCD_EP_Close(&priv->pcd, ep->addr);
if (status != HAL_OK) {
LOG_ERR("HAL_PCD_EP_Close failed(0x%02x), %d",
ep->addr, (int)status);
return -EIO;
}
return udc_stm32_ep_mem_config(dev, ep, false);
}
static int udc_stm32_ep_set_halt(const struct device *dev,
struct udc_ep_config *cfg)
{
struct udc_stm32_data *priv = udc_get_private(dev);
HAL_StatusTypeDef status;
LOG_DBG("Halt ep 0x%02x", cfg->addr);
status = HAL_PCD_EP_SetStall(&priv->pcd, cfg->addr);
if (status != HAL_OK) {
LOG_ERR("HAL_PCD_EP_SetStall failed(0x%02x), %d",
cfg->addr, (int)status);
return -EIO;
}
return 0;
}
static int udc_stm32_ep_clear_halt(const struct device *dev,
struct udc_ep_config *cfg)
{
struct udc_stm32_data *priv = udc_get_private(dev);
HAL_StatusTypeDef status;
LOG_DBG("Clear halt for ep 0x%02x", cfg->addr);
status = HAL_PCD_EP_ClrStall(&priv->pcd, cfg->addr);
if (status != HAL_OK) {
LOG_ERR("HAL_PCD_EP_ClrStall failed(0x%02x), %d",
cfg->addr, (int)status);
return -EIO;
}
return 0;
}
static int udc_stm32_ep_flush(const struct device *dev,
struct udc_ep_config *cfg)
{
struct udc_stm32_data *priv = udc_get_private(dev);
HAL_StatusTypeDef status;
LOG_DBG("Flush ep 0x%02x", cfg->addr);
status = HAL_PCD_EP_Flush(&priv->pcd, cfg->addr);
if (status != HAL_OK) {
LOG_ERR("HAL_PCD_EP_Flush failed(0x%02x), %d",
cfg->addr, (int)status);
return -EIO;
}
return 0;
}
static int udc_stm32_ep_enqueue(const struct device *dev,
struct udc_ep_config *epcfg,
struct net_buf *buf)
{
unsigned int lock_key;
int ret;
udc_buf_put(epcfg, buf);
lock_key = irq_lock();
if (USB_EP_DIR_IS_IN(epcfg->addr)) {
ret = udc_stm32_tx(dev, epcfg->addr, buf);
} else {
ret = udc_stm32_rx(dev, epcfg->addr, buf);
}
irq_unlock(lock_key);
return ret;
}
static int udc_stm32_ep_dequeue(const struct device *dev,
struct udc_ep_config *epcfg)
{
struct net_buf *buf;
udc_stm32_ep_flush(dev, epcfg);
buf = udc_buf_get_all(dev, epcfg->addr);
if (buf) {
udc_submit_ep_event(dev, buf, -ECONNABORTED);
}
udc_ep_set_busy(dev, epcfg->addr, false);
return 0;
}
static const struct udc_api udc_stm32_api = {
.lock = udc_stm32_lock,
.unlock = udc_stm32_unlock,
.init = udc_stm32_init,
.enable = udc_stm32_enable,
.disable = udc_stm32_disable,
.shutdown = udc_stm32_shutdown,
.set_address = udc_stm32_set_address,
.host_wakeup = udc_stm32_host_wakeup,
.ep_try_config = NULL,
.ep_enable = udc_stm32_ep_enable,
.ep_disable = udc_stm32_ep_disable,
.ep_set_halt = udc_stm32_ep_set_halt,
.ep_clear_halt = udc_stm32_ep_clear_halt,
.ep_enqueue = udc_stm32_ep_enqueue,
.ep_dequeue = udc_stm32_ep_dequeue,
};
/* ----------------- Instance/Device specific data ----------------- */
/*
* USB, USB_OTG_FS and USB_DRD_FS are defined in STM32Cube HAL and allows to
* distinguish between two kind of USB DC. STM32 F0, F3, L0 and G4 series
* support USB device controller. STM32 F4 and F7 series support USB_OTG_FS
* device controller. STM32 F1 and L4 series support either USB or USB_OTG_FS
* device controller.STM32 G0 series supports USB_DRD_FS device controller.
*
* WARNING: Don't mix USB defined in STM32Cube HAL and CONFIG_USB_* from Zephyr
* Kconfig system.
