nppilot/external/avr-stl-stubs/include/stl_list.h
Michael Hope 4b61ec36e3 Imported the AVR STL 1.1 libraries.
Stubbed out more of STL.
2013-12-17 20:47:35 +01:00

886 lines
25 KiB
C++

/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_LIST_H
#define __SGI_STL_INTERNAL_LIST_H
#include <concept_checks.h>
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
struct _List_node_base {
_List_node_base* _M_next;
_List_node_base* _M_prev;
};
template <class _Tp>
struct _List_node : public _List_node_base {
_Tp _M_data;
};
struct _List_iterator_base {
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef bidirectional_iterator_tag iterator_category;
_List_node_base* _M_node;
_List_iterator_base(_List_node_base* __x) : _M_node(__x) {}
_List_iterator_base() {}
void _M_incr() { _M_node = _M_node->_M_next; }
void _M_decr() { _M_node = _M_node->_M_prev; }
bool operator==(const _List_iterator_base& __x) const {
return _M_node == __x._M_node;
}
bool operator!=(const _List_iterator_base& __x) const {
return _M_node != __x._M_node;
}
};
template<class _Tp, class _Ref, class _Ptr>
struct _List_iterator : public _List_iterator_base {
typedef _List_iterator<_Tp,_Tp&,_Tp*> iterator;
typedef _List_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
typedef _List_iterator<_Tp,_Ref,_Ptr> _Self;
typedef _Tp value_type;
typedef _Ptr pointer;
typedef _Ref reference;
typedef _List_node<_Tp> _Node;
_List_iterator(_Node* __x) : _List_iterator_base(__x) {}
_List_iterator() {}
_List_iterator(const iterator& __x) : _List_iterator_base(__x._M_node) {}
reference operator*() const { return ((_Node*) _M_node)->_M_data; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
_Self& operator++() {
this->_M_incr();
return *this;
}
_Self operator++(int) {
_Self __tmp = *this;
this->_M_incr();
return __tmp;
}
_Self& operator--() {
this->_M_decr();
return *this;
}
_Self operator--(int) {
_Self __tmp = *this;
this->_M_decr();
return __tmp;
}
};
#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
inline bidirectional_iterator_tag
iterator_category(const _List_iterator_base&)
{
return bidirectional_iterator_tag();
}
template <class _Tp, class _Ref, class _Ptr>
inline _Tp*
value_type(const _List_iterator<_Tp, _Ref, _Ptr>&)
{
return 0;
}
inline ptrdiff_t*
distance_type(const _List_iterator_base&)
{
return 0;
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
// Base class that encapsulates details of allocators. Three cases:
// an ordinary standard-conforming allocator, a standard-conforming
// allocator with no non-static data, and an SGI-style allocator.
// This complexity is necessary only because we're worrying about backward
// compatibility and because we want to avoid wasting storage on an
// allocator instance if it isn't necessary.
#ifdef __STL_USE_STD_ALLOCATORS
// Base for general standard-conforming allocators.
template <class _Tp, class _Allocator, bool _IsStatic>
class _List_alloc_base {
public:
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return _Node_allocator; }
_List_alloc_base(const allocator_type& __a) : _Node_allocator(__a) {}
protected:
_List_node<_Tp>* _M_get_node()
{ return _Node_allocator.allocate(1); }
void _M_put_node(_List_node<_Tp>* __p)
{ _Node_allocator.deallocate(__p, 1); }
protected:
typename _Alloc_traits<_List_node<_Tp>, _Allocator>::allocator_type
_Node_allocator;
_List_node<_Tp>* _M_node;
};
// Specialization for instanceless allocators.
template <class _Tp, class _Allocator>
class _List_alloc_base<_Tp, _Allocator, true> {
public:
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_List_alloc_base(const allocator_type&) {}
protected:
typedef typename _Alloc_traits<_List_node<_Tp>, _Allocator>::_Alloc_type
_Alloc_type;
_List_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); }
void _M_put_node(_List_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); }
protected:
_List_node<_Tp>* _M_node;
};
template <class _Tp, class _Alloc>
class _List_base
: public _List_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
public:
typedef _List_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
_List_base(const allocator_type& __a) : _Base(__a) {
_Base::_M_node = _Base::_M_get_node();
_Base::_M_node->_M_next = _Base::_M_node;
_Base::_M_node->_M_prev = _Base::_M_node;
}
~_List_base() {
clear();
_M_put_node(_Base::_M_node);
}
void clear();
};
#else /* __STL_USE_STD_ALLOCATORS */
template <class _Tp, class _Alloc>
class _List_base
{
public:
typedef _Alloc allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_List_base(const allocator_type&) {
_M_node = _M_get_node();
_M_node->_M_next = _M_node;
_M_node->_M_prev = _M_node;
}
~_List_base() {
clear();
_M_put_node(_M_node);
}
void clear();
protected:
typedef simple_alloc<_List_node<_Tp>, _Alloc> _Alloc_type;
_List_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); }
void _M_put_node(_List_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); }
protected:
_List_node<_Tp>* _M_node;
};
#endif /* __STL_USE_STD_ALLOCATORS */
template <class _Tp, class _Alloc>
void
_List_base<_Tp,_Alloc>::clear()
{
_List_node<_Tp>* __cur = (_List_node<_Tp>*) _Base::_M_node->_M_next;
while (__cur != _Base::_M_node) {
_List_node<_Tp>* __tmp = __cur;
__cur = (_List_node<_Tp>*) __cur->_M_next;
_Destroy(&__tmp->_M_data);
_M_put_node(__tmp);
}
_Base::_M_node->_M_next = _Base::_M_node;
_Base::_M_node->_M_prev = _Base::_M_node;
}
template <class _Tp, class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
class list : protected _List_base<_Tp, _Alloc> {
// requirements:
__STL_CLASS_REQUIRES(_Tp, _Assignable);
typedef _List_base<_Tp, _Alloc> _Base;
protected:
typedef void* _Void_pointer;
public:
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef _List_node<_Tp> _Node;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); }
public:
typedef _List_iterator<_Tp,_Tp&,_Tp*> iterator;
typedef _List_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef std::reverse_bidirectional_iterator<const_iterator,value_type,
const_reference,difference_type>
const_reverse_iterator;
typedef std::reverse_bidirectional_iterator<iterator,value_type,reference,
difference_type>
reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
protected:
#ifdef __STL_HAS_NAMESPACES
using _Base::_M_node;
using _Base::_M_put_node;
using _Base::_M_get_node;
#endif /* __STL_HAS_NAMESPACES */
protected:
_Node* _M_create_node(const _Tp& __x)
{
_Node* __p = _M_get_node();
__STL_TRY {
_Construct(&__p->_M_data, __x);
}
__STL_UNWIND(_M_put_node(__p));
return __p;
}
_Node* _M_create_node()
{
_Node* __p = _M_get_node();
__STL_TRY {
_Construct(&__p->_M_data);
}
__STL_UNWIND(_M_put_node(__p));
return __p;
}
public:
explicit list(const allocator_type& __a = allocator_type()) : _Base(__a) {}
iterator begin() { return (_Node*)(_M_node->_M_next); }
const_iterator begin() const { return (_Node*)(_M_node->_M_next); }
iterator end() { return _M_node; }
const_iterator end() const { return _M_node; }
reverse_iterator rbegin()
{ return reverse_iterator(end()); }
const_reverse_iterator rbegin() const
{ return const_reverse_iterator(end()); }
reverse_iterator rend()
{ return reverse_iterator(begin()); }
const_reverse_iterator rend() const
{ return const_reverse_iterator(begin()); }
bool empty() const { return _M_node->_M_next == _M_node; }
size_type size() const {
size_type __result = 0;
distance(begin(), end(), __result);
return __result;
}
size_type max_size() const { return size_type(-1); }
reference front() { return *begin(); }
const_reference front() const { return *begin(); }
reference back() { return *(--end()); }
const_reference back() const { return *(--end()); }
void swap(list<_Tp, _Alloc>& __x) { __STD::swap(_M_node, __x._M_node); }
iterator insert(iterator __position, const _Tp& __x) {
_Node* __tmp = _M_create_node(__x);
__tmp->_M_next = __position._M_node;
__tmp->_M_prev = __position._M_node->_M_prev;
__position._M_node->_M_prev->_M_next = __tmp;
__position._M_node->_M_prev = __tmp;
return __tmp;
}
iterator insert(iterator __position) { return insert(__position, _Tp()); }
#ifdef __STL_MEMBER_TEMPLATES
// Check whether it's an integral type. If so, it's not an iterator.
template<class _Integer>
void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
__true_type) {
_M_fill_insert(__pos, (size_type) __n, (_Tp) __x);
}
template <class _InputIterator>
void _M_insert_dispatch(iterator __pos,
_InputIterator __first, _InputIterator __last,
__false_type);
template <class _InputIterator>
void insert(iterator __pos, _InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__pos, __first, __last, _Integral());
}
#else /* __STL_MEMBER_TEMPLATES */
void insert(iterator __position, const _Tp* __first, const _Tp* __last);
void insert(iterator __position,
const_iterator __first, const_iterator __last);
#endif /* __STL_MEMBER_TEMPLATES */
void insert(iterator __pos, size_type __n, const _Tp& __x)
{ _M_fill_insert(__pos, __n, __x); }
void _M_fill_insert(iterator __pos, size_type __n, const _Tp& __x);
void push_front(const _Tp& __x) { insert(begin(), __x); }
void push_front() {insert(begin());}
void push_back(const _Tp& __x) { insert(end(), __x); }
void push_back() {insert(end());}
iterator erase(iterator __position) {
_List_node_base* __next_node = __position._M_node->_M_next;
_List_node_base* __prev_node = __position._M_node->_M_prev;
_Node* __n = (_Node*) __position._M_node;
__prev_node->_M_next = __next_node;
__next_node->_M_prev = __prev_node;
_Destroy(&__n->_M_data);
_M_put_node(__n);
return iterator((_Node*) __next_node);
}
iterator erase(iterator __first, iterator __last);
void clear() { _Base::clear(); }
void resize(size_type __new_size, const _Tp& __x);
void resize(size_type __new_size) { this->resize(__new_size, _Tp()); }
void pop_front() { erase(begin()); }
void pop_back() {
iterator __tmp = end();
erase(--__tmp);
}
list(size_type __n, const _Tp& __value,
const allocator_type& __a = allocator_type())
: _Base(__a)
{ insert(begin(), __n, __value); }
explicit list(size_type __n)
: _Base(allocator_type())
{ insert(begin(), __n, _Tp()); }
#ifdef __STL_MEMBER_TEMPLATES
// We don't need any dispatching tricks here, because insert does all of
// that anyway.
template <class _InputIterator>
list(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{ insert(begin(), __first, __last); }
#else /* __STL_MEMBER_TEMPLATES */
list(const _Tp* __first, const _Tp* __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{ this->insert(begin(), __first, __last); }
list(const_iterator __first, const_iterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{ this->insert(begin(), __first, __last); }
#endif /* __STL_MEMBER_TEMPLATES */
list(const list<_Tp, _Alloc>& __x) : _Base(__x.get_allocator())
{ insert(begin(), __x.begin(), __x.end()); }
~list() { }
list<_Tp, _Alloc>& operator=(const list<_Tp, _Alloc>& __x);
public:
// assign(), a generalized assignment member function. Two
// versions: one that takes a count, and one that takes a range.
// The range version is a member template, so we dispatch on whether
// or not the type is an integer.
void assign(size_type __n, const _Tp& __val) { _M_fill_assign(__n, __val); }
void _M_fill_assign(size_type __n, const _Tp& __val);
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void assign(_InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
template <class _Integer>
void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_type) __n, (_Tp) __val); }
template <class _InputIterator>
void _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type);
#endif /* __STL_MEMBER_TEMPLATES */
protected:
void transfer(iterator __position, iterator __first, iterator __last) {
if (__position != __last) {
// Remove [first, last) from its old position.
__last._M_node->_M_prev->_M_next = __position._M_node;
__first._M_node->_M_prev->_M_next = __last._M_node;
__position._M_node->_M_prev->_M_next = __first._M_node;
// Splice [first, last) into its new position.
_List_node_base* __tmp = __position._M_node->_M_prev;
__position._M_node->_M_prev = __last._M_node->_M_prev;
__last._M_node->_M_prev = __first._M_node->_M_prev;
__first._M_node->_M_prev = __tmp;
}
}
public:
void splice(iterator __position, list& __x) {
if (!__x.empty())
this->transfer(__position, __x.begin(), __x.end());
}
void splice(iterator __position, list&, iterator __i) {
iterator __j = __i;
++__j;
if (__position == __i || __position == __j) return;
this->transfer(__position, __i, __j);
}
void splice(iterator __position, list&, iterator __first, iterator __last) {
if (__first != __last)
this->transfer(__position, __first, __last);
}
void remove(const _Tp& __value);
void unique();
void merge(list& __x);
void reverse();
void sort();
#ifdef __STL_MEMBER_TEMPLATES
template <class _Predicate> void remove_if(_Predicate);
template <class _BinaryPredicate> void unique(_BinaryPredicate);
template <class _StrictWeakOrdering> void merge(list&, _StrictWeakOrdering);
template <class _StrictWeakOrdering> void sort(_StrictWeakOrdering);
#endif /* __STL_MEMBER_TEMPLATES */
};
template <class _Tp, class _Alloc>
inline bool
operator==(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
{
typedef typename list<_Tp,_Alloc>::const_iterator const_iterator;
const_iterator __end1 = __x.end();
const_iterator __end2 = __y.end();
const_iterator __i1 = __x.begin();
const_iterator __i2 = __y.begin();
while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) {
++__i1;
++__i2;
}
return __i1 == __end1 && __i2 == __end2;
}
template <class _Tp, class _Alloc>
inline bool operator<(const list<_Tp,_Alloc>& __x,
const list<_Tp,_Alloc>& __y)
{
return lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Tp, class _Alloc>
inline bool operator!=(const list<_Tp,_Alloc>& __x,
const list<_Tp,_Alloc>& __y) {
return !(__x == __y);
}
template <class _Tp, class _Alloc>
inline bool operator>(const list<_Tp,_Alloc>& __x,
const list<_Tp,_Alloc>& __y) {
return __y < __x;
}
template <class _Tp, class _Alloc>
inline bool operator<=(const list<_Tp,_Alloc>& __x,
const list<_Tp,_Alloc>& __y) {
return !(__y < __x);
}
template <class _Tp, class _Alloc>
inline bool operator>=(const list<_Tp,_Alloc>& __x,
const list<_Tp,_Alloc>& __y) {
return !(__x < __y);
}
template <class _Tp, class _Alloc>
inline void
swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
{
__x.swap(__y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
#ifdef __STL_MEMBER_TEMPLATES
template <class _Tp, class _Alloc> template <class _InputIter>
void
list<_Tp, _Alloc>::_M_insert_dispatch(iterator __position,
_InputIter __first, _InputIter __last,
__false_type)
{
for ( ; __first != __last; ++__first)
insert(__position, *__first);
}
#else /* __STL_MEMBER_TEMPLATES */
template <class _Tp, class _Alloc>
void
list<_Tp, _Alloc>::insert(iterator __position,
const _Tp* __first, const _Tp* __last)
{
for ( ; __first != __last; ++__first)
insert(__position, *__first);
}
template <class _Tp, class _Alloc>
void
list<_Tp, _Alloc>::insert(iterator __position,
const_iterator __first, const_iterator __last)
{
for ( ; __first != __last; ++__first)
insert(__position, *__first);
}
#endif /* __STL_MEMBER_TEMPLATES */
template <class _Tp, class _Alloc>
void
list<_Tp, _Alloc>::_M_fill_insert(iterator __position,
size_type __n, const _Tp& __x)
{
for ( ; __n > 0; --__n)
insert(__position, __x);
}
template <class _Tp, class _Alloc>
typename list<_Tp,_Alloc>::iterator list<_Tp, _Alloc>::erase(iterator __first,
iterator __last)
{
while (__first != __last)
erase(__first++);
return __last;
}
template <class _Tp, class _Alloc>
void list<_Tp, _Alloc>::resize(size_type __new_size, const _Tp& __x)
{
iterator __i = begin();
size_type __len = 0;
for ( ; __i != end() && __len < __new_size; ++__i, ++__len)
;
if (__len == __new_size)
erase(__i, end());
else // __i == end()
insert(end(), __new_size - __len, __x);
}
template <class _Tp, class _Alloc>
list<_Tp, _Alloc>& list<_Tp, _Alloc>::operator=(const list<_Tp, _Alloc>& __x)
{
if (this != &__x) {
iterator __first1 = begin();
iterator __last1 = end();
const_iterator __first2 = __x.begin();
const_iterator __last2 = __x.end();
while (__first1 != __last1 && __first2 != __last2)
*__first1++ = *__first2++;
if (__first2 == __last2)
erase(__first1, __last1);
else
insert(__last1, __first2, __last2);
}
return *this;
}
template <class _Tp, class _Alloc>
void list<_Tp, _Alloc>::_M_fill_assign(size_type __n, const _Tp& __val) {
iterator __i = begin();
for ( ; __i != end() && __n > 0; ++__i, --__n)
*__i = __val;
if (__n > 0)
insert(end(), __n, __val);
else
erase(__i, end());
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _Tp, class _Alloc> template <class _InputIter>
void
list<_Tp, _Alloc>::_M_assign_dispatch(_InputIter __first2, _InputIter __last2,
__false_type)
{
iterator __first1 = begin();
iterator __last1 = end();
for ( ; __first1 != __last1 && __first2 != __last2; ++__first1, ++__first2)
*__first1 = *__first2;
if (__first2 == __last2)
erase(__first1, __last1);
else
insert(__last1, __first2, __last2);
}
#endif /* __STL_MEMBER_TEMPLATES */
template <class _Tp, class _Alloc>
void list<_Tp, _Alloc>::remove(const _Tp& __value)
{
iterator __first = begin();
iterator __last = end();
while (__first != __last) {
iterator __next = __first;
++__next;
if (*__first == __value) erase(__first);
__first = __next;
}
}
template <class _Tp, class _Alloc>
void list<_Tp, _Alloc>::unique()
{
iterator __first = begin();
iterator __last = end();
if (__first == __last) return;
iterator __next = __first;
while (++__next != __last) {
if (*__first == *__next)
erase(__next);
else
__first = __next;
__next = __first;
}
}
template <class _Tp, class _Alloc>
void list<_Tp, _Alloc>::merge(list<_Tp, _Alloc>& __x)
{
iterator __first1 = begin();
iterator __last1 = end();
iterator __first2 = __x.begin();
iterator __last2 = __x.end();
while (__first1 != __last1 && __first2 != __last2)
if (*__first2 < *__first1) {
iterator __next = __first2;
transfer(__first1, __first2, ++__next);
__first2 = __next;
}
else
++__first1;
if (__first2 != __last2) transfer(__last1, __first2, __last2);
}
inline void __List_base_reverse(_List_node_base* __p)
{
_List_node_base* __tmp = __p;
do {
__STD::swap(__tmp->_M_next, __tmp->_M_prev);
__tmp = __tmp->_M_prev; // Old next node is now prev.
} while (__tmp != __p);
}
template <class _Tp, class _Alloc>
inline void list<_Tp, _Alloc>::reverse()
{
__List_base_reverse(this->_M_node);
}
template <class _Tp, class _Alloc>
void list<_Tp, _Alloc>::sort()
{
// Do nothing if the list has length 0 or 1.
if (_M_node->_M_next != _M_node && _M_node->_M_next->_M_next != _M_node) {
list<_Tp, _Alloc> __carry;
list<_Tp, _Alloc> __counter[64];
int __fill = 0;
while (!empty()) {
__carry.splice(__carry.begin(), *this, begin());
int __i = 0;
while(__i < __fill && !__counter[__i].empty()) {
__counter[__i].merge(__carry);
__carry.swap(__counter[__i++]);
}
__carry.swap(__counter[__i]);
if (__i == __fill) ++__fill;
}
for (int __i = 1; __i < __fill; ++__i)
__counter[__i].merge(__counter[__i-1]);
swap(__counter[__fill-1]);
}
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _Tp, class _Alloc> template <class _Predicate>
void list<_Tp, _Alloc>::remove_if(_Predicate __pred)
{
iterator __first = begin();
iterator __last = end();
while (__first != __last) {
iterator __next = __first;
++__next;
if (__pred(*__first)) erase(__first);
__first = __next;
}
}
template <class _Tp, class _Alloc> template <class _BinaryPredicate>
void list<_Tp, _Alloc>::unique(_BinaryPredicate __binary_pred)
{
iterator __first = begin();
iterator __last = end();
if (__first == __last) return;
iterator __next = __first;
while (++__next != __last) {
if (__binary_pred(*__first, *__next))
erase(__next);
else
__first = __next;
__next = __first;
}
}
template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
void list<_Tp, _Alloc>::merge(list<_Tp, _Alloc>& __x,
_StrictWeakOrdering __comp)
{
iterator __first1 = begin();
iterator __last1 = end();
iterator __first2 = __x.begin();
iterator __last2 = __x.end();
while (__first1 != __last1 && __first2 != __last2)
if (__comp(*__first2, *__first1)) {
iterator __next = __first2;
transfer(__first1, __first2, ++__next);
__first2 = __next;
}
else
++__first1;
if (__first2 != __last2) transfer(__last1, __first2, __last2);
}
template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
void list<_Tp, _Alloc>::sort(_StrictWeakOrdering __comp)
{
// Do nothing if the list has length 0 or 1.
if (_M_node->_M_next != _M_node && _M_node->_M_next->_M_next != _M_node) {
list<_Tp, _Alloc> __carry;
list<_Tp, _Alloc> __counter[64];
int __fill = 0;
while (!empty()) {
__carry.splice(__carry.begin(), *this, begin());
int __i = 0;
while(__i < __fill && !__counter[__i].empty()) {
__counter[__i].merge(__carry, __comp);
__carry.swap(__counter[__i++]);
}
__carry.swap(__counter[__i]);
if (__i == __fill) ++__fill;
}
for (int __i = 1; __i < __fill; ++__i)
__counter[__i].merge(__counter[__i-1], __comp);
swap(__counter[__fill-1]);
}
}
#endif /* __STL_MEMBER_TEMPLATES */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#pragma reset woff 1375
#endif
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_LIST_H */
// Local Variables:
// mode:C++
// End: