zephyr/include/arch/x86/arch.h

463 lines
14 KiB
C
Raw Normal View History

/*
* Copyright (c) 2010-2014 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* @brief IA-32 specific nanokernel interface header
* This header contains the IA-32 specific nanokernel interface. It is included
* by the generic nanokernel interface header (nanokernel.h)
*/
#ifndef _ARCH_IFACE_H
#define _ARCH_IFACE_H
#ifndef _ASMLANGUAGE
#include <arch/x86/asm_inline.h>
#endif
/* APIs need to support non-byte addressable architectures */
#define OCTET_TO_SIZEOFUNIT(X) (X)
#define SIZEOFUNIT_TO_OCTET(X) (X)
/**
* Macro used internally by NANO_CPU_INT_REGISTER and NANO_CPU_INT_REGISTER_ASM.
* Not meant to be used explicitly by platform, driver or application code.
*/
#define MK_ISR_NAME(x) __isr__##x
#ifndef _ASMLANGUAGE
/* interrupt/exception/error related definitions */
#define _INT_STUB_SIZE 0x2b
/**
* Performance optimization
*
* Macro PERF_OPT is defined if project is compiled with option other than
* size optimization ("-Os" for GCC, "-XO -Xsize-opt" for Diab). If the
* last of the compiler options is the size optimization, PERF_OPT is not
* defined and the project is optimized for size, hence the stub should be
* aligned to 1 and not 16.
*/
#ifdef PERF_OPT
#define _INT_STUB_ALIGN 16
#else
#define _INT_STUB_ALIGN 1
#endif
/**
* Floating point register set alignment.
*
* If support for SSEx extensions is enabled a 16 byte boundary is required,
* since the 'fxsave' and 'fxrstor' instructions require this. In all other
* cases a 4 byte boundary is sufficient.
*/
#ifdef CONFIG_SSE
#define FP_REG_SET_ALIGN 16
#else
#define FP_REG_SET_ALIGN 4
#endif
/*
* The TCS must be aligned to the same boundary as that used by the floating
* point register set. This applies even for threads that don't initially
* use floating point, since it is possible to enable floating point support
* later on.
*/
#define STACK_ALIGN FP_REG_SET_ALIGN
typedef unsigned char __aligned(_INT_STUB_ALIGN) NANO_INT_STUB[_INT_STUB_SIZE];
Fix checkpatch issue - ERROR:OPEN_BRACE The open braces of the 'if','for', 'while' and 'do' statements should be at the end on the same line of the statement to comply with the defined coding style. E.g.: if (x is true) { we do y } Change accomplished with the following script: #!/bin/bash checkpatch_script="$VXMICRO_BASE/scripts/checkpatch.pl --mailback --no-tree -f --emacs --summary-file --show-types --ignore BRACES,PRINTK_WITHOUT_KERN_LEVEL,SPLIT_STRING --max-line-length=100 " for file in $(find ./ -name "*.[ch]" ! -path "./scripts/*" ! -path "./host/src/wrsconfig/*" ! -path "*/outdir/*"); do if [ ! -h $file ]; then # obtaining the line's number where the error is reported in a reversed order reversed_lines=""; for line in $(eval $checkpatch_script $file | grep "ERROR:OPEN_BRACE" | cut -d":" -f2) do reversed_lines="$line $reversed_lines"; done; # fixing the issues in reverse order due to lines can be deleted affecting futher lines for line_reported in $(echo $reversed_lines); do # search for the line where the open brace is char_found=""; let line=$line_reported-1; while [ ${#char_found} -eq 0 ] do let line=$line+1; char_found="$(sed -n ''$line' { /{/ p }' $file)"; done let statement_line=$line-1; let brace_line=$line; # condition to avoid modifying lines that ends with the character "\" char_found="$(sed -n ''$statement_line' { /\\$/ p }' $file)"; if [ ${#char_found} -eq 0 ]; then # fix the issue echo "$file : reported on $line_reported (found on $brace_line -> moved to $statement_line)"; sed -i ''$statement_line' { s/[ \t]*$//; s/\([ \t]*\/\*.*\*\/\)$/ {\1/; /{/ b already_done s/$/ {/; :already_done }; '$brace_line' { s/{[ \t]*//; /^[ \t]*$/ d }; ' $file; fi done fi done; Change-Id: I517c40bb33840ef531f2319354350f578b238abb Signed-off-by: Yonattan Louise <yonattan.a.louise.mendoza@intel.com>
2015-05-11 10:10:41 -05:00
typedef struct s_isrList {
/** Address of ISR/stub */
void *fnc;
/** IRQ associated with the ISR/stub */
unsigned int irq;
/** Priority associated with the IRQ */
unsigned int priority;
/** Vector number associated with ISR/stub */
unsigned int vec;
/** Privilege level associated with ISR/stub */
unsigned int dpl;
} ISR_LIST;
/**
* @brief Connect a routine to an interrupt vector
*
* This macro "connects" the specified routine, @a r, to the specified interrupt
* vector, @a v using the descriptor privilege level @a d. On the IA-32
* architecture, an interrupt vector is a value from 0 to 255. This macro
* populates the special intList section with the address of the routine, the
* vector number and the descriptor privilege level. The genIdt tool then picks
* up this information and generates an actual IDT entry with this information
* properly encoded. This macro replaces the _IntVecSet () routine in static
* interrupt systems.
*
* The @a d argument specifies the privilege level for the interrupt-gate
* descriptor; (hardware) interrupts and exceptions should specify a level of 0,
* whereas handlers for user-mode software generated interrupts should specify 3.
* @param r Routine to be connected
* @param n IRQ number
* @param p IRQ priority
* @param v Interrupt Vector
* @param d Descriptor Privilege Level
*
* @return N/A
*
*/
#define NANO_CPU_INT_REGISTER(r, n, p, v, d) \
ISR_LIST __attribute__((section(".intList"))) MK_ISR_NAME(r) = \
{&r, n, p, v, d}
/*
* @brief Declare a dynamic interrupt stub
*
* Macro to declare a dynamic interrupt stub. Using the macro places the stub
* in the .intStubSection which is located in the image according to the kernel
* configuration.
* @param s Stub to be declared
*/
#define NANO_CPU_INT_STUB_DECL(s) \
_NODATA_SECTION(.intStubSect) NANO_INT_STUB(s)
/**
* @brief Connect a routine to interrupt number
*
* For the device @a device associates IRQ number @a irq with priority
* @a priority with the interrupt routine @a isr, that receives parameter
* @a parameter.
*
* @param device Device
* @param irq IRQ number
* @param priority IRQ Priority (currently ignored)
* @param isr Interrupt Service Routine
* @param parameter ISR parameter
*
* @return N/A
*
*/
#define IRQ_CONNECT_STATIC(device, irq, priority, isr, parameter) \
const uint32_t _##device##_int_vector = INT_VEC_IRQ0 + (irq); \
extern void *_##device##_##isr##_stub; \
NANO_CPU_INT_REGISTER(_##device##_##isr##_stub, (irq), (priority), \
INT_VEC_IRQ0 + (irq), 0)
/**
*
* @brief Configure interrupt for the device
*
* For the given device do the necessary configuration steps.
* For x86 platform configure APIC and mark interrupt vector allocated
* @param device Device
* @param irq IRQ
*
* @return N/A
*
*/
#define IRQ_CONFIG(device, irq) \
do { \
_SysIntVecProgram(_##device##_int_vector, irq); \
_IntVecMarkAllocated(_##device##_int_vector); \
} while(0)
/**
* @brief Nanokernel Exception Stack Frame
*
* A pointer to an "exception stack frame" (ESF) is passed as an argument
* to exception handlers registered via nanoCpuExcConnect(). When an exception
* occurs while PL=0, then only the EIP, CS, and EFLAGS are pushed onto the stack.
* The least significant pair of bits in the CS value should be examined to
* determine whether the exception occurred while PL=3, in which case the ESP
* and SS values will also be present in the ESF. If the exception occurred
* while in PL=0, neither the SS nor ESP values will be present in the ESF.
*
* The exception stack frame includes the volatile registers EAX, ECX, and EDX
* pushed on the stack by _ExcEnt().
*
* It also contains the value of CR2, used when the exception is a page fault.
* Since that register is shared amongst threads of execution, it might get
* overwritten if another thread is context-switched in and then itself
* page-faults before the first thread has time to read CR2.
*
* If configured for host-based debug tools such as GDB, the 4 non-volatile
* registers (EDI, ESI, EBX, EBP) are also pushed by _ExcEnt()
* for use by the debug tools.
*/
typedef struct nanoEsf {
/** putting cr2 here allows discarding it and pEsf in one instruction */
unsigned int cr2;
#ifdef CONFIG_GDB_INFO
unsigned int ebp;
unsigned int ebx;
unsigned int esi;
unsigned int edi;
#endif /* CONFIG_GDB_INFO */
unsigned int edx;
unsigned int ecx;
unsigned int eax;
unsigned int errorCode;
unsigned int eip;
unsigned int cs;
unsigned int eflags;
unsigned int esp;
unsigned int ss;
} NANO_ESF;
/**
* @brief Nanokernel "interrupt stack frame" (ISF)
*
* An "interrupt stack frame" (ISF) as constructed by the processor
* and the interrupt wrapper function _IntExit(). When an interrupt
* occurs while PL=0, only the EIP, CS, and EFLAGS are pushed onto the stack.
* The least significant pair of bits in the CS value should be examined to
* determine whether the exception occurred while PL=3, in which case the ESP
* and SS values will also be present in the ESF. If the exception occurred
* while in PL=0, neither the SS nor ESP values will be present in the ISF.
*
* The interrupt stack frame includes the volatile registers EAX, ECX, and EDX
* pushed on the stack by _IntExit()..
*
* The host-based debug tools such as GDB do not require the 4 non-volatile
* registers (EDI, ESI, EBX, EBP) to be preserved during an interrupt.
* The register values saved/restored by _Swap() called from _IntExit() are
* sufficient.
*/
typedef struct nanoIsf {
unsigned int edx;
unsigned int ecx;
unsigned int eax;
unsigned int eip;
unsigned int cs;
unsigned int eflags;
unsigned int esp;
unsigned int ss;
} NANO_ISF;
#endif /* !_ASMLANGUAGE */
/*
* Reason codes passed to both _NanoFatalErrorHandler()
* and _SysFatalErrorHandler().
*/
/** Unhandled exception/interrupt */
#define _NANO_ERR_SPURIOUS_INT (0)
/** Page fault */
#define _NANO_ERR_PAGE_FAULT (1)
/** General protection fault */
#define _NANO_ERR_GEN_PROT_FAULT (2)
/** Invalid task exit */
#define _NANO_ERR_INVALID_TASK_EXIT (3)
/** Stack corruption detected */
#define _NANO_ERR_STACK_CHK_FAIL (4)
/** Kernel Allocation Failure */
#define _NANO_ERR_ALLOCATION_FAIL (5)
#ifndef _ASMLANGUAGE
#ifdef CONFIG_NO_ISRS
static inline unsigned int irq_lock(void) {return 1;}
static inline void irq_unlock(unsigned int key) {}
#else /* CONFIG_NO_ISRS */
#ifdef CONFIG_INT_LATENCY_BENCHMARK
void _int_latency_start(void);
void _int_latency_stop(void);
#endif
/**
* @brief Disable all interrupts on the CPU (inline)
*
* This routine disables interrupts. It can be called from either interrupt,
* task or fiber level. This routine returns an architecture-dependent
* lock-out key representing the "interrupt disable state" prior to the call;
* this key can be passed to irq_unlock() to re-enable interrupts.
*
* The lock-out key should only be used as the argument to the irq_unlock()
* API. It should never be used to manually re-enable interrupts or to inspect
* or manipulate the contents of the source register.
*
* This function can be called recursively: it will return a key to return the
* state of interrupt locking to the previous level.
*
* WARNINGS
* Invoking a kernel routine with interrupts locked may result in
* interrupts being re-enabled for an unspecified period of time. If the
* called routine blocks, interrupts will be re-enabled while another
* thread executes, or while the system is idle.
*
* The "interrupt disable state" is an attribute of a thread. Thus, if a
* fiber or task disables interrupts and subsequently invokes a kernel
* routine that causes the calling thread to block, the interrupt
* disable state will be restored when the thread is later rescheduled
* for execution.
*
* @return An architecture-dependent lock-out key representing the
* "interrupt disable state" prior to the call.
*
*/
static inline __attribute__((always_inline)) unsigned int irq_lock(void)
{
unsigned int key = _do_irq_lock();
#ifdef CONFIG_INT_LATENCY_BENCHMARK
_int_latency_start();
#endif
return key;
}
/**
*
* @brief Enable all interrupts on the CPU (inline)
*
* This routine re-enables interrupts on the CPU. The @a key parameter
* is an architecture-dependent lock-out key that is returned by a previous
* invocation of irq_lock().
*
* This routine can be called from either interrupt, task or fiber level.
*
* @return N/A
*
*/
static inline __attribute__((always_inline)) void irq_unlock(unsigned int key)
{
if (!(key & 0x200)) {
return;
}
#ifdef CONFIG_INT_LATENCY_BENCHMARK
_int_latency_stop();
#endif
_do_irq_unlock();
return;
}
#endif /* CONFIG_NO_ISRS */
/** interrupt/exception/error related definitions */
typedef void (*NANO_EOI_GET_FUNC) (void *);
/**
* The NANO_SOFT_IRQ macro must be used as the value for the @a irq parameter
* to irq_connect() when connecting to a software generated interrupt.
*/
#define NANO_SOFT_IRQ ((unsigned int) (-1))
#ifdef CONFIG_FP_SHARING
/* Definitions for the 'options' parameter to the fiber_fiber_start() API */
/** thread uses floating point unit */
#define USE_FP 0x10
#ifdef CONFIG_SSE
/** thread uses SSEx instructions */
#define USE_SSE 0x20
#endif /* CONFIG_SSE */
#endif /* CONFIG_FP_SHARING */
extern int irq_connect(unsigned int irq,
unsigned int priority,
void (*routine)(void *parameter),
void *parameter);
/**
* @brief Enable a specific IRQ
* @param irq IRQ
*/
extern void irq_enable(unsigned int irq);
/**
* @brief Disable a specific IRQ
* @param irq IRQ
*/
extern void irq_disable(unsigned int irq);
#ifdef CONFIG_FP_SHARING
/**
* @brief Enable floating point hardware resources sharing
* Dynamically enable/disable the capability of a thread to share floating
* point hardware resources. The same "floating point" options accepted by
* fiber_fiber_start() are accepted by these APIs (i.e. USE_FP and USE_SSE).
*/
extern void fiber_float_enable(nano_thread_id_t thread_id,
unsigned int options);
extern void task_float_enable(nano_thread_id_t thread_id,
unsigned int options);
extern void fiber_float_disable(nano_thread_id_t thread_id);
extern void task_float_disable(nano_thread_id_t thread_id);
#endif /* CONFIG_FP_SHARING */
#include <stddef.h> /* for size_t */
#ifdef CONFIG_NANOKERNEL
extern void nano_cpu_idle(void);
#endif
/** Nanokernel provided routine to report any detected fatal error. */
extern FUNC_NORETURN void _NanoFatalErrorHandler(unsigned int reason,
const NANO_ESF *pEsf);
/** User provided routine to handle any detected fatal error post reporting. */
extern FUNC_NORETURN void _SysFatalErrorHandler(unsigned int reason,
const NANO_ESF *pEsf);
/** Dummy ESF for fatal errors that would otherwise not have an ESF */
extern const NANO_ESF _default_esf;
/**
* @brief Configure an interrupt vector of the specified priority
*
* This routine is invoked by the kernel to configure an interrupt vector of
* the specified priority. To this end, it allocates an interrupt vector,
* programs hardware to route interrupt requests on the specified IRQ to that
* vector, and returns the vector number along with its associated BOI/EOI
* information.
*/
extern int _SysIntVecAlloc(unsigned int irq,
unsigned int priority,
NANO_EOI_GET_FUNC *boiRtn,
NANO_EOI_GET_FUNC *eoiRtn,
void **boiRtnParm,
void **eoiRtnParm,
unsigned char *boiParamRequired,
unsigned char *eoiParamRequired
);
/* functions provided by the kernel for usage by _SysIntVecAlloc() */
extern int _IntVecAlloc(unsigned int priority);
extern void _IntVecMarkAllocated(unsigned int vector);
extern void _IntVecMarkFree(unsigned int vector);
#endif /* !_ASMLANGUAGE */
/* Segment selector definitions are shared */
#include "segselect.h"
#endif /* _ARCH_IFACE_H */