*/
#define USB_NUM_BIDIR_ENDPOINTS DT_INST_PROP(0, num_bidir_endpoints)
#if defined(USB) || defined(USB_DRD_FS)
#define EP0_MPS 64U
#define EP_MPS 64U
#define USB_BTABLE_SIZE (8 * USB_NUM_BIDIR_ENDPOINTS)
#define USB_RAM_SIZE DT_INST_PROP(0, ram_size)
#else /* USB_OTG_FS */
#define EP0_MPS USB_OTG_MAX_EP0_SIZE
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otghs)
#define EP_MPS USB_OTG_HS_MAX_PACKET_SIZE
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otgfs) || DT_HAS_COMPAT_STATUS_OKAY(st_stm32_usb)
#define EP_MPS USB_OTG_FS_MAX_PACKET_SIZE
#endif
#define USB_RAM_SIZE DT_INST_PROP(0, ram_size)
#define USB_BTABLE_SIZE 0
#endif /* USB */
#define USB_OTG_HS_EMB_PHY (DT_HAS_COMPAT_STATUS_OKAY(st_stm32_usbphyc) && \
DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otghs))
#define USB_OTG_HS_ULPI_PHY (DT_HAS_COMPAT_STATUS_OKAY(usb_ulpi_phy) && \
DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otghs))
static struct udc_stm32_data udc0_priv;
static struct udc_data udc0_data = {
.mutex = Z_MUTEX_INITIALIZER(udc0_data.mutex),
.priv = &udc0_priv,
};
static const struct udc_stm32_config udc0_cfg = {
.num_endpoints = USB_NUM_BIDIR_ENDPOINTS,
.dram_size = USB_RAM_SIZE,
.pma_offset = USB_BTABLE_SIZE,
.ep0_mps = EP0_MPS,
.ep_mps = EP_MPS,
};
#if defined(USB_OTG_FS) || defined(USB_OTG_HS)
static uint32_t usb_dc_stm32_get_maximum_speed(void)
{
/*
* STM32L4 series USB LL API doesn't provide HIGH and HIGH_IN_FULL speed
* defines.
*/
#if defined(CONFIG_SOC_SERIES_STM32L4X)
#define USB_OTG_SPEED_HIGH 0U
#define USB_OTG_SPEED_HIGH_IN_FULL 1U
#endif /* CONFIG_SOC_SERIES_STM32L4X */
/*
* If max-speed is not passed via DT, set it to USB controller's
* maximum hardware capability.
*/
#if USB_OTG_HS_EMB_PHY || USB_OTG_HS_ULPI_PHY
uint32_t speed = USB_OTG_SPEED_HIGH;
#else
uint32_t speed = USB_OTG_SPEED_FULL;
#endif
#ifdef USB_MAXIMUM_SPEED
if (!strncmp(USB_MAXIMUM_SPEED, "high-speed", 10)) {
speed = USB_OTG_SPEED_HIGH;
} else if (!strncmp(USB_MAXIMUM_SPEED, "full-speed", 10)) {
#if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(USB_OTG_HS_EMB_PHY)
speed = USB_OTG_SPEED_HIGH_IN_FULL;
#else
speed = USB_OTG_SPEED_FULL;
#endif
} else {
LOG_DBG("Unsupported maximum speed defined in device tree. "
"USB controller will default to its maximum HW "
"capability");
}
#endif
return speed;
}
#endif /* USB_OTG_FS || USB_OTG_HS */
static void priv_pcd_prepare(const struct device *dev)
{
struct udc_stm32_data *priv = udc_get_private(dev);
const struct udc_stm32_config *cfg = dev->config;
memset(&priv->pcd, 0, sizeof(priv->pcd));
/* Default values */
priv->pcd.Init.dev_endpoints = cfg->num_endpoints;
priv->pcd.Init.ep0_mps = cfg->ep0_mps;
priv->pcd.Init.speed = PCD_SPEED_FULL;
priv->pcd.Init.low_power_enable = 0;
priv->pcd.Init.Sof_enable = 0; /* Usually not needed */
/* Per controller/Phy values */
#if defined(USB)
priv->pcd.Instance = USB;
#elif defined(USB_DRD_FS)
priv->pcd.Instance = USB_DRD_FS;
#elif defined(USB_OTG_FS) || defined(USB_OTG_HS)
priv->pcd.Init.speed = usb_dc_stm32_get_maximum_speed();
priv->pcd.Init.vbus_sensing_enable = DISABLE;
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otghs)
priv->pcd.Instance = USB_OTG_HS;
#else
priv->pcd.Instance = USB_OTG_FS;
#endif
#if USB_OTG_HS_EMB_PHY
priv->pcd.Init.phy_itface = USB_OTG_HS_EMBEDDED_PHY;
#elif USB_OTG_HS_ULPI_PHY
priv->pcd.Init.phy_itface = USB_OTG_ULPI_PHY;
#else
priv->pcd.Init.phy_itface = PCD_PHY_EMBEDDED;
#endif
#endif
}
static const struct stm32_pclken pclken[] = STM32_DT_INST_CLOCKS(0);
static int priv_clock_enable(void)
{
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
if (!device_is_ready(clk)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
#if defined(PWR_USBSCR_USB33SV) || defined(PWR_SVMCR_USV)
/*
* VDDUSB independent USB supply (PWR clock is on)
* with LL_PWR_EnableVDDUSB function (higher case)
*/
LL_PWR_EnableVDDUSB();
#endif /* PWR_USBSCR_USB33SV or PWR_SVMCR_USV */
#if defined(CONFIG_SOC_SERIES_STM32H7X)
LL_PWR_EnableUSBVoltageDetector();
/* Per AN2606: USBREGEN not supported when running in FS mode. */
LL_PWR_DisableUSBReg();
while (!LL_PWR_IsActiveFlag_USB()) {
LOG_INF("PWR not active yet");
k_sleep(K_MSEC(100));
}
#endif
if (DT_INST_NUM_CLOCKS(0) > 1) {
if (clock_control_configure(clk, (clock_control_subsys_t *)&pclken[1],
NULL) != 0) {
LOG_ERR("Could not select USB domain clock");
return -EIO;
}
}
if (clock_control_on(clk, (clock_control_subsys_t *)&pclken[0]) != 0) {
LOG_ERR("Unable to enable USB clock");
return -EIO;
}
if (IS_ENABLED(CONFIG_USB_DC_STM32_CLOCK_CHECK)) {
uint32_t usb_clock_rate;
if (clock_control_get_rate(clk,
(clock_control_subsys_t *)&pclken[1],
&usb_clock_rate) != 0) {
LOG_ERR("Failed to get USB domain clock rate");
return -EIO;
}
if (usb_clock_rate != MHZ(48)) {
LOG_ERR("USB Clock is not 48MHz (%d)", usb_clock_rate);
return -ENOTSUP;
}
}
/* Previous check won't work in case of F1/F3. Add build time check */
#if defined(RCC_CFGR_OTGFSPRE) || defined(RCC_CFGR_USBPRE)
#if (MHZ(48) == CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) && !defined(STM32_PLL_USBPRE)
/* PLL output clock is set to 48MHz, it should not be divided */
#warning USBPRE/OTGFSPRE should be set in rcc node
#endif
#endif /* RCC_CFGR_OTGFSPRE / RCC_CFGR_USBPRE */
#if USB_OTG_HS_ULPI_PHY
#if defined(CONFIG_SOC_SERIES_STM32H7X)
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_USB1OTGHSULPI);
#else
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_OTGHSULPI);
#endif
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otghs) /* USB_OTG_HS_ULPI_PHY */
/* Disable ULPI interface (for external high-speed PHY) clock in sleep/low-power mode. It is
* disabled by default in run power mode, no need to disable it.
*/
#if defined(CONFIG_SOC_SERIES_STM32H7X)
LL_AHB1_GRP1_DisableClockSleep(LL_AHB1_GRP1_PERIPH_USB1OTGHSULPI);
#else
LL_AHB1_GRP1_DisableClockLowPower(LL_AHB1_GRP1_PERIPH_OTGHSULPI);
#endif /* defined(CONFIG_SOC_SERIES_STM32H7X) */
#if USB_OTG_HS_EMB_PHY
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_OTGPHYC);
#endif
#elif defined(CONFIG_SOC_SERIES_STM32H7X) && DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otgfs)
/* The USB2 controller only works in FS mode, but the ULPI clock needs
* to be disabled in sleep mode for it to work.
*/
LL_AHB1_GRP1_DisableClockSleep(LL_AHB1_GRP1_PERIPH_USB2OTGHSULPI);
#endif /* USB_OTG_HS_ULPI_PHY */
return 0;
}
static int priv_clock_disable(void)
{
const struct device *clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
if (clock_control_off(clk, (clock_control_subsys_t *)&pclken[0]) != 0) {
LOG_ERR("Unable to disable USB clock");
return -EIO;
}
return 0;
}
static struct udc_ep_config ep_cfg_in[DT_INST_PROP(0, num_bidir_endpoints)];
static struct udc_ep_config ep_cfg_out[DT_INST_PROP(0, num_bidir_endpoints)];
PINCTRL_DT_INST_DEFINE(0);
static const struct pinctrl_dev_config *usb_pcfg =
PINCTRL_DT_INST_DEV_CONFIG_GET(0);
#if USB_OTG_HS_ULPI_PHY
static const struct gpio_dt_spec ulpi_reset =
GPIO_DT_SPEC_GET_OR(DT_PHANDLE(DT_INST(0, st_stm32_otghs), phys), reset_gpios, {0});
#endif
static int udc_stm32_driver_init0(const struct device *dev)
{
struct udc_stm32_data *priv = udc_get_private(dev);
const struct udc_stm32_config *cfg = dev->config;
struct udc_data *data = dev->data;
int err;
for (unsigned int i = 0; i < ARRAY_SIZE(ep_cfg_out); i++) {
ep_cfg_out[i].caps.out = 1;
if (i == 0) {
ep_cfg_out[i].caps.control = 1;
ep_cfg_out[i].caps.mps = cfg->ep0_mps;
} else {
ep_cfg_out[i].caps.bulk = 1;
ep_cfg_out[i].caps.interrupt = 1;
ep_cfg_out[i].caps.iso = 1;
ep_cfg_out[i].caps.mps = cfg->ep_mps;
}
ep_cfg_out[i].addr = USB_EP_DIR_OUT | i;
err = udc_register_ep(dev, &ep_cfg_out[i]);
if (err != 0) {
LOG_ERR("Failed to register endpoint");
return err;
}
}
for (unsigned int i = 0; i < ARRAY_SIZE(ep_cfg_in); i++) {
ep_cfg_in[i].caps.in = 1;
if (i == 0) {
ep_cfg_in[i].caps.control = 1;
ep_cfg_in[i].caps.mps = cfg->ep0_mps;
} else {
ep_cfg_in[i].caps.bulk = 1;
ep_cfg_in[i].caps.interrupt = 1;
ep_cfg_in[i].caps.iso = 1;
ep_cfg_in[i].caps.mps = 1023;
}
ep_cfg_in[i].addr = USB_EP_DIR_IN | i;
err = udc_register_ep(dev, &ep_cfg_in[i]);
if (err != 0) {
LOG_ERR("Failed to register endpoint");
return err;
}
}
data->caps.rwup = true;
data->caps.out_ack = false;
data->caps.mps0 = UDC_MPS0_64;
priv->dev = dev;
priv->irq = DT_INST_IRQN(0);
priv->clk_enable = priv_clock_enable;
priv->clk_disable = priv_clock_disable;
priv->pcd_prepare = priv_pcd_prepare;
IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), udc_stm32_irq,
DEVICE_DT_INST_GET(0), 0);
err = pinctrl_apply_state(usb_pcfg, PINCTRL_STATE_DEFAULT);
if (err < 0) {
LOG_ERR("USB pinctrl setup failed (%d)", err);
return err;
}
#ifdef SYSCFG_CFGR1_USB_IT_RMP
/*
* STM32F302/F303: USB IRQ collides with CAN_1 IRQ (§14.1.3, RM0316)
* Remap IRQ by default to enable use of both IPs simultaneoulsy
* This should be done before calling any HAL function
*/
if (LL_APB2_GRP1_IsEnabledClock(LL_APB2_GRP1_PERIPH_SYSCFG)) {
LL_SYSCFG_EnableRemapIT_USB();
} else {
LOG_ERR("System Configuration Controller clock is "
"disabled. Unable to enable IRQ remapping.");
}
#endif
#if USB_OTG_HS_ULPI_PHY
if (ulpi_reset.port != NULL) {
if (!gpio_is_ready_dt(&ulpi_reset)) {
LOG_ERR("Reset GPIO device not ready");
return -EINVAL;
}
if (gpio_pin_configure_dt(&ulpi_reset, GPIO_OUTPUT_INACTIVE)) {
LOG_ERR("Couldn't configure reset pin");
return -EIO;
}
}
#endif
/*cd
* Required for at least STM32L4 devices as they electrically
* isolate USB features from VDDUSB. It must be enabled before
* USB can function. Refer to section 5.1.3 in DM00083560 or
* DM00310109.
*/
#ifdef PWR_CR2_USV
#if defined(LL_APB1_GRP1_PERIPH_PWR)
if (LL_APB1_GRP1_IsEnabledClock(LL_APB1_GRP1_PERIPH_PWR)) {
LL_PWR_EnableVddUSB();
} else {
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_PWR);
LL_PWR_EnableVddUSB();
LL_APB1_GRP1_DisableClock(LL_APB1_GRP1_PERIPH_PWR);
}
#else
LL_PWR_EnableVddUSB();
#endif /* defined(LL_APB1_GRP1_PERIPH_PWR) */
#endif /* PWR_CR2_USV */
return 0;
}
DEVICE_DT_INST_DEFINE(0, udc_stm32_driver_init0, NULL, &udc0_data, &udc0_cfg,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&udc_stm32_api);