nppilot/external/avr-stl-stubs/include/string
Michael Hope 4b61ec36e3 Imported the AVR STL 1.1 libraries.
Stubbed out more of STL.
2013-12-17 20:47:35 +01:00

2454 lines
75 KiB
Plaintext

/*
* Copyright (c) 1997-1999
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
#ifndef __SGI_STL_STRING
#define __SGI_STL_STRING
#include <stl_config.h>
#include <stl_string_fwd.h>
#include <ctype.h>
#include <functional>
#include <stl_ctraits_fns.h>
#ifndef __AVR__
#include <stdexcept>
#endif
#include <stl_iterator_base.h>
#include <memory>
#include <algorithm>
#ifdef __STL_USE_NEW_IOSTREAMS
#include <ios>
#include <istream>
#else /* __STL_USE_NEW_IOSTREAMS */
#include <char_traits.h>
#endif /* __STL_USE_NEW_IOSTREAMS */
// Standard C++ string class. This class has performance
// characteristics very much like vector<>, meaning, for example, that
// it does not perform reference-count or copy-on-write, and that
// concatenation of two strings is an O(N) operation.
// There are three reasons why basic_string is not identical to
// vector. First, basic_string always stores a null character at the
// end; this makes it possible for c_str to be a fast operation.
// Second, the C++ standard requires basic_string to copy elements
// using char_traits<>::assign, char_traits<>::copy, and
// char_traits<>::move. This means that all of vector<>'s low-level
// operations must be rewritten. Third, basic_string<> has a lot of
// extra functions in its interface that are convenient but, strictly
// speaking, redundant.
// Additionally, the C++ standard imposes a major restriction: according
// to the standard, the character type _CharT must be a POD type. This
// implementation weakens that restriction, and allows _CharT to be a
// a user-defined non-POD type. However, _CharT must still have a
// default constructor.
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
// A helper class to use a char_traits as a function object.
template <class _Traits>
struct _Not_within_traits
: public unary_function<typename _Traits::char_type, bool>
{
typedef const typename _Traits::char_type* _Pointer;
const _Pointer _M_first;
const _Pointer _M_last;
_Not_within_traits(_Pointer __f, _Pointer __l)
: _M_first(__f), _M_last(__l) {}
bool operator()(const typename _Traits::char_type& __x) const {
return find_if(_M_first, _M_last,
bind1st(_Eq_traits<_Traits>(), __x)) == _M_last;
}
};
// ------------------------------------------------------------
// Class _String_base.
// _String_base is a helper class that makes it it easier to write an
// exception-safe version of basic_string. The constructor allocates,
// but does not initialize, a block of memory. The destructor
// deallocates, but does not destroy elements within, a block of
// memory. The destructor assumes that _M_start either is null, or else
// points to a block of memory that was allocated using _String_base's
// allocator and whose size is _M_end_of_storage - _M_start.
// Additionally, _String_base encapsulates the difference between
// old SGI-style allocators and standard-conforming allocators.
#ifdef __STL_USE_STD_ALLOCATORS
// General base class.
template <class _Tp, class _Alloc, bool _S_instanceless>
class _String_alloc_base {
public:
typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return _M_data_allocator; }
_String_alloc_base(const allocator_type& __a)
: _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
{}
protected:
_Tp* _M_allocate(size_t __n)
{ return _M_data_allocator.allocate(__n); }
void _M_deallocate(_Tp* __p, size_t __n) {
if (__p)
_M_data_allocator.deallocate(__p, __n);
}
protected:
allocator_type _M_data_allocator;
_Tp* _M_start;
_Tp* _M_finish;
_Tp* _M_end_of_storage;
};
// Specialization for instanceless allocators.
template <class _Tp, class _Alloc>
class _String_alloc_base<_Tp,_Alloc,true> {
public:
typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_String_alloc_base(const allocator_type&)
: _M_start(0), _M_finish(0), _M_end_of_storage(0) {}
protected:
typedef typename _Alloc_traits<_Tp, _Alloc>::_Alloc_type _Alloc_type;
_Tp* _M_allocate(size_t __n)
{ return _Alloc_type::allocate(__n); }
void _M_deallocate(_Tp* __p, size_t __n)
{ _Alloc_type::deallocate(__p, __n); }
protected:
_Tp* _M_start;
_Tp* _M_finish;
_Tp* _M_end_of_storage;
};
template <class _Tp, class _Alloc>
class _String_base
: public _String_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
protected:
typedef _String_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
void _M_allocate_block(size_t __n) {
if (__n <= max_size()) {
_Base::_M_start = _Base::_M_allocate(__n);
_Base::_M_finish = _Base::_M_start;
_Base::_M_end_of_storage = _Base::_M_start + __n;
}
else
_M_throw_length_error();
}
void _M_deallocate_block()
{ _M_deallocate(_Base::_M_start, _Base::_M_end_of_storage - _Base::_M_start); }
size_t max_size() const { return (size_t(-1) / sizeof(_Tp)) - 1; }
_String_base(const allocator_type& __a) : _Base(__a) { }
_String_base(const allocator_type& __a, size_t __n) : _Base(__a)
{ _M_allocate_block(__n); }
~_String_base() { _M_deallocate_block(); }
void _M_throw_length_error() const;
void _M_throw_out_of_range() const;
};
#else /* __STL_USE_STD_ALLOCATORS */
template <class _Tp, class _Alloc> class _String_base {
public:
typedef _Alloc allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
protected:
typedef simple_alloc<_Tp, _Alloc> _Alloc_type;
_Tp* _M_start;
_Tp* _M_finish;
_Tp* _M_end_of_storage;
// Precondition: 0 < __n <= max_size().
_Tp* _M_allocate(size_t __n) { return _Alloc_type::allocate(__n); }
void _M_deallocate(_Tp* __p, size_t __n) {
if (__p)
_Alloc_type::deallocate(__p, __n);
}
void _M_allocate_block(size_t __n) {
if (__n <= max_size()) {
_M_start = _M_allocate(__n);
_M_finish = _M_start;
_M_end_of_storage = _M_start + __n;
}
else
_M_throw_length_error();
}
void _M_deallocate_block()
{ _M_deallocate(_M_start, _M_end_of_storage - _M_start); }
size_t max_size() const { return (size_t(-1) / sizeof(_Tp)) - 1; }
_String_base(const allocator_type&)
: _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
_String_base(const allocator_type&, size_t __n)
: _M_start(0), _M_finish(0), _M_end_of_storage(0)
{ _M_allocate_block(__n); }
~_String_base() { _M_deallocate_block(); }
void _M_throw_length_error() const;
void _M_throw_out_of_range() const;
};
#endif /* __STL_USE_STD_ALLOCATORS */
// Helper functions for exception handling.
template <class _Tp, class _Alloc>
void _String_base<_Tp,_Alloc>::_M_throw_length_error() const {
__STL_THROW(length_error("basic_string"));
}
template <class _Tp, class _Alloc>
void _String_base<_Tp, _Alloc>::_M_throw_out_of_range() const {
__STL_THROW(out_of_range("basic_string"));
}
// ------------------------------------------------------------
// Class basic_string.
// Class invariants:
// (1) [start, finish) is a valid range.
// (2) Each iterator in [start, finish) points to a valid object
// of type value_type.
// (3) *finish is a valid object of type value_type; in particular,
// it is value_type().
// (4) [finish + 1, end_of_storage) is a valid range.
// (5) Each iterator in [finish + 1, end_of_storage) points to
// unininitialized memory.
// Note one important consequence: a string of length n must manage
// a block of memory whose size is at least n + 1.
template <class _CharT, class _Traits, class _Alloc>
class basic_string : private _String_base<_CharT,_Alloc> {
public:
typedef _CharT value_type;
typedef _Traits traits_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef const value_type* const_iterator;
typedef value_type* iterator;
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef reverse_iterator<const_iterator, value_type, const_reference,
difference_type>
const_reverse_iterator;
typedef reverse_iterator<iterator, value_type, reference, difference_type>
reverse_iterator;
#endif /* __STL_PARTIAL_SPECIALIZATION */
static const size_type npos;
typedef _String_base<_CharT,_Alloc> _Base;
public: // Constructor, destructor, assignment.
typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); }
explicit basic_string(const allocator_type& __a = allocator_type())
: _Base(__a, 8) { _M_terminate_string(); }
struct _Reserve_t {};
basic_string(_Reserve_t, size_t __n,
const allocator_type& __a = allocator_type())
: _Base(__a, __n + 1) { _M_terminate_string(); }
basic_string(const basic_string& __s) : _Base(__s.get_allocator())
{ _M_range_initialize(__s.begin(), __s.end()); }
basic_string(const basic_string& __s, size_type __pos, size_type __n = npos,
const allocator_type& __a = allocator_type())
: _Base(__a) {
if (__pos > __s.size())
_M_throw_out_of_range();
else
_M_range_initialize(__s.begin() + __pos,
__s.begin() + __pos + min(__n, __s.size() - __pos));
}
basic_string(const _CharT* __s, size_type __n,
const allocator_type& __a = allocator_type())
: _Base(__a)
{ _M_range_initialize(__s, __s + __n); }
basic_string(const _CharT* __s,
const allocator_type& __a = allocator_type())
: _Base(__a)
{ _M_range_initialize(__s, __s + _Traits::length(__s)); }
basic_string(size_type __n, _CharT __c,
const allocator_type& __a = allocator_type())
: _Base(__a, __n + 1)
{
_M_finish = uninitialized_fill_n(_M_start, __n, __c);
_M_terminate_string();
}
// Check to see if _InputIterator is an integer type. If so, then
// it can't be an iterator.
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
basic_string(_InputIterator __f, _InputIterator __l,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_initialize_dispatch(__f, __l, _Integral());
}
#else /* __STL_MEMBER_TEMPLATES */
basic_string(const _CharT* __f, const _CharT* __l,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
_M_range_initialize(__f, __l);
}
#endif
~basic_string() { destroy(_M_start, _M_finish + 1); }
basic_string& operator=(const basic_string& __s) {
if (&__s != this)
assign(__s.begin(), __s.end());
return *this;
}
basic_string& operator=(const _CharT* __s)
{ return assign(__s, __s + _Traits::length(__s)); }
basic_string& operator=(_CharT __c)
{ return assign(static_cast<size_type>(1), __c); }
protected: // Protected members inherited from base.
#ifdef __STL_HAS_NAMESPACES
using _Base::_M_allocate;
using _Base::_M_deallocate;
using _Base::_M_allocate_block;
using _Base::_M_deallocate_block;
using _Base::_M_throw_length_error;
using _Base::_M_throw_out_of_range;
using _Base::_M_start;
using _Base::_M_finish;
using _Base::_M_end_of_storage;
#endif /* __STL_HAS_NAMESPACES */
private: // Helper functions used by constructors
// and elsewhere.
void _M_construct_null(_CharT* __p) {
construct(__p);
# ifdef __STL_DEFAULT_CONSTRUCTOR_BUG
__STL_TRY {
*__p = (_CharT) 0;
}
__STL_UNWIND(destroy(__p));
# endif
}
static _CharT _M_null() {
# ifndef __STL_DEFAULT_CONSTRUCTOR_BUG
return _CharT();
# else
return (_CharT) 0;
# endif
}
private:
// Helper functions used by constructors. It is a severe error for
// any of them to be called anywhere except from within constructors.
void _M_terminate_string() {
__STL_TRY {
_M_construct_null(_M_finish);
}
__STL_UNWIND(destroy(_M_start, _M_finish));
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIter>
void _M_range_initialize(_InputIter __f, _InputIter __l,
input_iterator_tag) {
_M_allocate_block(8);
_M_construct_null(_M_finish);
__STL_TRY {
append(__f, __l);
}
__STL_UNWIND(destroy(_M_start, _M_finish + 1));
}
template <class _ForwardIter>
void _M_range_initialize(_ForwardIter __f, _ForwardIter __l,
forward_iterator_tag) {
difference_type __n = 0;
distance(__f, __l, __n);
_M_allocate_block(__n + 1);
_M_finish = uninitialized_copy(__f, __l, _M_start);
_M_terminate_string();
}
template <class _InputIter>
void _M_range_initialize(_InputIter __f, _InputIter __l) {
typedef typename iterator_traits<_InputIter>::iterator_category _Category;
_M_range_initialize(__f, __l, _Category());
}
template <class _Integer>
void _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) {
_M_allocate_block(__n + 1);
_M_finish = uninitialized_fill_n(_M_start, __n, __x);
_M_terminate_string();
}
template <class _InputIter>
void _M_initialize_dispatch(_InputIter __f, _InputIter __l, __false_type) {
_M_range_initialize(__f, __l);
}
#else /* __STL_MEMBER_TEMPLATES */
void _M_range_initialize(const _CharT* __f, const _CharT* __l) {
ptrdiff_t __n = __l - __f;
_M_allocate_block(__n + 1);
_M_finish = uninitialized_copy(__f, __l, _M_start);
_M_terminate_string();
}
#endif /* __STL_MEMBER_TEMPLATES */
public: // Iterators.
iterator begin() { return _M_start; }
iterator end() { return _M_finish; }
const_iterator begin() const { return _M_start; }
const_iterator end() const { return _M_finish; }
reverse_iterator rbegin()
{ return reverse_iterator(_M_finish); }
reverse_iterator rend()
{ return reverse_iterator(_M_start); }
const_reverse_iterator rbegin() const
{ return const_reverse_iterator(_M_finish); }
const_reverse_iterator rend() const
{ return const_reverse_iterator(_M_start); }
public: // Size, capacity, etc.
size_type size() const { return _M_finish - _M_start; }
size_type length() const { return size(); }
size_t max_size() const { return _Base::max_size(); }
void resize(size_type __n, _CharT __c) {
if (__n <= size())
erase(begin() + __n, end());
else
append(__n - size(), __c);
}
void resize(size_type __n) { resize(__n, _M_null()); }
void reserve(size_type = 0);
size_type capacity() const { return (_M_end_of_storage - _M_start) - 1; }
void clear() {
if (!empty()) {
_Traits::assign(*_M_start, _M_null());
destroy(_M_start+1, _M_finish+1);
_M_finish = _M_start;
}
}
bool empty() const { return _M_start == _M_finish; }
public: // Element access.
const_reference operator[](size_type __n) const
{ return *(_M_start + __n); }
reference operator[](size_type __n)
{ return *(_M_start + __n); }
const_reference at(size_type __n) const {
if (__n >= size())
_M_throw_out_of_range();
return *(_M_start + __n);
}
reference at(size_type __n) {
if (__n >= size())
_M_throw_out_of_range();
return *(_M_start + __n);
}
public: // Append, operator+=, push_back.
basic_string& operator+=(const basic_string& __s) { return append(__s); }
basic_string& operator+=(const _CharT* __s) { return append(__s); }
basic_string& operator+=(_CharT __c) { push_back(__c); return *this; }
basic_string& append(const basic_string& __s)
{ return append(__s.begin(), __s.end()); }
basic_string& append(const basic_string& __s,
size_type __pos, size_type __n)
{
if (__pos > __s.size())
_M_throw_out_of_range();
return append(__s.begin() + __pos,
__s.begin() + __pos + min(__n, __s.size() - __pos));
}
basic_string& append(const _CharT* __s, size_type __n)
{ return append(__s, __s+__n); }
basic_string& append(const _CharT* __s)
{ return append(__s, __s + _Traits::length(__s)); }
basic_string& append(size_type __n, _CharT __c);
#ifdef __STL_MEMBER_TEMPLATES
// Check to see if _InputIterator is an integer type. If so, then
// it can't be an iterator.
template <class _InputIter>
basic_string& append(_InputIter __first, _InputIter __last) {
typedef typename _Is_integer<_InputIter>::_Integral _Integral;
return _M_append_dispatch(__first, __last, _Integral());
}
#else /* __STL_MEMBER_TEMPLATES */
basic_string& append(const _CharT* __first, const _CharT* __last);
#endif /* __STL_MEMBER_TEMPLATES */
void push_back(_CharT __c) {
if (_M_finish + 1 == _M_end_of_storage)
reserve(size() + max(size(), static_cast<size_type>(1)));
_M_construct_null(_M_finish + 1);
_Traits::assign(*_M_finish, __c);
++_M_finish;
}
void pop_back() {
_Traits::assign(*(_M_finish - 1), _M_null());
destroy(_M_finish);
--_M_finish;
}
private: // Helper functions for append.
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIter>
basic_string& append(_InputIter __f, _InputIter __l, input_iterator_tag);
template <class _ForwardIter>
basic_string& append(_ForwardIter __f, _ForwardIter __l,
forward_iterator_tag);
template <class _Integer>
basic_string& _M_append_dispatch(_Integer __n, _Integer __x, __true_type) {
return append((size_type) __n, (_CharT) __x);
}
template <class _InputIter>
basic_string& _M_append_dispatch(_InputIter __f, _InputIter __l,
__false_type) {
typedef typename iterator_traits<_InputIter>::iterator_category _Category;
return append(__f, __l, _Category());
}
#endif /* __STL_MEMBER_TEMPLATES */
public: // Assign
basic_string& assign(const basic_string& __s)
{ return assign(__s.begin(), __s.end()); }
basic_string& assign(const basic_string& __s,
size_type __pos, size_type __n) {
if (__pos > __s.size())
_M_throw_out_of_range();
return assign(__s.begin() + __pos,
__s.begin() + __pos + min(__n, __s.size() - __pos));
}
basic_string& assign(const _CharT* __s, size_type __n)
{ return assign(__s, __s + __n); }
basic_string& assign(const _CharT* __s)
{ return assign(__s, __s + _Traits::length(__s)); }
basic_string& assign(size_type __n, _CharT __c);
#ifdef __STL_MEMBER_TEMPLATES
// Check to see if _InputIterator is an integer type. If so, then
// it can't be an iterator.
template <class _InputIter>
basic_string& assign(_InputIter __first, _InputIter __last) {
typedef typename _Is_integer<_InputIter>::_Integral _Integral;
return _M_assign_dispatch(__first, __last, _Integral());
}
#endif /* __STL_MEMBER_TEMPLATES */
basic_string& assign(const _CharT* __f, const _CharT* __l);
private: // Helper functions for assign.
