zephyr/drivers/spi/spi_ll_stm32.c
Kumar Gala a1b77fd589 zephyr: replace zephyr integer types with C99 types
git grep -l 'u\(8\|16\|32\|64\)_t' | \
		xargs sed -i "s/u\(8\|16\|32\|64\)_t/uint\1_t/g"
	git grep -l 's\(8\|16\|32\|64\)_t' | \
		xargs sed -i "s/s\(8\|16\|32\|64\)_t/int\1_t/g"

Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
2020-06-08 08:23:57 -05:00

923 lines
25 KiB
C

/*
* Copyright (c) 2016 BayLibre, SAS
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_stm32_spi
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(spi_ll_stm32);
#include <sys/util.h>
#include <kernel.h>
#include <soc.h>
#include <errno.h>
#include <drivers/spi.h>
#include <toolchain.h>
#ifdef CONFIG_SPI_STM32_DMA
#include <dt-bindings/dma/stm32_dma.h>
#include <drivers/dma.h>
#endif
#include <drivers/clock_control/stm32_clock_control.h>
#include <drivers/clock_control.h>
#include "spi_ll_stm32.h"
#define DEV_CFG(dev) \
(const struct spi_stm32_config * const)(dev->config_info)
#define DEV_DATA(dev) \
(struct spi_stm32_data * const)(dev->driver_data)
/*
* Check for SPI_SR_FRE to determine support for TI mode frame format
* error flag, because STM32F1 SoCs do not support it and STM32CUBE
* for F1 family defines an unused LL_SPI_SR_FRE.
*/
#ifdef CONFIG_SOC_SERIES_STM32MP1X
#define SPI_STM32_ERR_MSK (LL_SPI_SR_UDR | LL_SPI_SR_CRCE | LL_SPI_SR_MODF | \
LL_SPI_SR_OVR | LL_SPI_SR_TIFRE)
#else
#if defined(LL_SPI_SR_UDR)
#define SPI_STM32_ERR_MSK (LL_SPI_SR_UDR | LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | \
LL_SPI_SR_OVR | LL_SPI_SR_FRE)
#elif defined(SPI_SR_FRE)
#define SPI_STM32_ERR_MSK (LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | \
LL_SPI_SR_OVR | LL_SPI_SR_FRE)
#else
#define SPI_STM32_ERR_MSK (LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | LL_SPI_SR_OVR)
#endif
#endif /* CONFIG_SOC_SERIES_STM32MP1X */
#ifdef CONFIG_SPI_STM32_DMA
/* dummy value used for transferring NOP when tx buf is null */
uint32_t nop_tx;
/* This function is executed in the interrupt context */
static void dma_callback(void *arg, uint32_t channel, int status)
{
/* callback_arg directly holds the client data */
struct spi_stm32_data *data = arg;
if (status != 0) {
LOG_ERR("DMA callback error with channel %d.", channel);
data->dma_tx.transfer_complete = true;
data->dma_rx.transfer_complete = true;
return;
}
/* identify the origin of this callback */
if (channel == data->dma_tx.channel) {
/* this part of the transfer ends */
data->dma_tx.transfer_complete = true;
} else if (channel == data->dma_rx.channel) {
/* this part of the transfer ends */
data->dma_rx.transfer_complete = true;
} else {
LOG_ERR("DMA callback channel %d is not valid.", channel);
data->dma_tx.transfer_complete = true;
data->dma_rx.transfer_complete = true;
return;
}
}
static int spi_stm32_dma_tx_load(struct device *dev, const uint8_t *buf,
size_t len)
{
const struct spi_stm32_config *cfg = DEV_CFG(dev);
struct spi_stm32_data *data = DEV_DATA(dev);
struct dma_block_config blk_cfg;
int ret;
/* remember active TX DMA channel (used in callback) */
struct stream *stream = &data->dma_tx;
/* prepare the block for this TX DMA channel */
memset(&blk_cfg, 0, sizeof(blk_cfg));
blk_cfg.block_size = len;
/* tx direction has memory as source and periph as dest. */
if (buf == NULL) {
nop_tx = 0;
/* if tx buff is null, then sends NOP on the line. */
blk_cfg.source_address = (uint32_t)&nop_tx;
blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
} else {
blk_cfg.source_address = (uint32_t)buf;
if (data->dma_tx.src_addr_increment) {
blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
blk_cfg.dest_address = (uint32_t)LL_SPI_DMA_GetRegAddr(cfg->spi);
/* fifo mode NOT USED there */
if (data->dma_tx.dst_addr_increment) {
blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
/* give the fifo mode from the DT */
blk_cfg.fifo_mode_control = data->dma_tx.fifo_threshold;
/* direction is given by the DT */
stream->dma_cfg.head_block = &blk_cfg;
/* give the client data as arg, as the callback comes from the dma */
stream->dma_cfg.callback_arg = data;
/* pass our client origin to the dma: data->dma_tx.dma_channel */
ret = dma_config(data->dev_dma_tx, data->dma_tx.channel,
&stream->dma_cfg);
/* the channel is the actual stream from 0 */
if (ret != 0) {
return ret;
}
/* starting this dma transfer */
data->dma_tx.transfer_complete = false;
/* gives the request ID to the dma mux */
return dma_start(data->dev_dma_tx, data->dma_tx.channel);
}
static int spi_stm32_dma_rx_load(struct device *dev, uint8_t *buf, size_t len)
{
const struct spi_stm32_config *cfg = DEV_CFG(dev);
struct spi_stm32_data *data = DEV_DATA(dev);
struct dma_block_config blk_cfg;
int ret;
/* retrieve active RX DMA channel (used in callback) */
struct stream *stream = &data->dma_rx;
/* prepare the block for this RX DMA channel */
memset(&blk_cfg, 0, sizeof(blk_cfg));
blk_cfg.block_size = len;
/* rx direction has periph as source and mem as dest. */
blk_cfg.dest_address = (buf != NULL) ? (uint32_t)buf : (uint32_t)NULL;
blk_cfg.source_address = (uint32_t)LL_SPI_DMA_GetRegAddr(cfg->spi);
if (data->dma_rx.src_addr_increment) {
blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
if (data->dma_rx.dst_addr_increment) {
blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
/* give the fifo mode from the DT */
blk_cfg.fifo_mode_control = data->dma_rx.fifo_threshold;
/* direction is given by the DT */
stream->dma_cfg.head_block = &blk_cfg;
stream->dma_cfg.callback_arg = data;
/* pass our client origin to the dma: data->dma_rx.channel */
ret = dma_config(data->dev_dma_rx, data->dma_rx.channel,
&stream->dma_cfg);
/* the channel is the actual stream from 0 */
if (ret != 0) {
return ret;
}
/* starting this dma transfer */
data->dma_rx.transfer_complete = false;
/* gives the request ID to the dma mux */
return dma_start(data->dev_dma_rx, data->dma_rx.channel);
}
static int spi_dma_move_buffers(struct device *dev)
{
struct spi_stm32_data *data = DEV_DATA(dev);
int ret;
/* the length to transmit depends on the source data size (1,2 4) */
data->dma_segment_len = data->ctx.tx_len
/ data->dma_tx.dma_cfg.source_data_size;
/* Load receive first, so it can accept transmit data */
if (data->ctx.rx_len) {
ret = spi_stm32_dma_rx_load(dev, data->ctx.rx_buf,
data->dma_segment_len);
} else {
ret = spi_stm32_dma_rx_load(dev, NULL, data->dma_segment_len);
}
if (ret != 0) {
return ret;
}
if (data->ctx.tx_len) {
ret = spi_stm32_dma_tx_load(dev, data->ctx.tx_buf,
data->dma_segment_len);
} else {
ret = spi_stm32_dma_tx_load(dev, NULL, data->dma_segment_len);
}
return ret;
}
static bool spi_stm32_dma_transfer_ongoing(struct spi_stm32_data *data)
{
return ((data->dma_tx.transfer_complete != true)
&& (data->dma_rx.transfer_complete != true));
}
#endif /* CONFIG_SPI_STM32_DMA */
/* Value to shift out when no application data needs transmitting. */
#define SPI_STM32_TX_NOP 0x00
static bool spi_stm32_transfer_ongoing(struct spi_stm32_data *data)
{
return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx);
}
static int spi_stm32_get_err(SPI_TypeDef *spi)
{
uint32_t sr = LL_SPI_ReadReg(spi, SR);
if (sr & SPI_STM32_ERR_MSK) {
LOG_ERR("%s: err=%d", __func__,
sr & (uint32_t)SPI_STM32_ERR_MSK);
/* OVR error must be explicitly cleared */
if (LL_SPI_IsActiveFlag_OVR(spi)) {
LL_SPI_ClearFlag_OVR(spi);
}
return -EIO;
}
return 0;
}
/* Shift a SPI frame as master. */
static void spi_stm32_shift_m(SPI_TypeDef *spi, struct spi_stm32_data *data)
{
uint16_t tx_frame = SPI_STM32_TX_NOP;
uint16_t rx_frame;
while (!ll_func_tx_is_empty(spi)) {
/* NOP */
}
#ifdef CONFIG_SOC_SERIES_STM32MP1X
/* With the STM32MP1, if the device is the SPI master, we need to enable
* the start of the transfer with LL_SPI_StartMasterTransfer(spi)
*/
if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) {
LL_SPI_StartMasterTransfer(spi);
while (!LL_SPI_IsActiveMasterTransfer(spi)) {
/* NOP */
}
}
#endif
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
if (spi_context_tx_buf_on(&data->ctx)) {
tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf));
}
LL_SPI_TransmitData8(spi, tx_frame);
/* The update is ignored if TX is off. */
spi_context_update_tx(&data->ctx, 1, 1);
} else {
if (spi_context_tx_buf_on(&data->ctx)) {
tx_frame = UNALIGNED_GET((uint16_t *)(data->ctx.tx_buf));
}
LL_SPI_TransmitData16(spi, tx_frame);
/* The update is ignored if TX is off. */
spi_context_update_tx(&data->ctx, 2, 1);
}
while (!ll_func_rx_is_not_empty(spi)) {
/* NOP */
}
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
rx_frame = LL_SPI_ReceiveData8(spi);
if (spi_context_rx_buf_on(&data->ctx)) {
UNALIGNED_PUT(rx_frame, (uint8_t *)data->ctx.rx_buf);
}
spi_context_update_rx(&data->ctx, 1, 1);
} else {
rx_frame = LL_SPI_ReceiveData16(spi);
if (spi_context_rx_buf_on(&data->ctx)) {
UNALIGNED_PUT(rx_frame, (uint16_t *)data->ctx.rx_buf);
}
spi_context_update_rx(&data->ctx, 2, 1);
}
}
/* Shift a SPI frame as slave. */
static void spi_stm32_shift_s(SPI_TypeDef *spi, struct spi_stm32_data *data)
{
if (ll_func_tx_is_empty(spi) && spi_context_tx_on(&data->ctx)) {
uint16_t tx_frame;
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf));
LL_SPI_TransmitData8(spi, tx_frame);
spi_context_update_tx(&data->ctx, 1, 1);
} else {
tx_frame = UNALIGNED_GET((uint16_t *)(data->ctx.tx_buf));
LL_SPI_TransmitData16(spi, tx_frame);
spi_context_update_tx(&data->ctx, 2, 1);
}
} else {
ll_func_disable_int_tx_empty(spi);
}
if (ll_func_rx_is_not_empty(spi) &&
spi_context_rx_buf_on(&data->ctx)) {
uint16_t rx_frame;
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
rx_frame = LL_SPI_ReceiveData8(spi);
UNALIGNED_PUT(rx_frame, (uint8_t *)data->ctx.rx_buf);
spi_context_update_rx(&data->ctx, 1, 1);
} else {
rx_frame = LL_SPI_ReceiveData16(spi);
UNALIGNED_PUT(rx_frame, (uint16_t *)data->ctx.rx_buf);
spi_context_update_rx(&data->ctx, 2, 1);
}
}
}
/*
* Without a FIFO, we can only shift out one frame's worth of SPI
* data, and read the response back.
*
* TODO: support 16-bit data frames.
*/
static int spi_stm32_shift_frames(SPI_TypeDef *spi, struct spi_stm32_data *data)
{
uint16_t operation = data->ctx.config->operation;
if (SPI_OP_MODE_GET(operation) == SPI_OP_MODE_MASTER) {
spi_stm32_shift_m(spi, data);
} else {
spi_stm32_shift_s(spi, data);
}
return spi_stm32_get_err(spi);
}
static void spi_stm32_complete(struct spi_stm32_data *data, SPI_TypeDef *spi,
int status)
{
#ifdef CONFIG_SPI_STM32_INTERRUPT
ll_func_disable_int_tx_empty(spi);
ll_func_disable_int_rx_not_empty(spi);
ll_func_disable_int_errors(spi);
#endif
spi_context_cs_control(&data->ctx, false);
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_fifo)
/* Flush RX buffer */
while (ll_func_rx_is_not_empty(spi)) {
(void) LL_SPI_ReceiveData8(spi);
}
#endif
if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) {
while (ll_func_spi_is_busy(spi)) {
/* NOP */
}
}
/* BSY flag is cleared when MODF flag is raised */
if (LL_SPI_IsActiveFlag_MODF(spi)) {
LL_SPI_ClearFlag_MODF(spi);
}
ll_func_disable_spi(spi);
#ifdef CONFIG_SPI_STM32_INTERRUPT
spi_context_complete(&data->ctx, status);
#endif
}
#ifdef CONFIG_SPI_STM32_INTERRUPT
static void spi_stm32_isr(void *arg)
{
struct device * const dev = (struct device *) arg;
const struct spi_stm32_config *cfg = dev->config_info;
struct spi_stm32_data *data = dev->driver_data;
SPI_TypeDef *spi = cfg->spi;
int err;
err = spi_stm32_get_err(spi);
if (err) {
spi_stm32_complete(data, spi, err);
return;
}
if (spi_stm32_transfer_ongoing(data)) {
err = spi_stm32_shift_frames(spi, data);
}
if (err || !spi_stm32_transfer_ongoing(data)) {
spi_stm32_complete(data, spi, err);
}
}
#endif
static int spi_stm32_configure(struct device *dev,
const struct spi_config *config)
{
const struct spi_stm32_config *cfg = DEV_CFG(dev);
struct spi_stm32_data *data = DEV_DATA(dev);
const uint32_t scaler[] = {
LL_SPI_BAUDRATEPRESCALER_DIV2,
LL_SPI_BAUDRATEPRESCALER_DIV4,
LL_SPI_BAUDRATEPRESCALER_DIV8,
LL_SPI_BAUDRATEPRESCALER_DIV16,
LL_SPI_BAUDRATEPRESCALER_DIV32,
LL_SPI_BAUDRATEPRESCALER_DIV64,
LL_SPI_BAUDRATEPRESCALER_DIV128,
LL_SPI_BAUDRATEPRESCALER_DIV256
};
SPI_TypeDef *spi = cfg->spi;
uint32_t clock;
int br;
if (spi_context_configured(&data->ctx, config)) {
/* Nothing to do */
return 0;
}
if ((SPI_WORD_SIZE_GET(config->operation) != 8)
&& (SPI_WORD_SIZE_GET(config->operation) != 16)) {
return -ENOTSUP;
}
if (clock_control_get_rate(device_get_binding(STM32_CLOCK_CONTROL_NAME),
(clock_control_subsys_t) &cfg->pclken, &clock) < 0) {
LOG_ERR("Failed call clock_control_get_rate");
return -EIO;
}
for (br = 1 ; br <= ARRAY_SIZE(scaler) ; ++br) {
uint32_t clk = clock >> br;
if (clk <= config->frequency) {
break;
}
}
if (br > ARRAY_SIZE(scaler)) {
LOG_ERR("Unsupported frequency %uHz, max %uHz, min %uHz",
config->frequency,
clock >> 1,
clock >> ARRAY_SIZE(scaler));
return -EINVAL;
}
LL_SPI_Disable(spi);
LL_SPI_SetBaudRatePrescaler(spi, scaler[br - 1]);
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) {
LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_HIGH);
} else {
LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_LOW);
}
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) {
LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_2EDGE);
} else {
LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_1EDGE);
}
LL_SPI_SetTransferDirection(spi, LL_SPI_FULL_DUPLEX);
if (config->operation & SPI_TRANSFER_LSB) {
LL_SPI_SetTransferBitOrder(spi, LL_SPI_LSB_FIRST);
} else {
LL_SPI_SetTransferBitOrder(spi, LL_SPI_MSB_FIRST);
}
LL_SPI_DisableCRC(spi);
if (config->cs || !IS_ENABLED(CONFIG_SPI_STM32_USE_HW_SS)) {
LL_SPI_SetNSSMode(spi, LL_SPI_NSS_SOFT);
} else {
if (config->operation & SPI_OP_MODE_SLAVE) {
LL_SPI_SetNSSMode(spi, LL_SPI_NSS_HARD_INPUT);
} else {
LL_SPI_SetNSSMode(spi, LL_SPI_NSS_HARD_OUTPUT);
}
}
if (config->operation & SPI_OP_MODE_SLAVE) {
LL_SPI_SetMode(spi, LL_SPI_MODE_SLAVE);
} else {
LL_SPI_SetMode(spi, LL_SPI_MODE_MASTER);
}
if (SPI_WORD_SIZE_GET(config->operation) == 8) {
LL_SPI_SetDataWidth(spi, LL_SPI_DATAWIDTH_8BIT);
} else {
LL_SPI_SetDataWidth(spi, LL_SPI_DATAWIDTH_16BIT);
}
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_fifo)
ll_func_set_fifo_threshold_8bit(spi);
#endif
#ifdef CONFIG_SPI_STM32_DMA
/* with LL_SPI_FULL_DUPLEX mode, both tx and Rx DMA are on */
if (data->dev_dma_tx) {
LL_SPI_EnableDMAReq_TX(spi);
}
if (data->dev_dma_rx) {
LL_SPI_EnableDMAReq_RX(spi);
}
#endif /* CONFIG_SPI_STM32_DMA */
#ifndef CONFIG_SOC_SERIES_STM32F1X
LL_SPI_SetStandard(spi, LL_SPI_PROTOCOL_MOTOROLA);
#endif
/* At this point, it's mandatory to set this on the context! */
data->ctx.config = config;
spi_context_cs_configure(&data->ctx);
LOG_DBG("Installed config %p: freq %uHz (div = %u),"
" mode %u/%u/%u, slave %u",
config, clock >> br, 1 << br,
(SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) ? 1 : 0,
(SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) ? 1 : 0,
(SPI_MODE_GET(config->operation) & SPI_MODE_LOOP) ? 1 : 0,
config->slave);
return 0;
}
static int spi_stm32_release(struct device *dev,
const struct spi_config *config)
{
struct spi_stm32_data *data = DEV_DATA(dev);
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static int transceive(struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous, struct k_poll_signal *signal)
{
const struct spi_stm32_config *cfg = DEV_CFG(dev);
struct spi_stm32_data *data = DEV_DATA(dev);
SPI_TypeDef *spi = cfg->spi;
int ret;
if (!tx_bufs && !rx_bufs) {
return 0;
}
#ifndef CONFIG_SPI_STM32_INTERRUPT
if (asynchronous) {
return -ENOTSUP;
}
#endif
spi_context_lock(&data->ctx, asynchronous, signal);
ret = spi_stm32_configure(dev, config);
if (ret) {
return ret;
}
/* Set buffers info */
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_fifo)
/* Flush RX buffer */
while (ll_func_rx_is_not_empty(spi)) {
(void) LL_SPI_ReceiveData8(spi);
}
#endif
LL_SPI_Enable(spi);
/* This is turned off in spi_stm32_complete(). */
spi_context_cs_control(&data->ctx, true);
#ifdef CONFIG_SPI_STM32_INTERRUPT
ll_func_enable_int_errors(spi);
if (rx_bufs) {
ll_func_enable_int_rx_not_empty(spi);
}
ll_func_enable_int_tx_empty(spi);
ret = spi_context_wait_for_completion(&data->ctx);
#else
do {
ret = spi_stm32_shift_frames(spi, data);
} while (!ret && spi_stm32_transfer_ongoing(data));
spi_stm32_complete(data, spi, ret);
#ifdef CONFIG_SPI_SLAVE
if (spi_context_is_slave(&data->ctx) && !ret) {
ret = data->ctx.recv_frames;
}
#endif /* CONFIG_SPI_SLAVE */
#endif
spi_context_release(&data->ctx, ret);
return ret;
}
#ifdef CONFIG_SPI_STM32_DMA
static int transceive_dma(struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous, struct k_poll_signal *signal)
{
const struct spi_stm32_config *cfg = DEV_CFG(dev);
struct spi_stm32_data *data = DEV_DATA(dev);
SPI_TypeDef *spi = cfg->spi;
int ret;
if (!tx_bufs && !rx_bufs) {
return 0;
}
if (asynchronous) {
return -ENOTSUP;
}
spi_context_lock(&data->ctx, asynchronous, signal);
data->dma_tx.transfer_complete = false;
data->dma_rx.transfer_complete = false;
ret = spi_stm32_configure(dev, config);
if (ret) {
return ret;
}
/* Set buffers info */
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
ret = spi_dma_move_buffers(dev);
if (ret) {
return ret;
}
LL_SPI_Enable(spi);
/* store spi peripheral address */
uint32_t periph_addr = data->dma_tx.dma_cfg.head_block->dest_address;
for (; ;) {
/* wait for SPI busy flag */
while (LL_SPI_IsActiveFlag_BSY(spi) == 1) {
}
/* once SPI is no more busy, wait for DMA transfer end */
while (spi_stm32_dma_transfer_ongoing(data) == 1) {
}
if ((data->ctx.tx_count <= 1) && (data->ctx.rx_count <= 1)) {
/* if it was the last count, then we are done */
break;
}
if (data->dma_tx.transfer_complete == true) {
LL_SPI_DisableDMAReq_TX(spi);
/*
* Update the current Tx buffer, decreasing length of
* data->ctx.tx_count, by its own length
*/
spi_context_update_tx(&data->ctx, 1, data->ctx.tx_len);
/* keep the same dest (peripheral) */
data->dma_tx.transfer_complete = false;
/* and reload dma with a new source (memory) buffer */
dma_reload(data->dev_dma_tx,
data->dma_tx.channel,
(uint32_t)data->ctx.tx_buf,
periph_addr,
data->ctx.tx_len);
}
if (data->dma_rx.transfer_complete == true) {
LL_SPI_DisableDMAReq_RX(spi);
/*
* Update the current Rx buffer, decreasing length of
* data->ctx.rx_count, by its own length
*/
spi_context_update_rx(&data->ctx, 1, data->ctx.rx_len);
/* keep the same source (peripheral) */
data->dma_rx.transfer_complete = false;
/* and reload dma with a new dest (memory) buffer */
dma_reload(data->dev_dma_rx,
data->dma_rx.channel,
periph_addr,
(uint32_t)data->ctx.rx_buf,
data->ctx.rx_len);
}
LL_SPI_EnableDMAReq_RX(spi);
LL_SPI_EnableDMAReq_TX(spi);
}
/* end of the transfer : all buffers sent/receceived */
LL_SPI_Disable(spi);
/* This is turned off in spi_stm32_complete(). */
spi_context_cs_control(&data->ctx, true);
spi_context_release(&data->ctx, ret);
return ret;
}
#endif /* CONFIG_SPI_STM32_DMA */
static int spi_stm32_transceive(struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
#ifdef CONFIG_SPI_STM32_DMA
struct spi_stm32_data *data = DEV_DATA(dev);
if ((data->dma_tx.dma_name != NULL)
&& (data->dma_rx.dma_name != NULL)) {
return transceive_dma(dev, config, tx_bufs, rx_bufs,
false, NULL);
}
#endif /* CONFIG_SPI_STM32_DMA */
return transceive(dev, config, tx_bufs, rx_bufs, false, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_stm32_transceive_async(struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
struct k_poll_signal *async)
{
return transceive(dev, config, tx_bufs, rx_bufs, true, async);
}
#endif /* CONFIG_SPI_ASYNC */
static const struct spi_driver_api api_funcs = {
.transceive = spi_stm32_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_stm32_transceive_async,
#endif
.release = spi_stm32_release,
};
static int spi_stm32_init(struct device *dev)
{
struct spi_stm32_data *data __attribute__((unused)) = dev->driver_data;
const struct spi_stm32_config *cfg = dev->config_info;
__ASSERT_NO_MSG(device_get_binding(STM32_CLOCK_CONTROL_NAME));
if (clock_control_on(device_get_binding(STM32_CLOCK_CONTROL_NAME),
(clock_control_subsys_t) &cfg->pclken) != 0) {
LOG_ERR("Could not enable SPI clock");
return -EIO;
}
#ifdef CONFIG_SPI_STM32_INTERRUPT
cfg->irq_config(dev);
#endif
#ifdef CONFIG_SPI_STM32_DMA
if (data->dma_tx.dma_name != NULL) {
/* Get the binding to the DMA device */
data->dev_dma_tx = device_get_binding(data->dma_tx.dma_name);
if (!data->dev_dma_tx) {
LOG_ERR("%s device not found", data->dma_tx.dma_name);
return -ENODEV;
}
}
if (data->dma_rx.dma_name != NULL) {
data->dev_dma_rx = device_get_binding(data->dma_rx.dma_name);
if (!data->dev_dma_rx) {
LOG_ERR("%s device not found", data->dma_rx.dma_name);
return -ENODEV;
}
}
#endif /* CONFIG_SPI_STM32_DMA */
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
#ifdef CONFIG_SPI_STM32_INTERRUPT
#define STM32_SPI_IRQ_HANDLER_DECL(id) \
static void spi_stm32_irq_config_func_##id(struct device *dev)
#define STM32_SPI_IRQ_HANDLER_FUNC(id) \
.irq_config = spi_stm32_irq_config_func_##id,
#define STM32_SPI_IRQ_HANDLER(id) \
static void spi_stm32_irq_config_func_##id(struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(id), \
DT_INST_IRQ(id, priority), \
spi_stm32_isr, DEVICE_GET(spi_stm32_##id), 0); \
irq_enable(DT_INST_IRQN(id)); \
}
#else
#define STM32_SPI_IRQ_HANDLER_DECL(id)
#define STM32_SPI_IRQ_HANDLER_FUNC(id)
#define STM32_SPI_IRQ_HANDLER(id)
#endif
#define DMA_CHANNEL_CONFIG(id, dir) \
DT_INST_DMAS_CELL_BY_NAME(id, dir, channel_config)
#define DMA_FEATURES(id, dir) \
DT_INST_DMAS_CELL_BY_NAME(id, dir, features)
#define SPI_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \
.dma_name = DT_INST_DMAS_LABEL_BY_NAME(index, dir), \
.channel = \
DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \
.dma_cfg = { \
.dma_slot = \
DT_INST_DMAS_CELL_BY_NAME(index, dir, slot), \
.channel_direction = STM32_DMA_CONFIG_DIRECTION( \
DMA_CHANNEL_CONFIG(index, dir)), \
.source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE( \
DMA_CHANNEL_CONFIG(index, dir)), \
.dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE( \
DMA_CHANNEL_CONFIG(index, dir)), \
.source_burst_length = 1, /* SINGLE transfer */ \
.dest_burst_length = 1, /* SINGLE transfer */ \
.channel_priority = STM32_DMA_CONFIG_PRIORITY( \
DMA_CHANNEL_CONFIG(index, dir)),\
.dma_callback = dma_callback, \
.block_count = 2, \
}, \
.src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \
DMA_CHANNEL_CONFIG(index, dir)), \
.dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \
DMA_CHANNEL_CONFIG(index, dir)), \
.transfer_complete = false, \
.fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \
DMA_FEATURES(index, dir)), \
#if CONFIG_SPI_STM32_DMA
#define SPI_DMA_CHANNEL(id, dir, DIR, src, dest) \
.dma_##dir = { \
COND_CODE_1(DT_INST_DMAS_HAS_NAME(id, dir), \
(SPI_DMA_CHANNEL_INIT(id, dir, DIR, src, dest)), \
(NULL)) \
},
#else
#define SPI_DMA_CHANNEL(id, dir, DIR, src, dest)
#endif
#define STM32_SPI_INIT(id) \
STM32_SPI_IRQ_HANDLER_DECL(id); \
\
static const struct spi_stm32_config spi_stm32_cfg_##id = { \
.spi = (SPI_TypeDef *) DT_INST_REG_ADDR(id), \
.pclken = { \
.enr = DT_INST_CLOCKS_CELL(id, bits), \
.bus = DT_INST_CLOCKS_CELL(id, bus) \
}, \
STM32_SPI_IRQ_HANDLER_FUNC(id) \
}; \
\
static struct spi_stm32_data spi_stm32_dev_data_##id = { \
SPI_CONTEXT_INIT_LOCK(spi_stm32_dev_data_##id, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_stm32_dev_data_##id, ctx), \
SPI_DMA_CHANNEL(id, rx, RX, PERIPHERAL, MEMORY) \
SPI_DMA_CHANNEL(id, tx, TX, MEMORY, PERIPHERAL) \
}; \
\
DEVICE_AND_API_INIT(spi_stm32_##id, DT_INST_LABEL(id), \
&spi_stm32_init, \
&spi_stm32_dev_data_##id, &spi_stm32_cfg_##id, \
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&api_funcs); \
\
STM32_SPI_IRQ_HANDLER(id)
DT_INST_FOREACH_STATUS_OKAY(STM32_SPI_INIT)