zephyr/drivers/counter/counter_ll_stm32_rtc.c
Dawid Niedzwiecki 49f9aa7d12 counter: stm32 rtc: handle sub second registers
Add support for using the sub second registers. It allows reading and
setting alarm with the sub second tick resolution.

The RTC module is configured to get as high frequency as possible, which
equals the source clock (RTCCLK) divided by 2. To get such frequency,
the asynchronous prescaler is set to 1.

According to RM, setting the asynchronous prescaler to a high value
minimize consumption, so the change increase the power consumption.

Use a config to enable the sub second support.

Signed-off-by: Dawid Niedzwiecki <dawidn@google.com>
2023-09-26 15:05:35 +02:00

650 lines
17 KiB
C

/*
* Copyright (c) 2018 Workaround GmbH
* Copyright (c) 2018 Allterco Robotics
* Copyright (c) 2018 Linaro Limited
*
* SPDX-License-Identifier: Apache-2.0
*
* Source file for the STM32 RTC driver
*
*/
#define DT_DRV_COMPAT st_stm32_rtc
#include <time.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/kernel.h>
#include <soc.h>
#include <stm32_ll_exti.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_rtc.h>
#include <zephyr/drivers/counter.h>
#include <zephyr/sys/timeutil.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#include "stm32_hsem.h"
LOG_MODULE_REGISTER(counter_rtc_stm32, CONFIG_COUNTER_LOG_LEVEL);
/* Seconds from 1970-01-01T00:00:00 to 2000-01-01T00:00:00 */
#define T_TIME_OFFSET 946684800
#if defined(CONFIG_SOC_SERIES_STM32L4X)
#define RTC_EXTI_LINE LL_EXTI_LINE_18
#elif defined(CONFIG_SOC_SERIES_STM32C0X) \
|| defined(CONFIG_SOC_SERIES_STM32G0X)
#define RTC_EXTI_LINE LL_EXTI_LINE_19
#elif defined(CONFIG_SOC_SERIES_STM32F4X) \
|| defined(CONFIG_SOC_SERIES_STM32F0X) \
|| defined(CONFIG_SOC_SERIES_STM32F1X) \
|| defined(CONFIG_SOC_SERIES_STM32F2X) \
|| defined(CONFIG_SOC_SERIES_STM32F3X) \
|| defined(CONFIG_SOC_SERIES_STM32F7X) \
|| defined(CONFIG_SOC_SERIES_STM32WBX) \
|| defined(CONFIG_SOC_SERIES_STM32G4X) \
|| defined(CONFIG_SOC_SERIES_STM32L0X) \
|| defined(CONFIG_SOC_SERIES_STM32L1X) \
|| defined(CONFIG_SOC_SERIES_STM32L5X) \
|| defined(CONFIG_SOC_SERIES_STM32H7X) \
|| defined(CONFIG_SOC_SERIES_STM32H5X) \
|| defined(CONFIG_SOC_SERIES_STM32WLX)
#define RTC_EXTI_LINE LL_EXTI_LINE_17
#endif
#if defined(CONFIG_SOC_SERIES_STM32F1X)
#define COUNTER_NO_DATE
#endif
#if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI
/* LSI */
#define RTCCLK_FREQ STM32_LSI_FREQ
#else
/* LSE */
#define RTCCLK_FREQ STM32_LSE_FREQ
#endif /* DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI */
#if !defined(CONFIG_SOC_SERIES_STM32F1X)
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
#define RTC_ASYNCPRE BIT_MASK(7)
#else /* !CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
/* Get the highest possible clock for the subsecond register */
#define RTC_ASYNCPRE 1
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#else /* CONFIG_SOC_SERIES_STM32F1X */
#define RTC_ASYNCPRE (RTCCLK_FREQ - 1)
#endif /* CONFIG_SOC_SERIES_STM32F1X */
/* Adjust the second sync prescaler to get 1Hz on ck_spre */
#define RTC_SYNCPRE ((RTCCLK_FREQ / (1 + RTC_ASYNCPRE)) - 1)
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
typedef uint32_t tick_t;
#else
typedef uint64_t tick_t;
#endif
struct rtc_stm32_config {
struct counter_config_info counter_info;
LL_RTC_InitTypeDef ll_rtc_config;
const struct stm32_pclken *pclken;
};
struct rtc_stm32_data {
counter_alarm_callback_t callback;
uint32_t ticks;
void *user_data;
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
bool irq_on_late;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
};
static inline ErrorStatus ll_func_init_alarm(RTC_TypeDef *rtc, uint32_t format,
LL_RTC_AlarmTypeDef *alarmStruct)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
return LL_RTC_ALARM_Init(rtc, format, alarmStruct);
#else
return LL_RTC_ALMA_Init(rtc, format, alarmStruct);
#endif
}
static inline void ll_func_clear_alarm_flag(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
LL_RTC_ClearFlag_ALR(rtc);
#else
LL_RTC_ClearFlag_ALRA(rtc);
#endif
}
static inline uint32_t ll_func_is_active_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
return LL_RTC_IsActiveFlag_ALR(rtc);
#else
return LL_RTC_IsActiveFlag_ALRA(rtc);
#endif
}
static inline void ll_func_enable_interrupt_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
LL_RTC_EnableIT_ALR(rtc);
#else
LL_RTC_EnableIT_ALRA(rtc);
#endif
}
static inline void ll_func_disable_interrupt_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
LL_RTC_DisableIT_ALR(rtc);
#else
LL_RTC_DisableIT_ALRA(rtc);
#endif
}
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
static inline uint32_t ll_func_isenabled_interrupt_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
return LL_RTC_IsEnabledIT_ALR(rtc);
#else
return LL_RTC_IsEnabledIT_ALRA(rtc);
#endif
}
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
static inline void ll_func_enable_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
ARG_UNUSED(rtc);
#else
LL_RTC_ALMA_Enable(rtc);
#endif
}
static inline void ll_func_disable_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
ARG_UNUSED(rtc);
#else
LL_RTC_ALMA_Disable(rtc);
#endif
}
static void rtc_stm32_irq_config(const struct device *dev);
static int rtc_stm32_start(const struct device *dev)
{
ARG_UNUSED(dev);
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
LL_RCC_EnableRTC();
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
return 0;
}
static int rtc_stm32_stop(const struct device *dev)
{
ARG_UNUSED(dev);
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
LL_RCC_DisableRTC();
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
return 0;
}
tick_t rtc_stm32_read(const struct device *dev)
{
#if !defined(COUNTER_NO_DATE)
struct tm now = { 0 };
time_t ts;
uint32_t rtc_date, rtc_time;
tick_t ticks;
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
uint32_t rtc_subseconds;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#else
uint32_t rtc_time, ticks;
#endif
ARG_UNUSED(dev);
/* Read time and date registers. Make sure value of the previous register
* hasn't been changed while reading the next one.
*/
#if !defined(COUNTER_NO_DATE)
do {
rtc_date = LL_RTC_DATE_Get(RTC);
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
do {
rtc_time = LL_RTC_TIME_Get(RTC);
rtc_subseconds = LL_RTC_TIME_GetSubSecond(RTC);
} while (rtc_time != LL_RTC_TIME_Get(RTC));
#else /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
rtc_time = LL_RTC_TIME_Get(RTC);
#endif
} while (rtc_date != LL_RTC_DATE_Get(RTC));
#else
rtc_time = LL_RTC_TIME_Get(RTC);
#endif
#if !defined(COUNTER_NO_DATE)
/* Convert calendar datetime to UNIX timestamp */
/* RTC start time: 1st, Jan, 2000 */
/* time_t start: 1st, Jan, 1970 */
now.tm_year = 100 +
__LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_YEAR(rtc_date));
/* tm_mon allowed values are 0-11 */
now.tm_mon = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_MONTH(rtc_date)) - 1;
now.tm_mday = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_DAY(rtc_date));
now.tm_hour = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_HOUR(rtc_time));
now.tm_min = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_MINUTE(rtc_time));
now.tm_sec = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_SECOND(rtc_time));
ts = timeutil_timegm(&now);
/* Return number of seconds since RTC init */
ts -= T_TIME_OFFSET;
__ASSERT(sizeof(time_t) == 8, "unexpected time_t definition");
ticks = ts * counter_get_frequency(dev);
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
/* The RTC counts up, except for the subsecond register which counts
* down starting from the sync prescaler value. Add already counted
* ticks.
*/
ticks += RTC_SYNCPRE - rtc_subseconds;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#else
ticks = rtc_time;
#endif
return ticks;
}
static int rtc_stm32_get_value(const struct device *dev, uint32_t *ticks)
{
*ticks = (uint32_t)rtc_stm32_read(dev);
return 0;
}
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
static int rtc_stm32_get_value_64(const struct device *dev, uint64_t *ticks)
{
*ticks = rtc_stm32_read(dev);
return 0;
}
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
static void rtc_stm32_set_int_pending(void)
{
NVIC_SetPendingIRQ(DT_INST_IRQN(0));
}
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
static int rtc_stm32_set_alarm(const struct device *dev, uint8_t chan_id,
const struct counter_alarm_cfg *alarm_cfg)
{
#if !defined(COUNTER_NO_DATE)
struct tm alarm_tm;
time_t alarm_val_s;
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
uint32_t alarm_val_ss;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#else
uint32_t remain;
#endif
LL_RTC_AlarmTypeDef rtc_alarm;
struct rtc_stm32_data *data = dev->data;
tick_t now = rtc_stm32_read(dev);
tick_t ticks = alarm_cfg->ticks;
if (data->callback != NULL) {
LOG_DBG("Alarm busy\n");
return -EBUSY;
}
data->callback = alarm_cfg->callback;
data->user_data = alarm_cfg->user_data;
#if !defined(COUNTER_NO_DATE)
if ((alarm_cfg->flags & COUNTER_ALARM_CFG_ABSOLUTE) == 0) {
/* Add +1 in order to compensate the partially started tick.
* Alarm will expire between requested ticks and ticks+1.
* In case only 1 tick is requested, it will avoid
* that tick+1 event occurs before alarm setting is finished.
*/
ticks += now + 1;
alarm_val_s = (time_t)(ticks / counter_get_frequency(dev)) + T_TIME_OFFSET;
} else {
alarm_val_s = (time_t)(ticks / counter_get_frequency(dev));
}
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
alarm_val_ss = ticks % counter_get_frequency(dev);
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#else
if ((alarm_cfg->flags & COUNTER_ALARM_CFG_ABSOLUTE) == 0) {
remain = ticks + now + 1;
} else {
remain = ticks;
}
/* In F1X, an interrupt occurs when the counter expires,
* not when the counter matches, so set -1
*/
remain--;
#endif
#if !defined(COUNTER_NO_DATE)
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
LOG_DBG("Set Alarm: %d\n", ticks);
#else /* !CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
LOG_DBG("Set Alarm: %llu\n", ticks);
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
gmtime_r(&alarm_val_s, &alarm_tm);
/* Apply ALARM_A */
rtc_alarm.AlarmTime.TimeFormat = LL_RTC_TIME_FORMAT_AM_OR_24;
rtc_alarm.AlarmTime.Hours = alarm_tm.tm_hour;
rtc_alarm.AlarmTime.Minutes = alarm_tm.tm_min;
rtc_alarm.AlarmTime.Seconds = alarm_tm.tm_sec;
rtc_alarm.AlarmMask = LL_RTC_ALMA_MASK_NONE;
rtc_alarm.AlarmDateWeekDaySel = LL_RTC_ALMA_DATEWEEKDAYSEL_DATE;
rtc_alarm.AlarmDateWeekDay = alarm_tm.tm_mday;
#else
rtc_alarm.AlarmTime.Hours = remain / 3600;
remain -= rtc_alarm.AlarmTime.Hours * 3600;
rtc_alarm.AlarmTime.Minutes = remain / 60;
remain -= rtc_alarm.AlarmTime.Minutes * 60;
rtc_alarm.AlarmTime.Seconds = remain;
#endif
LL_RTC_DisableWriteProtection(RTC);
ll_func_disable_alarm(RTC);
LL_RTC_EnableWriteProtection(RTC);
if (ll_func_init_alarm(RTC, LL_RTC_FORMAT_BIN, &rtc_alarm) != SUCCESS) {
return -EIO;
}
LL_RTC_DisableWriteProtection(RTC);
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
/* Care about all bits of the subsecond register */
LL_RTC_ALMA_SetSubSecondMask(RTC, 0xF);
LL_RTC_ALMA_SetSubSecond(RTC, RTC_SYNCPRE - alarm_val_ss);
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
ll_func_enable_alarm(RTC);
ll_func_clear_alarm_flag(RTC);
ll_func_enable_interrupt_alarm(RTC);
LL_RTC_EnableWriteProtection(RTC);
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
/* The reference manual says:
* "Each change of the RTC_CR register is taken into account after
* 1 to 2 RTCCLK clock cycles due to clock synchronization."
* It means we need at least two cycles after programming the CR
* register. It is confirmed experimentally.
*
* It should happen only if one tick alarm is requested and a tick
* occurs while processing the function. Trigger the irq manually in
* this case.
*/
now = rtc_stm32_read(dev);
if ((ticks - now < 2) || (now > ticks)) {
data->irq_on_late = 1;
rtc_stm32_set_int_pending();
}
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
return 0;
}
static int rtc_stm32_cancel_alarm(const struct device *dev, uint8_t chan_id)
{
struct rtc_stm32_data *data = dev->data;
LL_RTC_DisableWriteProtection(RTC);
ll_func_clear_alarm_flag(RTC);
ll_func_disable_interrupt_alarm(RTC);
ll_func_disable_alarm(RTC);
LL_RTC_EnableWriteProtection(RTC);
data->callback = NULL;
return 0;
}
static uint32_t rtc_stm32_get_pending_int(const struct device *dev)
{
return ll_func_is_active_alarm(RTC) != 0;
}
static uint32_t rtc_stm32_get_top_value(const struct device *dev)
{
const struct counter_config_info *info = dev->config;
return info->max_top_value;
}
static int rtc_stm32_set_top_value(const struct device *dev,
const struct counter_top_cfg *cfg)
{
const struct counter_config_info *info = dev->config;
if ((cfg->ticks != info->max_top_value) ||
!(cfg->flags & COUNTER_TOP_CFG_DONT_RESET)) {
return -ENOTSUP;
} else {
return 0;
}
}
void rtc_stm32_isr(const struct device *dev)
{
struct rtc_stm32_data *data = dev->data;
counter_alarm_callback_t alarm_callback = data->callback;
uint32_t now = rtc_stm32_read(dev);
if (ll_func_is_active_alarm(RTC) != 0
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
|| (data->irq_on_late && ll_func_isenabled_interrupt_alarm(RTC))
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
) {
LL_RTC_DisableWriteProtection(RTC);
ll_func_clear_alarm_flag(RTC);
ll_func_disable_interrupt_alarm(RTC);
ll_func_disable_alarm(RTC);
LL_RTC_EnableWriteProtection(RTC);
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
data->irq_on_late = 0;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
if (alarm_callback != NULL) {
data->callback = NULL;
alarm_callback(dev, 0, now, data->user_data);
}
}
#if defined(CONFIG_SOC_SERIES_STM32H7X) && defined(CONFIG_CPU_CORTEX_M4)
LL_C2_EXTI_ClearFlag_0_31(RTC_EXTI_LINE);
#elif defined(CONFIG_SOC_SERIES_STM32C0X) \
|| defined(CONFIG_SOC_SERIES_STM32G0X) \
|| defined(CONFIG_SOC_SERIES_STM32L5X) \
|| defined(CONFIG_SOC_SERIES_STM32H5X)
LL_EXTI_ClearRisingFlag_0_31(RTC_EXTI_LINE);
#elif defined(CONFIG_SOC_SERIES_STM32U5X)
/* in STM32U5 family RTC is not connected to EXTI */
#else
LL_EXTI_ClearFlag_0_31(RTC_EXTI_LINE);
#endif
}
static int rtc_stm32_init(const struct device *dev)
{
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
const struct rtc_stm32_config *cfg = dev->config;
struct rtc_stm32_data *data = dev->data;
data->callback = NULL;
if (!device_is_ready(clk)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
/* Enable RTC bus clock */
if (clock_control_on(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) {
LOG_ERR("clock op failed\n");
return -EIO;
}
/* Enable Backup access */
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || \
defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
LL_PWR_EnableBkUpAccess();
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
/* Enable RTC clock source */
if (clock_control_configure(clk,
(clock_control_subsys_t) &cfg->pclken[1],
NULL) != 0) {
LOG_ERR("clock configure failed\n");
return -EIO;
}
LL_RCC_EnableRTC();
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
#if !defined(CONFIG_COUNTER_RTC_STM32_SAVE_VALUE_BETWEEN_RESETS)
if (LL_RTC_DeInit(RTC) != SUCCESS) {
return -EIO;
}
#endif
if (LL_RTC_Init(RTC, ((LL_RTC_InitTypeDef *)
&cfg->ll_rtc_config)) != SUCCESS) {
return -EIO;
}
#ifdef RTC_CR_BYPSHAD
LL_RTC_DisableWriteProtection(RTC);
LL_RTC_EnableShadowRegBypass(RTC);
LL_RTC_EnableWriteProtection(RTC);
#endif /* RTC_CR_BYPSHAD */
#if defined(CONFIG_SOC_SERIES_STM32H7X) && defined(CONFIG_CPU_CORTEX_M4)
LL_C2_EXTI_EnableIT_0_31(RTC_EXTI_LINE);
LL_EXTI_EnableRisingTrig_0_31(RTC_EXTI_LINE);
#elif defined(CONFIG_SOC_SERIES_STM32U5X)
/* in STM32U5 family RTC is not connected to EXTI */
#else
LL_EXTI_EnableIT_0_31(RTC_EXTI_LINE);
LL_EXTI_EnableRisingTrig_0_31(RTC_EXTI_LINE);
#endif
rtc_stm32_irq_config(dev);
return 0;
}
static struct rtc_stm32_data rtc_data;
#if DT_INST_NUM_CLOCKS(0) == 1
#warning STM32 RTC needs a kernel source clock. Please define it in dts file
static const struct stm32_pclken rtc_clk[] = {
STM32_CLOCK_INFO(0, DT_DRV_INST(0)),
/* Use Kconfig to configure source clocks fields (Deprecated) */
/* Fortunately, values are consistent across enabled series */
#ifdef CONFIG_COUNTER_RTC_STM32_CLOCK_LSE
{.bus = STM32_SRC_LSE, .enr = RTC_SEL(1)}
#else
{.bus = STM32_SRC_LSI, .enr = RTC_SEL(2)}
#endif
};
#else
static const struct stm32_pclken rtc_clk[] = STM32_DT_INST_CLOCKS(0);
#endif
static const struct rtc_stm32_config rtc_config = {
.counter_info = {
.max_top_value = UINT32_MAX,
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
/* freq = 1Hz for not subsec based driver */
.freq = RTCCLK_FREQ / ((RTC_ASYNCPRE + 1) * (RTC_SYNCPRE + 1)),
#else /* !CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
.freq = RTCCLK_FREQ / (RTC_ASYNCPRE + 1),
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
.flags = COUNTER_CONFIG_INFO_COUNT_UP,
.channels = 1,
},
.ll_rtc_config = {
.AsynchPrescaler = RTC_ASYNCPRE,
#if !defined(CONFIG_SOC_SERIES_STM32F1X)
.HourFormat = LL_RTC_HOURFORMAT_24HOUR,
.SynchPrescaler = RTC_SYNCPRE,
#else /* CONFIG_SOC_SERIES_STM32F1X */
.OutPutSource = LL_RTC_CALIB_OUTPUT_NONE,
#endif /* CONFIG_SOC_SERIES_STM32F1X */
},
.pclken = rtc_clk,
};
static const struct counter_driver_api rtc_stm32_driver_api = {
.start = rtc_stm32_start,
.stop = rtc_stm32_stop,
.get_value = rtc_stm32_get_value,
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
.get_value_64 = rtc_stm32_get_value_64,
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
.set_alarm = rtc_stm32_set_alarm,
.cancel_alarm = rtc_stm32_cancel_alarm,
.set_top_value = rtc_stm32_set_top_value,
.get_pending_int = rtc_stm32_get_pending_int,
.get_top_value = rtc_stm32_get_top_value,
};
DEVICE_DT_INST_DEFINE(0, &rtc_stm32_init, NULL,
&rtc_data, &rtc_config, PRE_KERNEL_1,
CONFIG_COUNTER_INIT_PRIORITY, &rtc_stm32_driver_api);
static void rtc_stm32_irq_config(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
rtc_stm32_isr, DEVICE_DT_INST_GET(0), 0);
irq_enable(DT_INST_IRQN(0));
}