#ifdef __STL_MEMBER_TEMPLATES
template <class _Integer>
basic_string& _M_assign_dispatch(_Integer __n, _Integer __x, __true_type) {
return assign((size_type) __n, (_CharT) __x);
}
template <class _InputIter>
basic_string& _M_assign_dispatch(_InputIter __f, _InputIter __l,
__false_type);
#endif /* __STL_MEMBER_TEMPLATES */
public: // Insert
basic_string& insert(size_type __pos, const basic_string& __s) {
if (__pos > size())
_M_throw_out_of_range();
if (size() > max_size() - __s.size())
_M_throw_length_error();
insert(_M_start + __pos, __s.begin(), __s.end());
return *this;
}
basic_string& insert(size_type __pos, const basic_string& __s,
size_type __beg, size_type __n) {
if (__pos > size() || __beg > __s.size())
_M_throw_out_of_range();
size_type __len = min(__n, __s.size() - __beg);
if (size() > max_size() - __len)
_M_throw_length_error();
insert(_M_start + __pos,
__s.begin() + __beg, __s.begin() + __beg + __len);
return *this;
}
basic_string& insert(size_type __pos, const _CharT* __s, size_type __n) {
if (__pos > size())
_M_throw_out_of_range();
if (size() > max_size() - __n)
_M_throw_length_error();
insert(_M_start + __pos, __s, __s + __n);
return *this;
}
basic_string& insert(size_type __pos, const _CharT* __s) {
if (__pos > size())
_M_throw_out_of_range();
size_type __len = _Traits::length(__s);
if (size() > max_size() - __len)
_M_throw_length_error();
insert(_M_start + __pos, __s, __s + __len);
return *this;
}
basic_string& insert(size_type __pos, size_type __n, _CharT __c) {
if (__pos > size())
_M_throw_out_of_range();
if (size() > max_size() - __n)
_M_throw_length_error();
insert(_M_start + __pos, __n, __c);
return *this;
}
iterator insert(iterator __p, _CharT __c) {
if (__p == _M_finish) {
push_back(__c);
return _M_finish - 1;
}
else
return _M_insert_aux(__p, __c);
}
void insert(iterator __p, size_t __n, _CharT __c);
#ifdef __STL_MEMBER_TEMPLATES
// Check to see if _InputIterator is an integer type. If so, then
// it can't be an iterator.
template <class _InputIter>
void insert(iterator __p, _InputIter __first, _InputIter __last) {
typedef typename _Is_integer<_InputIter>::_Integral _Integral;
_M_insert_dispatch(__p, __first, __last, _Integral());
}
#else /* __STL_MEMBER_TEMPLATES */
void insert(iterator __p, const _CharT* __first, const _CharT* __last);
#endif /* __STL_MEMBER_TEMPLATES */
private: // Helper functions for insert.
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIter>
void insert(iterator __p, _InputIter, _InputIter, input_iterator_tag);
template <class _ForwardIter>
void insert(iterator __p, _ForwardIter, _ForwardIter, forward_iterator_tag);
template <class _Integer>
void _M_insert_dispatch(iterator __p, _Integer __n, _Integer __x,
__true_type) {
insert(__p, (size_type) __n, (_CharT) __x);
}
template <class _InputIter>
void _M_insert_dispatch(iterator __p, _InputIter __first, _InputIter __last,
__false_type) {
typedef typename iterator_traits<_InputIter>::iterator_category _Category;
insert(__p, __first, __last, _Category());
}
template <class _InputIterator>
void
_M_copy(_InputIterator __first, _InputIterator __last, iterator __result) {
for ( ; __first != __last; ++__first, ++__result)
_Traits::assign(*__result, *__first);
}
#endif /* __STL_MEMBER_TEMPLATES */
iterator _M_insert_aux(iterator, _CharT);
void
_M_copy(const _CharT* __first, const _CharT* __last, _CharT* __result) {
_Traits::copy(__result, __first, __last - __first);
}
public: // Erase.
basic_string& erase(size_type __pos = 0, size_type __n = npos) {
if (__pos > size())
_M_throw_out_of_range();
erase(_M_start + __pos, _M_start + __pos + min(__n, size() - __pos));
return *this;
}
iterator erase(iterator __position) {
// The move includes the terminating null.
_Traits::move(__position, __position + 1, _M_finish - __position);
destroy(_M_finish);
--_M_finish;
return __position;
}
iterator erase(iterator __first, iterator __last) {
if (__first != __last) {
// The move includes the terminating null.
_Traits::move(__first, __last, (_M_finish - __last) + 1);
const iterator __new_finish = _M_finish - (__last - __first);
destroy(__new_finish + 1, _M_finish + 1);
_M_finish = __new_finish;
}
return __first;
}
public: // Replace. (Conceptually equivalent
// to erase followed by insert.)
basic_string& replace(size_type __pos, size_type __n,
const basic_string& __s) {
if (__pos > size())
_M_throw_out_of_range();
const size_type __len = min(__n, size() - __pos);
if (size() - __len >= max_size() - __s.size())
_M_throw_length_error();
return replace(_M_start + __pos, _M_start + __pos + __len,
__s.begin(), __s.end());
}
basic_string& replace(size_type __pos1, size_type __n1,
const basic_string& __s,
size_type __pos2, size_type __n2) {
if (__pos1 > size() || __pos2 > __s.size())
_M_throw_out_of_range();
const size_type __len1 = min(__n1, size() - __pos1);
const size_type __len2 = min(__n2, __s.size() - __pos2);
if (size() - __len1 >= max_size() - __len2)
_M_throw_length_error();
return replace(_M_start + __pos1, _M_start + __pos1 + __len1,
__s._M_start + __pos2, __s._M_start + __pos2 + __len2);
}
basic_string& replace(size_type __pos, size_type __n1,
const _CharT* __s, size_type __n2) {
if (__pos > size())
_M_throw_out_of_range();
const size_type __len = min(__n1, size() - __pos);
if (__n2 > max_size() || size() - __len >= max_size() - __n2)
_M_throw_length_error();
return replace(_M_start + __pos, _M_start + __pos + __len,
__s, __s + __n2);
}
basic_string& replace(size_type __pos, size_type __n1,
const _CharT* __s) {
if (__pos > size())
_M_throw_out_of_range();
const size_type __len = min(__n1, size() - __pos);
const size_type __n2 = _Traits::length(__s);
if (__n2 > max_size() || size() - __len >= max_size() - __n2)
_M_throw_length_error();
return replace(_M_start + __pos, _M_start + __pos + __len,
__s, __s + _Traits::length(__s));
}
basic_string& replace(size_type __pos, size_type __n1,
size_type __n2, _CharT __c) {
if (__pos > size())
_M_throw_out_of_range();
const size_type __len = min(__n1, size() - __pos);
if (__n2 > max_size() || size() - __len >= max_size() - __n2)
_M_throw_length_error();
return replace(_M_start + __pos, _M_start + __pos + __len, __n2, __c);
}
basic_string& replace(iterator __first, iterator __last,
const basic_string& __s)
{ return replace(__first, __last, __s.begin(), __s.end()); }
basic_string& replace(iterator __first, iterator __last,
const _CharT* __s, size_type __n)
{ return replace(__first, __last, __s, __s + __n); }
basic_string& replace(iterator __first, iterator __last,
const _CharT* __s) {
return replace(__first, __last, __s, __s + _Traits::length(__s));
}
basic_string& replace(iterator __first, iterator __last,
size_type __n, _CharT __c);
// Check to see if _InputIterator is an integer type. If so, then
// it can't be an iterator.
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIter>
basic_string& replace(iterator __first, iterator __last,
_InputIter __f, _InputIter __l) {
typedef typename _Is_integer<_InputIter>::_Integral _Integral;
return _M_replace_dispatch(__first, __last, __f, __l, _Integral());
}
#else /* __STL_MEMBER_TEMPLATES */
basic_string& replace(iterator __first, iterator __last,
const _CharT* __f, const _CharT* __l);
#endif /* __STL_MEMBER_TEMPLATES */
private: // Helper functions for replace.
#ifdef __STL_MEMBER_TEMPLATES
template <class _Integer>
basic_string& _M_replace_dispatch(iterator __first, iterator __last,
_Integer __n, _Integer __x,
__true_type) {
return replace(__first, __last, (size_type) __n, (_CharT) __x);
}
template <class _InputIter>
basic_string& _M_replace_dispatch(iterator __first, iterator __last,
_InputIter __f, _InputIter __l,
__false_type) {
typedef typename iterator_traits<_InputIter>::iterator_category _Category;
return replace(__first, __last, __f, __l, _Category());
}
template <class _InputIter>
basic_string& replace(iterator __first, iterator __last,
_InputIter __f, _InputIter __l, input_iterator_tag);
template <class _ForwardIter>
basic_string& replace(iterator __first, iterator __last,
_ForwardIter __f, _ForwardIter __l,
forward_iterator_tag);
#endif /* __STL_MEMBER_TEMPLATES */
public: // Other modifier member functions.
size_type copy(_CharT* __s, size_type __n, size_type __pos = 0) const {
if (__pos > size())
_M_throw_out_of_range();
const size_type __len = min(__n, size() - __pos);
_Traits::copy(__s, _M_start + __pos, __len);
return __len;
}
void swap(basic_string& __s) {
__STD::swap(_M_start, __s._M_start);
__STD::swap(_M_finish, __s._M_finish);
__STD::swap(_M_end_of_storage, __s._M_end_of_storage);
}
public: // Conversion to C string.
const _CharT* c_str() const { return _M_start; }
const _CharT* data() const { return _M_start; }
public: // find.
size_type find(const basic_string& __s, size_type __pos = 0) const
{ return find(__s.begin(), __pos, __s.size()); }
size_type find(const _CharT* __s, size_type __pos = 0) const
{ return find(__s, __pos, _Traits::length(__s)); }
size_type find(const _CharT* __s, size_type __pos, size_type __n) const;
size_type find(_CharT __c, size_type __pos = 0) const;
public: // rfind.
size_type rfind(const basic_string& __s, size_type __pos = npos) const
{ return rfind(__s.begin(), __pos, __s.size()); }
size_type rfind(const _CharT* __s, size_type __pos = npos) const
{ return rfind(__s, __pos, _Traits::length(__s)); }
size_type rfind(const _CharT* __s, size_type __pos, size_type __n) const;
size_type rfind(_CharT __c, size_type __pos = npos) const;
public: // find_first_of
size_type find_first_of(const basic_string& __s, size_type __pos = 0) const
{ return find_first_of(__s.begin(), __pos, __s.size()); }
size_type find_first_of(const _CharT* __s, size_type __pos = 0) const
{ return find_first_of(__s, __pos, _Traits::length(__s)); }
size_type find_first_of(const _CharT* __s, size_type __pos,
size_type __n) const;
size_type find_first_of(_CharT __c, size_type __pos = 0) const
{ return find(__c, __pos); }
public: // find_last_of
size_type find_last_of(const basic_string& __s,
size_type __pos = npos) const
{ return find_last_of(__s.begin(), __pos, __s.size()); }
size_type find_last_of(const _CharT* __s, size_type __pos = npos) const
{ return find_last_of(__s, __pos, _Traits::length(__s)); }
size_type find_last_of(const _CharT* __s, size_type __pos,
size_type __n) const;
size_type find_last_of(_CharT __c, size_type __pos = npos) const {
return rfind(__c, __pos);
}
public: // find_first_not_of
size_type find_first_not_of(const basic_string& __s,
size_type __pos = 0) const
{ return find_first_not_of(__s.begin(), __pos, __s.size()); }
size_type find_first_not_of(const _CharT* __s, size_type __pos = 0) const
{ return find_first_not_of(__s, __pos, _Traits::length(__s)); }
size_type find_first_not_of(const _CharT* __s, size_type __pos,
size_type __n) const;
size_type find_first_not_of(_CharT __c, size_type __pos = 0) const;
public: // find_last_not_of
size_type find_last_not_of(const basic_string& __s,
size_type __pos = npos) const
{ return find_last_not_of(__s.begin(), __pos, __s.size()); }
size_type find_last_not_of(const _CharT* __s, size_type __pos = npos) const
{ return find_last_not_of(__s, __pos, _Traits::length(__s)); }
size_type find_last_not_of(const _CharT* __s, size_type __pos,
size_type __n) const;
size_type find_last_not_of(_CharT __c, size_type __pos = npos) const;
public: // Substring.
basic_string substr(size_type __pos = 0, size_type __n = npos) const {
if (__pos > size())
_M_throw_out_of_range();
return basic_string(_M_start + __pos,
_M_start + __pos + min(__n, size() - __pos));
}
public: // Compare
int compare(const basic_string& __s) const
{ return _M_compare(_M_start, _M_finish, __s._M_start, __s._M_finish); }
int compare(size_type __pos1, size_type __n1,
const basic_string& __s) const {
if (__pos1 > size())
_M_throw_out_of_range();
return _M_compare(_M_start + __pos1,
_M_start + __pos1 + min(__n1, size() - __pos1),
__s._M_start, __s._M_finish);
}
int compare(size_type __pos1, size_type __n1,
const basic_string& __s,
size_type __pos2, size_type __n2) const {
if (__pos1 > size() || __pos2 > __s.size())
_M_throw_out_of_range();
return _M_compare(_M_start + __pos1,
_M_start + __pos1 + min(__n1, size() - __pos1),
__s._M_start + __pos2,
__s._M_start + __pos2 + min(__n2, size() - __pos2));
}
int compare(const _CharT* __s) const {
return _M_compare(_M_start, _M_finish, __s, __s + _Traits::length(__s));
}
int compare(size_type __pos1, size_type __n1, const _CharT* __s) const {
if (__pos1 > size())
_M_throw_out_of_range();
return _M_compare(_M_start + __pos1,
_M_start + __pos1 + min(__n1, size() - __pos1),
__s, __s + _Traits::length(__s));
}
int compare(size_type __pos1, size_type __n1, const _CharT* __s,
size_type __n2) const {
if (__pos1 > size())
_M_throw_out_of_range();
return _M_compare(_M_start + __pos1,
_M_start + __pos1 + min(__n1, size() - __pos1),
__s, __s + __n2);
}
public: // Helper function for compare.
static int _M_compare(const _CharT* __f1, const _CharT* __l1,
const _CharT* __f2, const _CharT* __l2) {
const ptrdiff_t __n1 = __l1 - __f1;
const ptrdiff_t __n2 = __l2 - __f2;
const int cmp = _Traits::compare(__f1, __f2, min(__n1, __n2));
return cmp != 0 ? cmp : (__n1 < __n2 ? -1 : (__n1 > __n2 ? 1 : 0));
}
};
// ------------------------------------------------------------
// Non-inline declarations.
template <class _CharT, class _Traits, class _Alloc>
const typename basic_string<_CharT,_Traits,_Alloc>::size_type
basic_string<_CharT,_Traits,_Alloc>::npos
= (basic_string<_CharT,_Traits,_Alloc>::size_type) -1;
// Change the string's capacity so that it is large enough to hold
// at least __res_arg elements, plus the terminating null. Note that,
// if __res_arg < capacity(), this member function may actually decrease
// the string's capacity.
template <class _CharT, class _Traits, class _Alloc>
void basic_string<_CharT,_Traits,_Alloc>::reserve(size_type __res_arg) {
if (__res_arg > max_size())
_M_throw_length_error();
size_type __n = max(__res_arg, size()) + 1;
pointer __new_start = _M_allocate(__n);
pointer __new_finish = __new_start;
__STL_TRY {
__new_finish = uninitialized_copy(_M_start, _M_finish, __new_start);
_M_construct_null(__new_finish);
}
__STL_UNWIND((destroy(__new_start, __new_finish),
_M_deallocate(__new_start, __n)));
destroy(_M_start, _M_finish + 1);
_M_deallocate_block();
_M_start = __new_start;
_M_finish = __new_finish;
_M_end_of_storage = __new_start + __n;
}
template <class _CharT, class _Traits, class _Alloc>
basic_string<_CharT,_Traits,_Alloc>&
basic_string<_CharT,_Traits,_Alloc>::append(size_type __n, _CharT __c) {
if (__n > max_size() || size() > max_size() - __n)
_M_throw_length_error();
if (size() + __n > capacity())
reserve(size() + max(size(), __n));
if (__n > 0) {
uninitialized_fill_n(_M_finish + 1, __n - 1, __c);
__STL_TRY {
_M_construct_null(_M_finish + __n);
}
__STL_UNWIND(destroy(_M_finish + 1, _M_finish + __n));
_Traits::assign(*_M_finish, __c);
_M_finish += __n;
}
return *this;
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _Tp, class _Traits, class _Alloc>
template <class _InputIterator>
basic_string<_Tp, _Traits, _Alloc>&
basic_string<_Tp, _Traits, _Alloc>::append(_InputIterator __first,
_InputIterator __last,
input_iterator_tag) {
for ( ; __first != __last ; ++__first)
push_back(*__first);
return *this;
}
template <class _Tp, class _Traits, class _Alloc>
template <class _ForwardIter>
basic_string<_Tp, _Traits, _Alloc>&
basic_string<_Tp, _Traits, _Alloc>::append(_ForwardIter __first,
_ForwardIter __last,
forward_iterator_tag) {
if (__first != __last) {
const size_type __old_size = size();
difference_type __n = 0;
distance(__first, __last, __n);
if (static_cast<size_type>(__n) > max_size() ||
__old_size > max_size() - static_cast<size_type>(__n))
_M_throw_length_error();
if (__old_size + static_cast<size_type>(__n) > capacity()) {
#ifdef __AVR__
const size_type __len = __old_size +
max(avrstl::AvrStringAllocAheadIncrement<_Tp>(__old_size),
static_cast<size_type>(__n)) + 1;
#else
const size_type __len = __old_size +
max(__old_size, static_cast<size_type>(__n)) + 1;
#endif
pointer __new_start = _M_allocate(__len);
pointer __new_finish = __new_start;
__STL_TRY {
__new_finish = uninitialized_copy(_M_start, _M_finish, __new_start);
__new_finish = uninitialized_copy(__first, __last, __new_finish);
_M_construct_null(__new_finish);
}
__STL_UNWIND((destroy(__new_start,__new_finish),
_M_deallocate(__new_start,__len)));
destroy(_M_start, _M_finish + 1);
_M_deallocate_block();
_M_start = __new_start;
_M_finish = __new_finish;
_M_end_of_storage = __new_start + __len;
}
else {
_ForwardIter __f1 = __first;
++__f1;
uninitialized_copy(__f1, __last, _M_finish + 1);
__STL_TRY {
_M_construct_null(_M_finish + __n);
}
__STL_UNWIND(destroy(_M_finish + 1, _M_finish + __n));
_Traits::assign(*_M_finish, *__first);
_M_finish += __n;
}
}
return *this;
}
#else /* __STL_MEMBER_TEMPLATES */
template <class _Tp, class _Traits, class _Alloc>
basic_string<_Tp, _Traits, _Alloc>&
basic_string<_Tp, _Traits, _Alloc>::append(const _Tp* __first,
const _Tp* __last)
{
if (__first != __last) {
const size_type __old_size = size();
ptrdiff_t __n = __last - __first;
if (__n > max_size() || __old_size > max_size() - __n)
_M_throw_length_error();
if (__old_size + __n > capacity()) {
const size_type __len = __old_size + max(__old_size, (size_t) __n) + 1;
pointer __new_start = _M_allocate(__len);
pointer __new_finish = __new_start;
__STL_TRY {
__new_finish = uninitialized_copy(_M_start, _M_finish, __new_start);
__new_finish = uninitialized_copy(__first, __last, __new_finish);
_M_construct_null(__new_finish);
}
__STL_UNWIND((destroy(__new_start,__new_finish),
_M_deallocate(__new_start,__len)));
destroy(_M_start, _M_finish + 1);
_M_deallocate_block();
_M_start = __new_start;
_M_finish = __new_finish;
_M_end_of_storage = __new_start + __len;
}
else {
const _Tp* __f1 = __first;
++__f1;
uninitialized_copy(__f1, __last, _M_finish + 1);
__STL_TRY {
_M_construct_null(_M_finish + __n);
}
__STL_UNWIND(destroy(_M_finish + 1, _M_finish + __n));
_Traits::assign(*_M_finish, *__first);
_M_finish += __n;
}
}
return *this;
}
#endif /* __STL_MEMBER_TEMPLATES */
template <class _CharT, class _Traits, class _Alloc>
basic_string<_CharT,_Traits,_Alloc>&
basic_string<_CharT,_Traits,_Alloc>::assign(size_type __n, _CharT __c) {
if (__n <= size()) {
_Traits::assign(_M_start, __n, __c);
erase(_M_start + __n, _M_finish);
}
else {
_Traits::assign(_M_start, size(), __c);
append(__n - size(), __c);
}
return *this;
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _CharT, class _Traits, class _Alloc>
template <class _InputIter>
basic_string<_CharT,_Traits,_Alloc>& basic_string<_CharT,_Traits,_Alloc>
::_M_assign_dispatch(_InputIter __f, _InputIter __l, __false_type)
{
pointer __cur = _M_start;
while (__f != __l && __cur != _M_finish) {
_Traits::assign(*__cur, *__f);
++__f;
++__cur;
}
if (__f == __l)
erase(__cur, _M_finish);
else
append(__f, __l);
return *this;
}
#endif /* __STL_MEMBER_TEMPLATES */
template <class _CharT, class _Traits, class _Alloc>
basic_string<_CharT,_Traits,_Alloc>&
basic_string<_CharT,_Traits,_Alloc>::assign(const _CharT* __f,
const _CharT* __l)
{
const ptrdiff_t __n = __l - __f;
if (static_cast<size_type>(__n) <= size()) {
_Traits::copy(_M_start, __f, __n);
erase(_M_start + __n, _M_finish);
}
else {
_Traits::copy(_M_start, __f, size());
append(__f + size(), __l);
}
return *this;
}
template <class _CharT, class _Traits, class _Alloc>
typename basic_string<_CharT,_Traits,_Alloc>::iterator
basic_string<_CharT,_Traits,_Alloc>
::_M_insert_aux(basic_string<_CharT,_Traits,_Alloc>::iterator __p,
_CharT __c)
{
iterator __new_pos = __p;
if (_M_finish + 1 < _M_end_of_storage) {
_M_construct_null(_M_finish + 1);
_Traits::move(__p + 1, __p, _M_finish - __p);
_Traits::assign(*__p, __c);
++_M_finish;
}
else {
const size_type __old_len = size();
#ifdef __AVR__
const size_type __len = __old_len +
max(avrstl::AvrStringAllocAheadIncrement<_CharT>(__old_len), static_cast<size_type>(1)) + 1;
#else
const size_type __len = __old_len +
max(__old_len, static_cast<size_type>(1)) + 1;
#endif
iterator __new_start = _M_allocate(__len);
iterator __new_finish = __new_start;
__STL_TRY {
__new_pos = uninitialized_copy(_M_start, __p, __new_start);
construct(__new_pos, __c);
__new_finish = __new_pos + 1;
__new_finish = uninitialized_copy(__p, _M_finish, __new_finish);
_M_construct_null(__new_finish);
}
__STL_UNWIND((destroy(__new_start,__new_finish),
_M_deallocate(__new_start,__len)));
destroy(_M_start, _M_finish + 1);
_M_deallocate_block();
_M_start = __new_start;
_M_finish = __new_finish;
_M_end_of_storage = __new_start + __len;
}
return __new_pos;
}
template <class _CharT, class _Traits, class _Alloc>
void basic_string<_CharT,_Traits,_Alloc>
::insert(basic_string<_CharT,_Traits,_Alloc>::iterator __position,
size_t __n, _CharT __c)
{
if (__n != 0) {
if (size_type(_M_end_of_storage - _M_finish) >= __n + 1) {
const size_type __elems_after = _M_finish - __position;
iterator __old_finish = _M_finish;
if (__elems_after >= __n) {
uninitialized_copy((_M_finish - __n) + 1, _M_finish + 1,
_M_finish + 1);
_M_finish += __n;
_Traits::move(__position + __n,
__position, (__elems_after - __n) + 1);
_Traits::assign(__position, __n, __c);
}
else {
uninitialized_fill_n(_M_finish + 1, __n - __elems_after - 1, __c);
_M_finish += __n - __elems_after;
__STL_TRY {
uninitialized_copy(__position, __old_finish + 1, _M_finish);
_M_finish += __elems_after;
}
__STL_UNWIND((destroy(__old_finish + 1, _M_finish),
_M_finish = __old_finish));
_Traits::assign(__position, __elems_after + 1, __c);
}
}
else {
const size_type __old_size = size();
#ifdef __AVR__
const size_type __len = __old_size + max(avrstl::AvrStringAllocAheadIncrement<_CharT>(__old_size), __n) + 1;
#else
const size_type __len = __old_size + max(__old_size, __n) + 1;
#endif
iterator __new_start = _M_allocate(__len);
iterator __new_finish = __new_start;
__STL_TRY {
__new_finish = uninitialized_copy(_M_start, __position, __new_start);
__new_finish = uninitialized_fill_n(__new_finish, __n, __c);
__new_finish = uninitialized_copy(__position, _M_finish,
__new_finish);
_M_construct_null(__new_finish);
}
__STL_UNWIND((destroy(__new_start,__new_finish),
_M_deallocate(__new_start,__len)));
destroy(_M_start, _M_finish + 1);
_M_deallocate_block();
_M_start = __new_start;
_M_finish = __new_finish;
_M_end_of_storage = __new_start + __len;
}
}
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _Tp, class _Traits, class _Alloc>
template <class _InputIter>
void basic_string<_Tp, _Traits, _Alloc>::insert(iterator __p,
_InputIter __first,
_InputIter __last,
input_iterator_tag)
{
for ( ; __first != __last; ++__first) {
__p = insert(__p, *__first);
++__p;
}
}
template <class _CharT, class _Traits, class _Alloc>
template <class _ForwardIter>
void
basic_string<_CharT,_Traits,_Alloc>::insert(iterator __position,
_ForwardIter __first,
_ForwardIter __last,
forward_iterator_tag)
{
if (__first != __last) {
difference_type __n = 0;
distance(__first, __last, __n);
if (_M_end_of_storage - _M_finish >= __n + 1) {
const difference_type __elems_after = _M_finish - __position;
iterator __old_finish = _M_finish;
if (__elems_after >= __n) {
uninitialized_copy((_M_finish - __n) + 1, _M_finish + 1,
_M_finish + 1);
_M_finish += __n;
_Traits::move(__position + __n,
__position, (__elems_after - __n) + 1);
_M_copy(__first, __last, __position);
}
else {
_ForwardIter __mid = __first;
advance(__mid, __elems_after + 1);
uninitialized_copy(__mid, __last, _M_finish + 1);
_M_finish += __n - __elems_after;
__STL_TRY {
uninitialized_copy(__position, __old_finish + 1, _M_finish);
_M_finish += __elems_after;
}
__STL_UNWIND((destroy(__old_finish + 1, _M_finish),
_M_finish = __old_finish));
_M_copy(__first, __mid, __position);
}
}
else {
const size_type __old_size = size();
#ifdef __AVR__
const size_type __len
= __old_size + max(avrstl::AvrStringAllocAheadIncrement<_CharT>(__old_size), static_cast<size_type>(__n)) + 1;
#else
const size_type __len
= __old_size + max(__old_size, static_cast<size_type>(__n)) + 1;
#endif
pointer __new_start = _M_allocate(__len);
pointer __new_finish = __new_start;
__STL_TRY {
__new_finish = uninitialized_copy(_M_start, __position, __new_start);
__new_finish = uninitialized_copy(__first, __last, __new_finish);
__new_finish
= uninitialized_copy(__position, _M_finish, __new_finish);
_M_construct_null(__new_finish);
}
__STL_UNWIND((destroy(__new_start,__new_finish),
_M_deallocate(__new_start,__len)));
destroy(_M_start, _M_finish + 1);
_M_deallocate_block();
_M_start = __new_start;
_M_finish = __new_finish;
_M_end_of_storage = __new_start + __len;
}
}
}
#else /* __STL_MEMBER_TEMPLATES */
template <class _CharT, class _Traits, class _Alloc>
void
basic_string<_CharT,_Traits,_Alloc>::insert(iterator __position,
const _CharT* __first,
const _CharT* __last)
{
if (__first != __last) {
const ptrdiff_t __n = __last - __first;
if (_M_end_of_storage - _M_finish >= __n + 1) {
const ptrdiff_t __elems_after = _M_finish - __position;
iterator __old_finish = _M_finish;
if (__elems_after >= __n) {
uninitialized_copy((_M_finish - __n) + 1, _M_finish + 1,
_M_finish + 1);
_M_finish += __n;
_Traits::move(__position + __n,
__position, (__elems_after - __n) + 1);
_M_copy(__first, __last, __position);
}
else {
const _CharT* __mid = __first;
advance(__mid, __elems_after + 1);
uninitialized_copy(__mid, __last, _M_finish + 1);
_M_finish += __n - __elems_after;
__STL_TRY {
uninitialized_copy(__position, __old_finish + 1, _M_finish);
_M_finish += __elems_after;
}
__STL_UNWIND((destroy(__old_finish + 1, _M_finish),
_M_finish = __old_finish));
_M_copy(__first, __mid, __position);
}
}
else {
const size_type __old_size = size();
const size_type __len
= __old_size + max(__old_size, static_cast<size_type>(__n)) + 1;
pointer __new_start = _M_allocate(__len);
pointer __new_finish = __new_start;
__STL_TRY {
__new_finish = uninitialized_copy(_M_start, __position, __new_start);
__new_finish = uninitialized_copy(__first, __last, __new_finish);
__new_finish
= uninitialized_copy(__position, _M_finish, __new_finish);
_M_construct_null(__new_finish);
}
__STL_UNWIND((destroy(__new_start,__new_finish),
_M_deallocate(__new_start,__len)));
destroy(_M_start, _M_finish + 1);
_M_deallocate_block();
_M_start = __new_start;
_M_finish = __new_finish;
_M_end_of_storage = __new_start + __len;
}
}
}
#endif /* __STL_MEMBER_TEMPLATES */
template <class _CharT, class _Traits, class _Alloc>
basic_string<_CharT,_Traits,_Alloc>&
basic_string<_CharT,_Traits,_Alloc>
::replace(iterator __first, iterator __last, size_type __n, _CharT __c)
{
const size_type __len = static_cast<size_type>(__last - __first);
if (__len >= __n) {
_Traits::assign(__first, __n, __c);
erase(__first + __n, __last);
}
else {
_Traits::assign(__first, __len, __c);
insert(__last, __n - __len, __c);
}
return *this;
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _CharT, class _Traits, class _Alloc>
template <class _InputIter>
basic_string<_CharT,_Traits,_Alloc>&
basic_string<_CharT,_Traits,_Alloc>
::replace(iterator __first, iterator __last, _InputIter __f, _InputIter __l,
input_iterator_tag)
{
for ( ; __first != __last && __f != __l; ++__first, ++__f)
_Traits::assign(*__first, *__f);
if (__f == __l)
erase(__first, __last);
else
insert(__last, __f, __l);
return *this;
}
template <class _CharT, class _Traits, class _Alloc>
template <class _ForwardIter>
basic_string<_CharT,_Traits,_Alloc>&
basic_string<_CharT,_Traits,_Alloc>
::replace(iterator __first, iterator __last,
_ForwardIter __f, _ForwardIter __l,
forward_iterator_tag)
{
difference_type __n = 0;
distance(__f, __l, __n);
const difference_type __len = __last - __first;
if (__len >= __n) {
_M_copy(__f, __l, __first);
erase(__first + __n, __last);
}
else {
_ForwardIter __m = __f;
advance(__m, __len);
_M_copy(__f, __m, __first);
insert(__last, __m, __l);
}
return *this;
}
#else /* __STL_MEMBER_TEMPLATES */
template <class _CharT, class _Traits, class _Alloc>
basic_string<_CharT,_Traits,_Alloc>&
basic_string<_CharT,_Traits,_Alloc>
::replace(iterator __first, iterator __last,
const _CharT* __f, const _CharT* __l)
{
const ptrdiff_t __n = __l - __f;
const difference_type __len = __last - __first;
if (__len >= __n) {
_M_copy(__f, __l, __first);
erase(__first + __n, __last);
}
else {
const _CharT* __m = __f + __len;
_M_copy(__f, __m, __first);
insert(__last, __m, __l);
}
return *this;
}
#endif /* __STL_MEMBER_TEMPLATES */
template <class _CharT, class _Traits, class _Alloc>
typename basic_string<_CharT,_Traits,_Alloc>::size_type
basic_string<_CharT,_Traits,_Alloc>
::find(const _CharT* __s, size_type __pos, size_type __n) const
{
if (__pos + __n > size())
return npos;
else {
const const_iterator __result =
search(_M_start + __pos, _M_finish,
__s, __s + __n, _Eq_traits<_Traits>());
return __result != _M_finish ? __result - begin() : npos;
}
}
template <class _CharT, class _Traits, class _Alloc>
typename basic_string<_CharT,_Traits,_Alloc>::size_type
basic_string<_CharT,_Traits,_Alloc>
::find(_CharT __c, size_type __pos) const
{
if (__pos >= size())
return npos;
else {
const const_iterator __result =
find_if(_M_start + __pos, _M_finish,
bind2nd(_Eq_traits<_Traits>(), __c));
return __result != _M_finish ? __result - begin() : npos;
}
}
template <class _CharT, class _Traits, class _Alloc>
typename basic_string<_CharT,_Traits,_Alloc>::size_type
basic_string<_CharT,_Traits,_Alloc>
::rfind(const _CharT* __s, size_type __pos, size_type __n) const
{
const size_t __len = size();
if (__n > __len)
return npos;
else if (__n == 0)
return min(__len, __pos);
else {
const const_iterator __last = begin() + min(__len - __n, __pos) + __n;
const const_iterator __result = find_end(begin(), __last,
__s, __s + __n,
_Eq_traits<_Traits>());
return __result != __last ? __result - begin() : npos;
}
}
template <class _CharT, class _Traits, class _Alloc>
typename basic_string<_CharT,_Traits,_Alloc>::size_type
basic_string<_CharT,_Traits,_Alloc>
::rfind(_CharT __c, size_type __pos) const
{
const size_type __len = size();
if (__len < 1)
return npos;
else {
const const_iterator __last = begin() + min(__len - 1, __pos) + 1;
const_reverse_iterator __rresult =
find_if(const_reverse_iterator(__last), rend(),
bind2nd(_Eq_traits<_Traits>(), __c));
return __rresult != rend() ? (__rresult.base() - 1) - begin() : npos;
}
}
template <class _CharT, class _Traits, class _Alloc>
typename basic_string<_CharT,_Traits,_Alloc>::size_type
basic_string<_CharT,_Traits,_Alloc>
::find_first_of(const _CharT* __s, size_type __pos, size_type __n) const
{
if (__pos >= size())
return npos;
else {
const_iterator __result = __STD::find_first_of(begin() + __pos, end(),
__s, __s + __n,
_Eq_traits<_Traits>());
return __result != _M_finish ? __result - begin() : npos;
}
}
template <class _CharT, class _Traits, class _Alloc>
typename basic_string<_CharT,_Traits,_Alloc>::size_type
basic_string<_CharT,_Traits,_Alloc>
::find_last_of(const _CharT* __s, size_type __pos, size_type __n) const
{
const size_type __len = size();
if (__len < 1)
return npos;
else {
const const_iterator __last = _M_start + min(__len - 1, __pos) + 1;
const const_reverse_iterator __rresult =
__STD::find_first_of(const_reverse_iterator(__last), rend(),
__s, __s + __n,
_Eq_traits<_Traits>());
return __rresult != rend() ? (__rresult.base() - 1) - _M_start : npos;
}
}
template <class _CharT, class _Traits, class _Alloc>
typename basic_string<_CharT,_Traits,_Alloc>::size_type
basic_string<_CharT,_Traits,_Alloc>
::find_first_not_of(const _CharT* __s, size_type __pos, size_type __n) const
{
if (__pos > size())
return npos;
else {
const_iterator __result = find_if(_M_start + __pos, _M_finish,
_Not_within_traits<_Traits>(__s, __s + __n));
return __result != _M_finish ? __result - _M_start : npos;
}
}
template <class _CharT, class _Traits, class _Alloc>
typename basic_string<_CharT,_Traits,_Alloc>::size_type
basic_string<_CharT,_Traits,_Alloc>
::find_first_not_of(_CharT __c, size_type __pos) const
{
if (__pos > size())
return npos;
else {
const_iterator __result
= find_if(begin() + __pos, end(),
not1(bind2nd(_Eq_traits<_Traits>(), __c)));
return __result != _M_finish ? __result - begin() : npos;
}
}
template <class _CharT, class _Traits, class _Alloc>
typename basic_string<_CharT,_Traits,_Alloc>::size_type
basic_string<_CharT,_Traits,_Alloc>
::find_last_not_of(const _CharT* __s, size_type __pos, size_type __n) const
{
const size_type __len = size();
if (__len < 1)
return npos;
else {
const const_iterator __last = begin() + min(__len - 1, __pos) + 1;
const const_reverse_iterator __rresult =
find_if(const_reverse_iterator(__last), rend(),
_Not_within_traits<_Traits>(__s, __s + __n));
return __rresult != rend() ? (__rresult.base() - 1) - begin() : npos;
}
}
template <class _Tp, class _Traits, class _Alloc>
typename basic_string<_Tp, _Traits, _Alloc>::size_type
basic_string<_Tp, _Traits, _Alloc>
::find_last_not_of(_Tp __c, size_type __pos) const
{
const size_type __len = size();
if (__len < 1)
return npos;
else {
const const_iterator __last = begin() + min(__len - 1, __pos) + 1;
const_reverse_iterator __rresult =
find_if(const_reverse_iterator(__last), rend(),
not1(bind2nd(_Eq_traits<_Traits>(), __c)));
return __rresult != rend() ? (__rresult.base() - 1) - begin() : npos;
}
}
// ------------------------------------------------------------
// Non-member functions.
// Operator+
template <class _CharT, class _Traits, class _Alloc>
inline basic_string<_CharT,_Traits,_Alloc>
operator+(const basic_string<_CharT,_Traits,_Alloc>& __x,
const basic_string<_CharT,_Traits,_Alloc>& __y)
{
typedef basic_string<_CharT,_Traits,_Alloc> _Str;
typedef typename _Str::_Reserve_t _Reserve_t;
_Reserve_t __reserve;
_Str __result(__reserve, __x.size() + __y.size(), __x.get_allocator());
__result.append(__x);
__result.append(__y);
return __result;
}
template <class _CharT, class _Traits, class _Alloc>
inline basic_string<_CharT,_Traits,_Alloc>
operator+(const _CharT* __s,
const basic_string<_CharT,_Traits,_Alloc>& __y) {
typedef basic_string<_CharT,_Traits,_Alloc> _Str;
typedef typename _Str::_Reserve_t _Reserve_t;
_Reserve_t __reserve;
const size_t __n = _Traits::length(__s);
_Str __result(__reserve, __n + __y.size());
__result.append(__s, __s + __n);
__result.append(__y);
return __result;
}
template <class _CharT, class _Traits, class _Alloc>
inline basic_string<_CharT,_Traits,_Alloc>
operator+(_CharT __c,
const basic_string<_CharT,_Traits,_Alloc>& __y) {
typedef basic_string<_CharT,_Traits,_Alloc> _Str;
typedef typename _Str::_Reserve_t _Reserve_t;
_Reserve_t __reserve;
_Str __result(__reserve, 1 + __y.size());
__result.push_back(__c);
__result.append(__y);
return __result;
}
template <class _CharT, class _Traits, class _Alloc>
inline basic_string<_CharT,_Traits,_Alloc>
operator+(const basic_string<_CharT,_Traits,_Alloc>& __x,
const _CharT* __s) {
typedef basic_string<_CharT,_Traits,_Alloc> _Str;
typedef typename _Str::_Reserve_t _Reserve_t;
_Reserve_t __reserve;
const size_t __n = _Traits::length(__s);
_Str __result(__reserve, __x.size() + __n, __x.get_allocator());
__result.append(__x);
__result.append(__s, __s + __n);
return __result;
}
template <class _CharT, class _Traits, class _Alloc>
inline basic_string<_CharT,_Traits,_Alloc>
operator+(const basic_string<_CharT,_Traits,_Alloc>& __x,
const _CharT __c) {
typedef basic_string<_CharT,_Traits,_Alloc> _Str;
typedef typename _Str::_Reserve_t _Reserve_t;
_Reserve_t __reserve;
_Str __result(__reserve, __x.size() + 1, __x.get_allocator());
__result.append(__x);
__result.push_back(__c);
return __result;
}
// Operator== and operator!=
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator==(const basic_string<_CharT,_Traits,_Alloc>& __x,
const basic_string<_CharT,_Traits,_Alloc>& __y) {
return __x.size() == __y.size() &&
_Traits::compare(__x.data(), __y.data(), __x.size()) == 0;
}
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator==(const _CharT* __s,
const basic_string<_CharT,_Traits,_Alloc>& __y) {
size_t __n = _Traits::length(__s);
return __n == __y.size() && _Traits::compare(__s, __y.data(), __n) == 0;
}
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator==(const basic_string<_CharT,_Traits,_Alloc>& __x,
const _CharT* __s) {
size_t __n = _Traits::length(__s);
return __x.size() == __n && _Traits::compare(__x.data(), __s, __n) == 0;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator!=(const basic_string<_CharT,_Traits,_Alloc>& __x,
const basic_string<_CharT,_Traits,_Alloc>& __y) {
return !(__x == __y);
}
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator!=(const _CharT* __s,
const basic_string<_CharT,_Traits,_Alloc>& __y) {
return !(__s == __y);
}
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator!=(const basic_string<_CharT,_Traits,_Alloc>& __x,
const _CharT* __s) {
return !(__x == __s);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
// Operator< (and also >, <=, and >=).
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator<(const basic_string<_CharT,_Traits,_Alloc>& __x,
const basic_string<_CharT,_Traits,_Alloc>& __y) {
return basic_string<_CharT,_Traits,_Alloc>
::_M_compare(__x.begin(), __x.end(), __y.begin(), __y.end()) < 0;
}
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator<(const _CharT* __s,
const basic_string<_CharT,_Traits,_Alloc>& __y) {
size_t __n = _Traits::length(__s);
return basic_string<_CharT,_Traits,_Alloc>
::_M_compare(__s, __s + __n, __y.begin(), __y.end()) < 0;
}
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator<(const basic_string<_CharT,_Traits,_Alloc>& __x,
const _CharT* __s) {
size_t __n = _Traits::length(__s);
return basic_string<_CharT,_Traits,_Alloc>
::_M_compare(__x.begin(), __x.end(), __s, __s + __n) < 0;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator>(const basic_string<_CharT,_Traits,_Alloc>& __x,
const basic_string<_CharT,_Traits,_Alloc>& __y) {
return __y < __x;
}
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator>(const _CharT* __s,
const basic_string<_CharT,_Traits,_Alloc>& __y) {
return __y < __s;
}
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator>(const basic_string<_CharT,_Traits,_Alloc>& __x,
const _CharT* __s) {
return __s < __x;
}
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator<=(const basic_string<_CharT,_Traits,_Alloc>& __x,
const basic_string<_CharT,_Traits,_Alloc>& __y) {
return !(__y < __x);
}
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator<=(const _CharT* __s,
const basic_string<_CharT,_Traits,_Alloc>& __y) {
return !(__y < __s);
}
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator<=(const basic_string<_CharT,_Traits,_Alloc>& __x,
const _CharT* __s) {
return !(__s < __x);
}
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator>=(const basic_string<_CharT,_Traits,_Alloc>& __x,
const basic_string<_CharT,_Traits,_Alloc>& __y) {
return !(__x < __y);
}
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator>=(const _CharT* __s,
const basic_string<_CharT,_Traits,_Alloc>& __y) {
return !(__s < __y);
}
template <class _CharT, class _Traits, class _Alloc>
inline bool
operator>=(const basic_string<_CharT,_Traits,_Alloc>& __x,
const _CharT* __s) {
return !(__x < __s);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
// Swap.
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _CharT, class _Traits, class _Alloc>
inline void swap(basic_string<_CharT,_Traits,_Alloc>& __x,
basic_string<_CharT,_Traits,_Alloc>& __y) {
__x.swap(__y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
// I/O.
#ifndef __STL_USE_NEW_IOSTREAMS
__STL_END_NAMESPACE
#include <iostream.h>
__STL_BEGIN_NAMESPACE
#endif /* __STL_USE_NEW_IOSTREAMS */
#ifdef __STL_USE_NEW_IOSTREAMS
template <class _CharT, class _Traits>
inline bool
__sgi_string_fill(basic_ostream<_CharT, _Traits>& __os,
basic_streambuf<_CharT, _Traits>* __buf,
size_t __n)
{
_CharT __f = __os.fill();
size_t __i;
bool __ok = true;
for (__i = 0; __i < __n; __i++)
__ok = __ok && !_Traits::eq_int_type(__buf->sputc(__f), _Traits::eof());
return __ok;
}
template <class _CharT, class _Traits, class _Alloc>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const basic_string<_CharT,_Traits,_Alloc>& __s)
{
typename basic_ostream<_CharT, _Traits>::sentry __sentry(__os);
bool __ok = false;
if (__sentry) {
__ok = true;
size_t __n = __s.size();
size_t __pad_len = 0;
const bool __left = (__os.flags() & ios::left) != 0;
const size_t __w = __os.width(0);
basic_streambuf<_CharT, _Traits>* __buf = __os.rdbuf();
if (__w != 0 && __n < __w)
__pad_len = __w - __n;
if (!__left)
__ok = __sgi_string_fill(__os, __buf, __pad_len);
__ok = __ok &&
__buf->sputn(__s.data(), streamsize(__n)) == streamsize(__n);
if (__left)
__ok = __ok && __sgi_string_fill(__os, __buf, __pad_len);
}
if (!__ok)
__os.setstate(ios_base::failbit);
return __os;
}
template <class _CharT, class _Traits, class _Alloc>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
basic_string<_CharT,_Traits,_Alloc>& __s)
{
typename basic_istream<_CharT, _Traits>::sentry __sentry(__is);
if (__sentry) {
basic_streambuf<_CharT, _Traits>* __buf = __is.rdbuf();
#ifndef __AVR__
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__is.getloc());
#endif
__s.clear();
size_t __n = __is.width(0);
if (__n == 0)
__n = static_cast<size_t>(-1);
else
__s.reserve(__n);
while (__n-- > 0) {
typename _Traits::int_type __c1 = __buf->sbumpc();
if (_Traits::eq_int_type(__c1, _Traits::eof())) {
__is.setstate(ios_base::eofbit);
break;
}
else {
_CharT __c = _Traits::to_char_type(__c1);
#ifdef __AVR__
if(isspace(__c)) {
#else
if (__ctype.is(ctype<_CharT>::space, __c)) {
#endif
if (_Traits::eq_int_type(__buf->sputbackc(__c), _Traits::eof()))
__is.setstate(ios_base::failbit);
break;
}
else
__s.push_back(__c);
}
}
// If we have read no characters, then set failbit.
if (__s.size() == 0)
__is.setstate(ios_base::failbit);
}
else
__is.setstate(ios_base::failbit);
return __is;
}
template <class _CharT, class _Traits, class _Alloc>
basic_istream<_CharT, _Traits>&
getline(istream& __is,
basic_string<_CharT,_Traits,_Alloc>& __s,
_CharT __delim)
{
size_t __nread = 0;
typename basic_istream<_CharT, _Traits>::sentry __sentry(__is, true);
if (__sentry) {
basic_streambuf<_CharT, _Traits>* __buf = __is.rdbuf();
__s.clear();
int __c1;
while (__nread < __s.max_size()) {
int __c1 = __buf->sbumpc();
if (_Traits::eq_int_type(__c1, _Traits::eof())) {
__is.setstate(ios_base::eofbit);
break;
}
else {
++__nread;
_CharT __c = _Traits::to_char_type(__c1);
if (!_Traits::eq(__c, __delim))
__s.push_back(__c);
else
break; // Character is extracted but not appended.
}
}
}
if (__nread == 0 || __nread >= __s.max_size())
__is.setstate(ios_base::failbit);
return __is;
}
template <class _CharT, class _Traits, class _Alloc>
inline basic_istream<_CharT, _Traits>&
getline(basic_istream<_CharT, _Traits>& __is,
basic_string<_CharT,_Traits,_Alloc>& __s)
{
return getline(__is, __s, '\n');
}
#else /* __STL_USE_NEW_IOSTREAMS */
inline void __sgi_string_fill(ostream& __os, streambuf* __buf, size_t __n)
{
char __f = __os.fill();
size_t __i;
for (__i = 0; __i < __n; __i++) __buf->sputc(__f);
}
template <class _CharT, class _Traits, class _Alloc>
ostream& operator<<(ostream& __os,
const basic_string<_CharT,_Traits,_Alloc>& __s)
{
streambuf* __buf = __os.rdbuf();
if (__buf) {
size_t __n = __s.size();
size_t __pad_len = 0;
const bool __left = (__os.flags() & ios::left) != 0;
const size_t __w = __os.width();
if (__w > 0) {
__n = min(__w, __n);
__pad_len = __w - __n;
}
if (!__left)
__sgi_string_fill(__os, __buf, __pad_len);
const size_t __nwritten = __buf->sputn(__s.data(), __n);
if (__left)
__sgi_string_fill(__os, __buf, __pad_len);
if (__nwritten != __n)
__os.clear(__os.rdstate() | ios::failbit);
__os.width(0);
}
else
__os.clear(__os.rdstate() | ios::badbit);
return __os;
}
template <class _CharT, class _Traits, class _Alloc>
istream& operator>>(istream& __is, basic_string<_CharT,_Traits,_Alloc>& __s)
{
if (!__is)
return __is;
streambuf* __buf = __is.rdbuf();
if (__buf) {
#ifdef __USLC__
/* Jochen Schlick '1999 - operator >> modified. Work-around to get the
* output buffer flushed (necessary when using
* "cout" (without endl or flushing) followed by
* "cin >>" ...)
*/
if (__is.flags() & ios::skipws) {
_CharT __c;
do
__is.get(__c);
while (__is && isspace(__c));
if (__is)
__is.putback(__c);
}
#else
if (__is.flags() & ios::skipws) {
int __c;
do {
__c = __buf->sbumpc();
}
while (__c != EOF && isspace((unsigned char)__c));
if (__c == EOF) {
__is.clear(__is.rdstate() | ios::eofbit | ios::failbit);
}
else {
if (__buf->sputbackc(__c) == EOF)
__is.clear(__is.rdstate() | ios::failbit);
}
}
#endif
// If we arrive at end of file (or fail for some other reason) while
// still discarding whitespace, then we don't try to read the string.
if (__is) {
__s.clear();
size_t __n = __is.width();
if (__n == 0)
__n = static_cast<size_t>(-1);
else
__s.reserve(__n);
while (__n-- > 0) {
int __c1 = __buf->sbumpc();
if (__c1 == EOF) {
__is.clear(__is.rdstate() | ios::eofbit);
break;
}
else {
_CharT __c = _Traits::to_char_type(__c1);
if (isspace((unsigned char) __c)) {
if (__buf->sputbackc(__c) == EOF)
__is.clear(__is.rdstate() | ios::failbit);
break;
}
else
__s.push_back(__c);
}
}
// If we have read no characters, then set failbit.
if (__s.size() == 0)
__is.clear(__is.rdstate() | ios::failbit);
}
__is.width(0);
}
else // We have no streambuf.
__is.clear(__is.rdstate() | ios::badbit);
return __is;
}
template <class _CharT, class _Traits, class _Alloc>
istream& getline(istream& __is,
basic_string<_CharT,_Traits,_Alloc>& __s,
_CharT __delim)
{
streambuf* __buf = __is.rdbuf();
if (__buf) {
size_t __nread = 0;
if (__is) {
__s.clear();
while (__nread < __s.max_size()) {
int __c1 = __buf->sbumpc();
if (__c1 == EOF) {
__is.clear(__is.rdstate() | ios::eofbit);
break;
}
else {
++__nread;
_CharT __c = _Traits::to_char_type(__c1);
if (!_Traits::eq(__c, __delim))
__s.push_back(__c);
else
break; // Character is extracted but not appended.
}
}
}
if (__nread == 0 || __nread >= __s.max_size())
__is.clear(__is.rdstate() | ios::failbit);
}
else
__is.clear(__is.rdstate() | ios::badbit);
return __is;
}
template <class _CharT, class _Traits, class _Alloc>
inline istream&
getline(istream& __is, basic_string<_CharT,_Traits,_Alloc>& __s)
{
return getline(__is, __s, '\n');
}
#endif /* __STL_USE_NEW_IOSTREAMS */
template <class _CharT, class _Traits, class _Alloc>
void _S_string_copy(const basic_string<_CharT,_Traits,_Alloc>& __s,
_CharT* __buf,
size_t __n)
{
if (__n > 0) {
__n = min(__n - 1, __s.size());
copy(__s.begin(), __s.begin() + __n, __buf);
_Traits::assign(__buf[__n],
basic_string<_CharT,_Traits,_Alloc>::_M_null());
}
}
inline const char* __get_c_string(const string& __s) { return __s.c_str(); }
// ------------------------------------------------------------
// Typedefs
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#pragma reset woff 1375
#endif
__STL_END_NAMESPACE
#include <stl_hash_fun.h>
__STL_BEGIN_NAMESPACE
template <class _CharT, class _Traits, class _Alloc>
size_t __stl_string_hash(const basic_string<_CharT,_Traits,_Alloc>& __s) {
unsigned long __h = 0;
for (typename basic_string<_CharT,_Traits,_Alloc>::const_iterator __i = __s.begin();
__i != __s.end();
++__i)
__h = 5*__h + *__i;
return size_t(__h);
}
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
template <class _CharT, class _Traits, class _Alloc>
struct hash<basic_string<_CharT,_Traits,_Alloc> > {
size_t operator()(const basic_string<_CharT,_Traits,_Alloc>& __s) const
{ return __stl_string_hash(__s); }
};
#else
__STL_TEMPLATE_NULL struct hash<string> {
size_t operator()(const string& __s) const
{ return __stl_string_hash(__s); }
};
__STL_TEMPLATE_NULL struct hash<wstring> {
size_t operator()(const wstring& __s) const
{ return __stl_string_hash(__s); }
};
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
__STL_END_NAMESPACE
#endif /* __SGI_STL_STRING */
// Local Variables:
// mode:C++
// End: