nppilot/external/avr-stl-stubs/include/valarray
Michael Hope 4b61ec36e3 Imported the AVR STL 1.1 libraries.
Stubbed out more of STL.
2013-12-17 20:47:35 +01:00

1781 lines
52 KiB
Plaintext

/*
* Copyright (c) 1999
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
#ifndef __SGI_STL_VALARRAY
#define __SGI_STL_VALARRAY
#ifdef __AVR__
#include <new.h>
#undef round
#undef abs
#else
#include <new>
#endif
#include <type_traits.h>
#include <math.h>
#include <algorithm>
#include <numeric>
#include <limits>
__STL_BEGIN_NAMESPACE
class slice;
class gslice;
template <class _Tp> class valarray;
template <class _Tp> class slice_array;
template <class _Tp> class gslice_array;
template <class _Tp> class mask_array;
template <class _Tp> class indirect_array;
//----------------------------------------------------------------------
// class valarray
// Base class to handle memory allocation and deallocation. We can't just
// use vector<>, because vector<bool> would be unsuitable as an internal
// representation for valarray<bool>.
template <class _Tp>
struct _Valarray_base
{
_Tp* _M_first;
size_t _M_size;
_Valarray_base() : _M_first(0), _M_size(0) {}
_Valarray_base(size_t __n) : _M_first(0), _M_size(0) { _M_allocate(__n); }
~_Valarray_base() { _M_deallocate(); }
void _M_allocate(size_t __n) {
if (__n != 0) {
_M_first = static_cast<_Tp*>(malloc(__n * sizeof(_Tp)));
_M_size = __n;
# if !defined(__STL_NO_BAD_ALLOC) && defined(__STL_USE_EXCEPTIONS)
if (_M_first == 0) {
_M_size = 0;
throw std::bad_alloc();
}
# endif
}
else {
_M_first = 0;
_M_size = 0;
}
}
void _M_deallocate() {
free(_M_first);
_M_first = 0;
_M_size = 0;
}
};
template <class _Tp>
class valarray : private _Valarray_base<_Tp>
{
friend class gslice;
public:
typedef _Tp value_type;
// Basic constructors
valarray() : _Valarray_base<_Tp>() {}
valarray(size_t __n) : _Valarray_base<_Tp>(__n)
{ uninitialized_fill_n(this->_M_first, this->_M_size, value_type()); }
valarray(const value_type& __x, size_t __n) : _Valarray_base<_Tp>(__n)
{ uninitialized_fill_n(this->_M_first, this->_M_size, __x); }
valarray(const value_type* __p, size_t __n) : _Valarray_base<_Tp>(__n)
{ uninitialized_copy(__p, __p + __n, this->_M_first); }
valarray(const valarray& __x) : _Valarray_base<_Tp>(__x._M_size) {
uninitialized_copy(__x._M_first, __x._M_first + __x._M_size,
this->_M_first);
}
// Constructors from auxiliary array types
valarray(const slice_array<_Tp>&);
valarray(const gslice_array<_Tp>&);
valarray(const mask_array<_Tp>&);
valarray(const indirect_array<_Tp>&);
// Destructor
~valarray() { destroy(this->_M_first, this->_M_first + this->_M_size); }
// Extension: constructor that doesn't initialize valarray elements to a
// specific value. This is faster for types such as int and double.
private:
void _M_initialize(__true_type) {}
void _M_initialize(__false_type)
{ uninitialized_fill_n(this->_M_first, this->_M_size, value_type()); }
public:
struct _NoInit {};
valarray(size_t __n, _NoInit) : _Valarray_base<_Tp>(__n) {
typedef typename __type_traits<_Tp>::has_trivial_default_constructor
_Is_Trivial;
_M_initialize(_Is_Trivial());
}
public: // Assignment
// Basic assignment. Note that 'x = y' is undefined if x.size() != y.size()
valarray& operator=(const valarray& __x) {
if (this != &__x)
copy(__x._M_first, __x._M_first + __x._M_size, this->_M_first);
return *this;
}
// Scalar assignment
valarray& operator=(const value_type& __x) {
fill_n(this->_M_first, this->_M_size, __x);
return *this;
}
// Assignment of auxiliary array types
valarray& operator=(const slice_array<_Tp>&);
valarray& operator=(const gslice_array<_Tp>&);
valarray& operator=(const mask_array<_Tp>&);
valarray& operator=(const indirect_array<_Tp>&);
public: // Element access
value_type operator[](size_t __n) const { return this->_M_first[__n]; }
value_type& operator[](size_t __n) { return this->_M_first[__n]; }
size_t size() const { return this->_M_size; }
public: // Subsetting operations with auxiliary type
valarray operator[](slice) const;
slice_array<_Tp> operator[](slice);
valarray operator[](gslice) const;
gslice_array<_Tp> operator[](gslice);
valarray operator[](const valarray<bool>&) const;
mask_array<_Tp> operator[](const valarray<bool>&);
valarray operator[](const valarray<size_t>&) const;
indirect_array<_Tp> operator[](const valarray<size_t>&);
public: // Unary operators.
valarray operator+() const { return *this; }
valarray operator-() const {
valarray __tmp(this->size(), _NoInit());
for (size_t __i = 0; __i < this->size(); ++__i)
__tmp[__i] = -(*this)[__i];
return __tmp;
}
valarray operator~() const {
valarray __tmp(this->size(), _NoInit());
for (size_t __i = 0; __i < this->size(); ++__i)
__tmp[__i] = ~(*this)[__i];
return __tmp;
}
valarray<bool> operator!() const {
valarray<bool> __tmp(this->size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < this->size(); ++__i)
__tmp[__i] = !(*this)[__i];
return __tmp;
}
public: // Scalar computed assignment.
valarray& operator*= (const value_type& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] *= __x;
return *this;
}
valarray& operator/= (const value_type& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] /= __x;
return *this;
}
valarray& operator%= (const value_type& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] %= __x;
return *this;
}
valarray& operator+= (const value_type& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] += __x;
return *this;
}
valarray& operator-= (const value_type& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] -= __x;
return *this;
}
valarray& operator^= (const value_type& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] ^= __x;
return *this;
}
valarray& operator&= (const value_type& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] &= __x;
return *this;
}
valarray& operator|= (const value_type& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] |= __x;
return *this;
}
valarray& operator<<= (const value_type& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] <<= __x;
return *this;
}
valarray& operator>>= (const value_type& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] >>= __x;
return *this;
}
public: // Array computed assignment.
valarray& operator*= (const valarray& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] *= __x[__i];
return *this;
}
valarray& operator/= (const valarray& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] /= __x[__i];
return *this;
}
valarray& operator%= (const valarray& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] %= __x[__i];
return *this;
}
valarray& operator+= (const valarray& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] += __x[__i];
return *this;
}
valarray& operator-= (const valarray& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] -= __x[__i];
return *this;
}
valarray& operator^= (const valarray& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] ^= __x[__i];
return *this;
}
valarray& operator&= (const valarray& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] &= __x[__i];
return *this;
}
valarray& operator|= (const valarray& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] |= __x[__i];
return *this;
}
valarray& operator<<= (const valarray& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] <<= __x[__i];
return *this;
}
valarray& operator>>= (const valarray& __x) {
for (size_t __i = 0; __i < this->size(); ++__i)
(*this)[__i] >>= __x[__i];
return *this;
}
public: // Other member functions.
// The result is undefined for zero-length arrays
value_type sum() const {
return accumulate(this->_M_first + 1, this->_M_first + this->_M_size,
(*this)[0]);
}
// The result is undefined for zero-length arrays
value_type min() const {
return *min_element(this->_M_first + 0, this->_M_first + this->_M_size);
}
value_type max() const {
return *max_element(this->_M_first + 0, this->_M_first + this->_M_size);
}
valarray shift(int __n) const;
valarray cshift(int __n) const;
valarray apply(value_type __f(value_type)) const {
valarray __tmp(this->size());
transform(this->_M_first, this->_M_first + this->_M_size, __tmp._M_first,
__f);
return __tmp;
}
valarray apply(value_type __f(const value_type&)) const {
valarray __tmp(this->size());
transform(this->_M_first, this->_M_first + this->_M_size, __tmp._M_first,
__f);
return __tmp;
}
void resize(size_t __n, value_type __x = value_type()) {
destroy(this->_M_first, this->_M_first + this->_M_size);
this->_Valarray_base<_Tp>::_M_deallocate();
this->_Valarray_base<_Tp>::_M_allocate(__n);
uninitialized_fill_n(this->_M_first, this->_M_size, __x);
}
};
//----------------------------------------------------------------------
// valarray non-member functions.
// Binary arithmetic operations between two arrays. Behavior is
// undefined if the two arrays do not have the same length.
template <class _Tp>
inline valarray<_Tp> operator*(const valarray<_Tp>& __x,
const valarray<_Tp>& __y) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] * __y[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator/(const valarray<_Tp>& __x,
const valarray<_Tp>& __y) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] / __y[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator%(const valarray<_Tp>& __x,
const valarray<_Tp>& __y) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] % __y[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator+(const valarray<_Tp>& __x,
const valarray<_Tp>& __y) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] + __y[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator-(const valarray<_Tp>& __x,
const valarray<_Tp>& __y) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] - __y[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator^(const valarray<_Tp>& __x,
const valarray<_Tp>& __y) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] ^ __y[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator&(const valarray<_Tp>& __x,
const valarray<_Tp>& __y) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] & __y[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator|(const valarray<_Tp>& __x,
const valarray<_Tp>& __y) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] | __y[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator<<(const valarray<_Tp>& __x,
const valarray<_Tp>& __y) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] << __y[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator>>(const valarray<_Tp>& __x,
const valarray<_Tp>& __y) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] >> __y[__i];
return __tmp;
}
// Binary arithmetic operations between an array and a scalar.
template <class _Tp>
inline valarray<_Tp> operator*(const valarray<_Tp>& __x, const _Tp& __c) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] * __c;
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator*(const _Tp& __c, const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c * __x[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator/(const valarray<_Tp>& __x, const _Tp& __c) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] / __c;
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator/(const _Tp& __c, const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c / __x[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator%(const valarray<_Tp>& __x, const _Tp& __c) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] % __c;
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator%(const _Tp& __c, const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c % __x[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator+(const valarray<_Tp>& __x, const _Tp& __c) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] + __c;
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator+(const _Tp& __c, const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c + __x[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator-(const valarray<_Tp>& __x, const _Tp& __c) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] - __c;
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator-(const _Tp& __c, const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c - __x[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator^(const valarray<_Tp>& __x, const _Tp& __c) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] ^ __c;
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator^(const _Tp& __c, const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c ^ __x[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator&(const valarray<_Tp>& __x, const _Tp& __c) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] & __c;
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator&(const _Tp& __c, const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c & __x[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator|(const valarray<_Tp>& __x, const _Tp& __c) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] | __c;
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator|(const _Tp& __c, const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c | __x[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator<<(const valarray<_Tp>& __x, const _Tp& __c) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] << __c;
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator<<(const _Tp& __c, const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c << __x[__i];
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator>>(const valarray<_Tp>& __x, const _Tp& __c) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] >> __c;
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator>>(const _Tp& __c, const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c >> __x[__i];
return __tmp;
}
// Binary logical operations between two arrays. Behavior is undefined
// if the two arrays have different lengths. Note that operator== does
// not do what you might at first expect.
template <class _Tp>
inline valarray<bool> operator==(const valarray<_Tp>& __x,
const valarray<_Tp>& __y)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] == __y[__i];
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator<(const valarray<_Tp>& __x,
const valarray<_Tp>& __y)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] < __y[__i];
return __tmp;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Tp>
inline valarray<bool> operator!=(const valarray<_Tp>& __x,
const valarray<_Tp>& __y)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] != __y[__i];
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator>(const valarray<_Tp>& __x,
const valarray<_Tp>& __y)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] > __y[__i];
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator<=(const valarray<_Tp>& __x,
const valarray<_Tp>& __y)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] <= __y[__i];
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator>=(const valarray<_Tp>& __x,
const valarray<_Tp>& __y)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] >= __y[__i];
return __tmp;
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
template <class _Tp>
inline valarray<bool> operator&&(const valarray<_Tp>& __x,
const valarray<_Tp>& __y)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] && __y[__i];
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator||(const valarray<_Tp>& __x,
const valarray<_Tp>& __y)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] || __y[__i];
return __tmp;
}
// Logical operations between an array and a scalar.
template <class _Tp>
inline valarray<bool> operator==(const valarray<_Tp>& __x, const _Tp& __c)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] == __c;
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator==(const _Tp& __c, const valarray<_Tp>& __x)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c == __x[__i];
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator!=(const valarray<_Tp>& __x, const _Tp& __c)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] != __c;
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator!=(const _Tp& __c, const valarray<_Tp>& __x)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c != __x[__i];
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator<(const valarray<_Tp>& __x, const _Tp& __c)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] < __c;
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator<(const _Tp& __c, const valarray<_Tp>& __x)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c < __x[__i];
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator>(const valarray<_Tp>& __x, const _Tp& __c)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] > __c;
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator>(const _Tp& __c, const valarray<_Tp>& __x)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c > __x[__i];
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator<=(const valarray<_Tp>& __x, const _Tp& __c)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] <= __c;
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator<=(const _Tp& __c, const valarray<_Tp>& __x)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c <= __x[__i];
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator>=(const valarray<_Tp>& __x, const _Tp& __c)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] >= __c;
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator>=(const _Tp& __c, const valarray<_Tp>& __x)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c >= __x[__i];
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator&&(const valarray<_Tp>& __x, const _Tp& __c)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] && __c;
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator&&(const _Tp& __c, const valarray<_Tp>& __x)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c && __x[__i];
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator||(const valarray<_Tp>& __x, const _Tp& __c)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __x[__i] || __c;
return __tmp;
}
template <class _Tp>
inline valarray<bool> operator||(const _Tp& __c, const valarray<_Tp>& __x)
{
valarray<bool> __tmp(__x.size(), valarray<bool>::_NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = __c || __x[__i];
return __tmp;
}
// valarray "transcendentals" (the list includes abs and sqrt, which,
// of course, are not transcendental).
template <class _Tp>
inline valarray<_Tp> abs(const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = abs(__x[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> acos(const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = acos(__x[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> asin(const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = asin(__x[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> atan(const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = atan(__x[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> atan2(const valarray<_Tp>& __x,
const valarray<_Tp>& __y) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = atan2(__x[__i], __y[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> atan2(const valarray<_Tp>& __x, const _Tp& __c) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = atan2(__x[__i], __c);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> atan2(const _Tp& __c, const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = atan2(__c, __x[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> cos(const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = cos(__x[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> cosh(const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = cosh(__x[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> exp(const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = exp(__x[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> log(const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = log(__x[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> log10(const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = log10(__x[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> pow(const valarray<_Tp>& __x,
const valarray<_Tp>& __y) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = pow(__x[__i], __y[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> pow(const valarray<_Tp>& __x, const _Tp& __c) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = pow(__x[__i], __c);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> pow(const _Tp& __c, const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = pow(__c, __x[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> sin(const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = sin(__x[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> sinh(const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = sinh(__x[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> sqrt(const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = sqrt(__x[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> tan(const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = tan(__x[__i]);
return __tmp;
}
template <class _Tp>
inline valarray<_Tp> tanh(const valarray<_Tp>& __x) {
typedef typename valarray<_Tp>::_NoInit _NoInit;
valarray<_Tp> __tmp(__x.size(), _NoInit());
for (size_t __i = 0; __i < __x.size(); ++__i)
__tmp[__i] = tanh(__x[__i]);
return __tmp;
}
//----------------------------------------------------------------------
// slice and slice_array
class slice {
public:
slice() : _M_start(0), _M_length(0), _M_stride(0) {}
slice(size_t __start, size_t __length, size_t __stride)
: _M_start(__start), _M_length(__length), _M_stride(__stride)
{}
size_t start() const { return _M_start; }
size_t size() const { return _M_length; }
size_t stride() const { return _M_stride; }
private:
size_t _M_start;
size_t _M_length;
size_t _M_stride;
};
template <class _Tp>
class slice_array {
friend class valarray<_Tp>;
public:
typedef _Tp value_type;
void operator=(const valarray<value_type>& __x) const {
size_t __index = _M_slice.start();
for (size_t __i = 0;
__i < _M_slice.size();
++__i, __index += _M_slice.stride())
_M_array[__index] = __x[__i];
}
void operator*=(const valarray<value_type>& __x) const {
size_t __index = _M_slice.start();
for (size_t __i = 0;
__i < _M_slice.size();
++__i, __index += _M_slice.stride())
_M_array[__index] *= __x[__i];
}
void operator/=(const valarray<value_type>& __x) const {
size_t __index = _M_slice.start();
for (size_t __i = 0;
__i < _M_slice.size();
++__i, __index += _M_slice.stride())
_M_array[__index] /= __x[__i];
}
void operator%=(const valarray<value_type>& __x) const {
size_t __index = _M_slice.start();
for (size_t __i = 0;
__i < _M_slice.size();
++__i, __index += _M_slice.stride())
_M_array[__index] %= __x[__i];
}
void operator+=(const valarray<value_type>& __x) const {
size_t __index = _M_slice.start();
for (size_t __i = 0;
__i < _M_slice.size();
++__i, __index += _M_slice.stride())
_M_array[__index] += __x[__i];
}
void operator-=(const valarray<value_type>& __x) const {
size_t __index = _M_slice.start();
for (size_t __i = 0;
__i < _M_slice.size();
++__i, __index += _M_slice.stride())
_M_array[__index] -= __x[__i];
}
void operator^=(const valarray<value_type>& __x) const {
size_t __index = _M_slice.start();
for (size_t __i = 0;
__i < _M_slice.size();
++__i, __index += _M_slice.stride())
_M_array[__index] ^= __x[__i];
}
void operator&=(const valarray<value_type>& __x) const {
size_t __index = _M_slice.start();
for (size_t __i = 0;
__i < _M_slice.size();
++__i, __index += _M_slice.stride())
_M_array[__index] &= __x[__i];
}
void operator|=(const valarray<value_type>& __x) const {
size_t __index = _M_slice.start();
for (size_t __i = 0;
__i < _M_slice.size();
++__i, __index += _M_slice.stride())
_M_array[__index] |= __x[__i];
}
void operator<<=(const valarray<value_type>& __x) const {
size_t __index = _M_slice.start();
for (size_t __i = 0;
__i < _M_slice.size();
++__i, __index += _M_slice.stride())
_M_array[__index] <<= __x[__i];
}
void operator>>=(const valarray<value_type>& __x) const {
size_t __index = _M_slice.start();
for (size_t __i = 0;
__i < _M_slice.size();
++__i, __index += _M_slice.stride())
_M_array[__index] >>= __x[__i];
}
void operator=(const value_type& __c) const {
size_t __index = _M_slice.start();
for (size_t __i = 0;
__i < _M_slice.size();
++__i, __index += _M_slice.stride())
_M_array[__index] = __c;
}
~slice_array() {}
private:
slice_array(const slice& __slice, valarray<_Tp>& __array)
: _M_slice(__slice), _M_array(__array)
{}
slice _M_slice;
valarray<_Tp>& _M_array;
private: // Disable assignment and default constructor
slice_array();
};
// valarray member functions dealing with slice and slice_array
template <class _Tp>
inline valarray<_Tp>::valarray(const slice_array<_Tp>& __x)
: _Valarray_base<_Tp>(__x._M_slice.size())
{
typedef typename __type_traits<_Tp>::has_trivial_default_constructor
_Is_Trivial;
_M_initialize(_Is_Trivial());
*this = __x;
}
// Behavior is undefined if __x and *this have different sizes
template <class _Tp>
valarray<_Tp>& valarray<_Tp>::operator=(const slice_array<_Tp>& __x)
{
size_t __index = __x._M_slice.start();
for (size_t __i = 0;
__i < __x._M_slice.size();
++__i, __index += __x._M_slice.stride())
(*this)[__i] = __x._M_array[__index];
return *this;
}
template <class _Tp>
valarray<_Tp> valarray<_Tp>::operator[](slice __slice) const {
valarray<_Tp> __tmp(__slice.size(), _NoInit());
size_t __index = __slice.start();
for (size_t __i = 0;
__i < __slice.size();
++__i, __index += __slice.stride())
__tmp[__i] = (*this)[__index];
return __tmp;
}
template <class _Tp>
inline slice_array<_Tp> valarray<_Tp>::operator[](slice __slice) {
return slice_array<_Tp>(__slice, *this);
}
//----------------------------------------------------------------------
// gslice and gslice_array
struct _Gslice_Iter;
class gslice {
friend struct _Gslice_Iter;
public:
gslice() : _M_start(0), _M_lengths(0), _M_strides(0) {}
gslice(size_t __start,
const valarray<size_t>& __lengths, const valarray<size_t>& __strides)
: _M_start(__start), _M_lengths(__lengths), _M_strides(__strides)
{}
size_t start() const { return _M_start; }
valarray<size_t> size() const { return _M_lengths; }
valarray<size_t> stride() const { return _M_strides; }
// Extension: check for an empty gslice.
bool _M_empty() const { return _M_lengths.size() == 0; }
// Extension: number of indices this gslice represents. (For a degenerate
// gslice, they're not necessarily all distinct.)
size_t _M_size() const {
return !this->_M_empty()
? accumulate(_M_lengths._M_first + 1,
_M_lengths._M_first + _M_lengths._M_size,
_M_lengths[0],
multiplies<size_t>())
: 0;
}
private:
size_t _M_start;
valarray<size_t> _M_lengths;
valarray<size_t> _M_strides;
};
// This is not an STL iterator. It is constructed from a gslice, and it
// steps through the gslice indices in sequence. See 23.3.6 of the C++
// standard, paragraphs 2-3, for an explanation of the sequence. At
// each step we get two things: the ordinal (i.e. number of steps taken),
// and the one-dimensional index.
struct _Gslice_Iter {
_Gslice_Iter(const gslice& __gslice)
: _M_step(0), _M_1d_idx(__gslice.start()),
_M_indices(size_t(0), __gslice._M_lengths.size()),
_M_gslice(__gslice)
{}
bool _M_done() const { return _M_indices[0] == _M_gslice._M_lengths[0]; }
bool _M_incr() {
size_t __dim = _M_indices.size() - 1;
++_M_step;
while (true) {
_M_1d_idx += _M_gslice._M_strides[__dim];
if (++_M_indices[__dim] != _M_gslice._M_lengths[__dim])
return true;
else if (__dim != 0) {
_M_1d_idx -=
_M_gslice._M_strides[__dim] * _M_gslice._M_lengths[__dim];
_M_indices[__dim] = 0;
--__dim;
}
else
return false;
}
}
size_t _M_step;
size_t _M_1d_idx;
valarray<size_t> _M_indices;
const gslice& _M_gslice;
};
template <class _Tp>
class gslice_array {
friend class valarray<_Tp>;
public:
typedef _Tp value_type;
void operator= (const valarray<value_type>& __x) const {
if (!_M_gslice._M_empty()) {
_Gslice_Iter __i(_M_gslice);
do _M_array[__i._M_1d_idx] = __x[__i._M_step]; while(__i._M_incr());
}
}
void operator*= (const valarray<value_type>& __x) const {
if (!_M_gslice._M_empty()) {
_Gslice_Iter __i(_M_gslice);
do _M_array[__i._M_1d_idx] *= __x[__i._M_step]; while(__i._M_incr());
}
}
void operator/= (const valarray<value_type>& __x) const {
if (!_M_gslice._M_empty()) {
_Gslice_Iter __i(_M_gslice);
do _M_array[__i._M_1d_idx] /= __x[__i._M_step]; while(__i._M_incr());
}
}
void operator%= (const valarray<value_type>& __x) const {
if (!_M_gslice._M_empty()) {
_Gslice_Iter __i(_M_gslice);
do _M_array[__i._M_1d_idx] %= __x[__i._M_step]; while(__i._M_incr());
}
}
void operator+= (const valarray<value_type>& __x) const {
if (!_M_gslice._M_empty()) {
_Gslice_Iter __i(_M_gslice);
do _M_array[__i._M_1d_idx] += __x[__i._M_step]; while(__i._M_incr());
}
}
void operator-= (const valarray<value_type>& __x) const {
if (!_M_gslice._M_empty()) {
_Gslice_Iter __i(_M_gslice);
do _M_array[__i._M_1d_idx] -= __x[__i._M_step]; while(__i._M_incr());
}
}
void operator^= (const valarray<value_type>& __x) const {
if (!_M_gslice._M_empty()) {
_Gslice_Iter __i(_M_gslice);
do _M_array[__i._M_1d_idx] ^= __x[__i._M_step]; while(__i._M_incr());
}
}
void operator&= (const valarray<value_type>& __x) const {
if (!_M_gslice._M_empty()) {
_Gslice_Iter __i(_M_gslice);
do _M_array[__i._M_1d_idx] &= __x[__i._M_step]; while(__i._M_incr());
}
}
void operator|= (const valarray<value_type>& __x) const {
if (!_M_gslice._M_empty()) {
_Gslice_Iter __i(_M_gslice);
do _M_array[__i._M_1d_idx] |= __x[__i._M_step]; while(__i._M_incr());
}
}
void operator<<= (const valarray<value_type>& __x) const {
if (!_M_gslice._M_empty()) {
_Gslice_Iter __i(_M_gslice);
do _M_array[__i._M_1d_idx] <<= __x[__i._M_step]; while(__i._M_incr());
}
}
void operator>>= (const valarray<value_type>& __x) const {
if (!_M_gslice._M_empty()) {
_Gslice_Iter __i(_M_gslice);
do _M_array[__i._M_1d_idx] >>= __x[__i._M_step]; while(__i._M_incr());
}
}
void operator= (const value_type& __c) const {
if (!_M_gslice._M_empty()) {
_Gslice_Iter __i(_M_gslice);
do _M_array[__i._M_1d_idx] = __c; while(__i._M_incr());
}
}
~gslice_array() {}
private:
gslice_array(gslice __gslice, valarray<_Tp>& __array)
: _M_gslice(__gslice), _M_array(__array)
{}
gslice _M_gslice;
valarray<value_type>& _M_array;
private: // Disable assignment
void operator=(const gslice_array&);
};
// valarray member functions dealing with gslice and gslice_array. Note
// that it is illegal (behavior is undefined) to construct a gslice_array
// from a degenerate gslice.
template <class _Tp>
inline valarray<_Tp>::valarray(const gslice_array<_Tp>& __x)
: _Valarray_base<_Tp>(__x._M_gslice._M_size())
{
typedef typename __type_traits<_Tp>::has_trivial_default_constructor
_Is_Trivial;
_M_initialize(_Is_Trivial());
*this = __x;
}
// Behavior is undefined if __x and *this have different sizes, or if
// __x was constructed from a degenerate gslice.
template <class _Tp>
valarray<_Tp>& valarray<_Tp>::operator=(const gslice_array<_Tp>& __x)
{
if (this->size() != 0) {
_Gslice_Iter __i(__x._M_gslice);
do
(*this)[__i._M_step] = __x._M_array[__i._M_1d_idx];
while(__i._M_incr());
}
return *this;
}
template <class _Tp>
inline gslice_array<_Tp> valarray<_Tp>::operator[](gslice __slice) {
return gslice_array<_Tp>(__slice, *this);
}
template <class _Tp>
valarray<_Tp> valarray<_Tp>::operator[](gslice __slice) const
{
valarray __tmp(__slice._M_size(), _NoInit());
if (__tmp.size() != 0) {
_Gslice_Iter __i(__slice);
do __tmp[__i._M_step] = (*this)[__i._M_1d_idx]; while(__i._M_incr());
}
return __tmp;
}
//----------------------------------------------------------------------
// mask_array
template <class _Tp>
class mask_array {
friend class valarray<_Tp>;
public:
typedef _Tp value_type;
void operator=(const valarray<value_type>& __x) const {
size_t __idx = 0;
for (size_t __i = 0; __i < _M_array.size(); ++__i)
if (_M_mask[__i]) _M_array[__i] = __x[__idx++];
}
void operator*=(const valarray<value_type>& __x) const {
size_t __idx = 0;
for (size_t __i = 0; __i < _M_array.size(); ++__i)
if (_M_mask[__i]) _M_array[__i] *= __x[__idx++];
}
void operator/=(const valarray<value_type>& __x) const {
size_t __idx = 0;
for (size_t __i = 0; __i < _M_array.size(); ++__i)
if (_M_mask[__i]) _M_array[__i] /= __x[__idx++];
}
void operator%=(const valarray<value_type>& __x) const {
size_t __idx = 0;
for (size_t __i = 0; __i < _M_array.size(); ++__i)
if (_M_mask[__i]) _M_array[__i] %= __x[__idx++];
}
void operator+=(const valarray<value_type>& __x) const {
size_t __idx = 0;
for (size_t __i = 0; __i < _M_array.size(); ++__i)
if (_M_mask[__i]) _M_array[__i] += __x[__idx++];
}
void operator-=(const valarray<value_type>& __x) const {
size_t __idx = 0;
for (size_t __i = 0; __i < _M_array.size(); ++__i)
if (_M_mask[__i]) _M_array[__i] -= __x[__idx++];
}
void operator^=(const valarray<value_type>& __x) const {
size_t __idx = 0;
for (size_t __i = 0; __i < _M_array.size(); ++__i)
if (_M_mask[__i]) _M_array[__i] ^= __x[__idx++];
}
void operator&=(const valarray<value_type>& __x) const {
size_t __idx = 0;
for (size_t __i = 0; __i < _M_array.size(); ++__i)
if (_M_mask[__i]) _M_array[__i] &= __x[__idx++];
}
void operator|=(const valarray<value_type>& __x) const {
size_t __idx = 0;
for (size_t __i = 0; __i < _M_array.size(); ++__i)
if (_M_mask[__i]) _M_array[__i] |= __x[__idx++];
}
void operator<<=(const valarray<value_type>& __x) const {
size_t __idx = 0;
for (size_t __i = 0; __i < _M_array.size(); ++__i)
if (_M_mask[__i]) _M_array[__i] <<= __x[__idx++];
}
void operator>>=(const valarray<value_type>& __x) const {
size_t __idx = 0;
for (size_t __i = 0; __i < _M_array.size(); ++__i)
if (_M_mask[__i]) _M_array[__i] >>= __x[__idx++];
}
void operator=(const value_type& __c) const {
for (size_t __i = 0; __i < _M_array.size(); ++__i)
if (_M_mask[__i]) _M_array[__i] = __c;
}
~mask_array() {}
// Extension: number of true values in the mask
size_t _M_num_true() const {
size_t __result = 0;
for (size_t __i = 0; __i < _M_mask.size(); ++__i)
if (_M_mask[__i]) ++__result;
return __result;
}
private:
mask_array(const valarray<bool>& __mask, valarray<_Tp>& __array)
: _M_mask(__mask), _M_array(__array)
{}
valarray<bool> _M_mask;
valarray<_Tp>& _M_array;
private: // Disable assignment
void operator=(const mask_array&);
};
// valarray member functions dealing with mask_array
template <class _Tp>
inline valarray<_Tp>::valarray(const mask_array<_Tp>& __x)
: _Valarray_base<_Tp>(__x._M_num_true())
{
typedef typename __type_traits<_Tp>::has_trivial_default_constructor
_Is_Trivial;
_M_initialize(_Is_Trivial());
*this = __x;
}
// Behavior is undefined if __x._M_num_true() != this->size()
template <class _Tp>
inline valarray<_Tp>& valarray<_Tp>::operator=(const mask_array<_Tp>& __x) {
size_t __idx = 0;
for (size_t __i = 0; __i < __x._M_array.size(); ++__i)
if (__x._M_mask[__i]) (*this)[__idx++] = __x._M_array[__i];
return *this;
}
template <class _Tp>
inline mask_array<_Tp> valarray<_Tp>::operator[](const valarray<bool>& __mask)
{
return mask_array<_Tp>(__mask, *this);
}
template <class _Tp>
valarray<_Tp> valarray<_Tp>::operator[](const valarray<bool>& __mask) const
{
size_t __size = 0;
{
for (size_t __i = 0; __i < __mask.size(); ++__i)
if (__mask[__i]) ++__size;
}
valarray __tmp(__size, _NoInit());
size_t __idx = 0;
{
for (size_t __i = 0; __i < __mask.size(); ++__i)
if (__mask[__i]) __tmp[__idx++] = (*this)[__i];
}
return __tmp;
}
//----------------------------------------------------------------------
// indirect_array
template <class _Tp>
class indirect_array {
friend class valarray<_Tp>;
public:
typedef _Tp value_type;
void operator=(const valarray<value_type>& __x) const {
for (size_t __i = 0; __i < _M_addr.size(); ++__i)
_M_array[_M_addr[__i]] = __x[__i];
}
void operator*=(const valarray<value_type>& __x) const {
for (size_t __i = 0; __i < _M_addr.size(); ++__i)
_M_array[_M_addr[__i]] *= __x[__i];
}
void operator/=(const valarray<value_type>& __x) const {
for (size_t __i = 0; __i < _M_addr.size(); ++__i)
_M_array[_M_addr[__i]] /= __x[__i];
}
void operator%=(const valarray<value_type>& __x) const {
for (size_t __i = 0; __i < _M_addr.size(); ++__i)
_M_array[_M_addr[__i]] %= __x[__i];
}
void operator+=(const valarray<value_type>& __x) const {
for (size_t __i = 0; __i < _M_addr.size(); ++__i)
_M_array[_M_addr[__i]] += __x[__i];
}
void operator-=(const valarray<value_type>& __x) const {
for (size_t __i = 0; __i < _M_addr.size(); ++__i)
_M_array[_M_addr[__i]] -= __x[__i];
}
void operator^=(const valarray<value_type>& __x) const {
for (size_t __i = 0; __i < _M_addr.size(); ++__i)
_M_array[_M_addr[__i]] ^= __x[__i];
}
void operator&=(const valarray<value_type>& __x) const {
for (size_t __i = 0; __i < _M_addr.size(); ++__i)
_M_array[_M_addr[__i]] &= __x[__i];
}
void operator|=(const valarray<value_type>& __x) const {
for (size_t __i = 0; __i < _M_addr.size(); ++__i)
_M_array[_M_addr[__i]] |= __x[__i];
}
void operator<<=(const valarray<value_type>& __x) const {
for (size_t __i = 0; __i < _M_addr.size(); ++__i)
_M_array[_M_addr[__i]] <<= __x[__i];
}
void operator>>=(const valarray<value_type>& __x) const {
for (size_t __i = 0; __i < _M_addr.size(); ++__i)
_M_array[_M_addr[__i]] >>= __x[__i];
}
void operator=(const value_type& __c) const {
for (size_t __i = 0; __i < _M_addr.size(); ++__i)
_M_array[_M_addr[__i]] = __c;
}
~indirect_array() {}
private:
indirect_array(const valarray<size_t>& __addr, valarray<_Tp>& __array)
: _M_addr(__addr), _M_array(__array)
{}
valarray<size_t> _M_addr;
valarray<_Tp>& _M_array;
private: // Disable assignment
void operator=(const indirect_array&);
};
// valarray member functions dealing with indirect_array
template <class _Tp>
inline valarray<_Tp>::valarray(const indirect_array<_Tp>& __x)
: _Valarray_base<_Tp>(__x._M_addr.size())
{
typedef typename __type_traits<_Tp>::has_trivial_default_constructor
_Is_Trivial;
_M_initialize(_Is_Trivial());
*this = __x;
}
template <class _Tp>
valarray<_Tp>& valarray<_Tp>::operator=(const indirect_array<_Tp>& __x) {
for (size_t __i = 0; __i < __x._M_addr.size(); ++__i)
(*this)[__i] = __x._M_array[__x._M_addr[__i]];
return *this;
}
template <class _Tp>
inline indirect_array<_Tp>
valarray<_Tp>::operator[](const valarray<size_t>& __addr)
{
return indirect_array<_Tp>(__addr, *this);
}
template <class _Tp>
valarray<_Tp>
valarray<_Tp>::operator[](const valarray<size_t>& __addr) const
{
valarray<_Tp> __tmp(__addr.size(), _NoInit());
for (size_t __i = 0; __i < __addr.size(); ++__i)
__tmp[__i] = (*this)[__addr[__i]];
return __tmp;
}
//----------------------------------------------------------------------
// Other valarray noninline member functions
// Shift and cshift
template <class _Tp>
valarray<_Tp> valarray<_Tp>::shift(int __n) const
{
valarray<_Tp> __tmp(this->size());
if (__n >= 0) {
if (__n < this->size())
copy(this->_M_first + __n, this->_M_first + this->size(),
__tmp._M_first);
}
else {
if (-__n < this->size())
copy(this->_M_first, this->_M_first + this->size() + __n,
__tmp._M_first - __n);
}
return __tmp;
}
template <class _Tp>
valarray<_Tp> valarray<_Tp>::cshift(int __m) const
{
valarray<_Tp> __tmp(this->size());
// Reduce __m to an equivalent number in the range [0, size()). We
// have to be careful with negative numbers, since the sign of a % b
// is unspecified when a < 0.
long __n = __m;
if (this->size() < numeric_limits<long>::max())
__n %= long(this->size());
if (__n < 0)
__n += this->size();
copy(this->_M_first, this->_M_first + __n,
__tmp._M_first + (this->size() - __n));
copy(this->_M_first + __n, this->_M_first + this->size(),
__tmp._M_first);
return __tmp;
}
__STL_END_NAMESPACE
#endif /* __SGI_STL_VALARRAY */
// Local Variables:
// mode:C++
// End: