zephyr/drivers/timer/arm_arch_timer.c
Nicolas Pitre 13f2f2cca0 arm_arch_timer: fix maximum allowed cycles between reports
The code currently clamps timeout length so not to overflow the computed
cycle difference variable or the sys_clock_announce() argument's range.
But this completely fails to take into account the case where two
successive timeouts with enough time between them will still overflow the
cycle difference and/or the tick count.

Fix this by clamping the actual number of cycles to wait for based on
the previous report occurrence rather than clamping the timeout ticks.

Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
2024-05-07 21:22:12 -04:00

251 lines
6.8 KiB
C

/*
* Copyright (c) 2019 Carlo Caione <ccaione@baylibre.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/init.h>
#include <zephyr/drivers/timer/arm_arch_timer.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/irq.h>
#include <zephyr/sys_clock.h>
#include <zephyr/spinlock.h>
#include <zephyr/arch/cpu.h>
#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
/* precompute CYC_PER_TICK at driver init to avoid runtime double divisions */
static uint32_t cyc_per_tick;
#define CYC_PER_TICK cyc_per_tick
#else
#define CYC_PER_TICK (uint32_t)(sys_clock_hw_cycles_per_sec() \
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#endif
#if defined(CONFIG_GDBSTUB)
/* When interactively debugging, the cycle diff can overflow 32-bit variable */
#define cycle_diff_t uint64_t
#else
/* the unsigned long cast limits divisors to native CPU register width */
#define cycle_diff_t unsigned long
#endif
#define CYCLE_DIFF_MAX (~(cycle_diff_t)0)
/*
* We have two constraints on the maximum number of cycles we can wait for.
*
* 1) sys_clock_announce() accepts at most INT32_MAX ticks.
*
* 2) The number of cycles between two reports must fit in a cycle_diff_t
* variable before converting it to ticks.
*
* Then:
*
* 3) Pick the smallest between (1) and (2).
*
* 4) Take into account some room for the unavoidable IRQ servicing latency.
* Let's use 3/4 of the max range.
*
* Finally let's add the LSB value to the result so to clear out a bunch of
* consecutive set bits coming from the original max values to produce a
* nicer literal for assembly generation.
*/
#define CYCLES_MAX_1 ((uint64_t)INT32_MAX * (uint64_t)CYC_PER_TICK)
#define CYCLES_MAX_2 ((uint64_t)CYCLE_DIFF_MAX)
#define CYCLES_MAX_3 MIN(CYCLES_MAX_1, CYCLES_MAX_2)
#define CYCLES_MAX_4 (CYCLES_MAX_3 / 2 + CYCLES_MAX_3 / 4)
#define CYCLES_MAX_5 (CYCLES_MAX_4 + LSB_GET(CYCLES_MAX_4))
#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
/* precompute CYCLES_MAX at driver init to avoid runtime double divisions */
static uint64_t cycles_max;
#define CYCLES_MAX cycles_max
#else
#define CYCLES_MAX CYCLES_MAX_5
#endif
static struct k_spinlock lock;
static uint64_t last_cycle;
static uint64_t last_tick;
static uint32_t last_elapsed;
#if defined(CONFIG_TEST)
const int32_t z_sys_timer_irq_for_test = ARM_ARCH_TIMER_IRQ;
#endif
static void arm_arch_timer_compare_isr(const void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
#ifdef CONFIG_ARM_ARCH_TIMER_ERRATUM_740657
/*
* Workaround required for Cortex-A9 MPCore erratum 740657
* comp. ARM Cortex-A9 processors Software Developers Errata Notice,
* ARM document ID032315.
*/
if (!arm_arch_timer_get_int_status()) {
/*
* If the event flag is not set, this is a spurious interrupt.
* DO NOT modify the compare register's value, DO NOT announce
* elapsed ticks!
*/
k_spin_unlock(&lock, key);
return;
}
#endif /* CONFIG_ARM_ARCH_TIMER_ERRATUM_740657 */
uint64_t curr_cycle = arm_arch_timer_count();
uint64_t delta_cycles = curr_cycle - last_cycle;
uint32_t delta_ticks = (cycle_diff_t)delta_cycles / CYC_PER_TICK;
last_cycle += (cycle_diff_t)delta_ticks * CYC_PER_TICK;
last_tick += delta_ticks;
last_elapsed = 0;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
uint64_t next_cycle = last_cycle + CYC_PER_TICK;
arm_arch_timer_set_compare(next_cycle);
arm_arch_timer_set_irq_mask(false);
} else {
arm_arch_timer_set_irq_mask(true);
#ifdef CONFIG_ARM_ARCH_TIMER_ERRATUM_740657
/*
* In tickless mode, the compare register is normally not
* updated from within the ISR. Yet, to work around the timer's
* erratum, a new value *must* be written while the interrupt
* is being processed before the interrupt is acknowledged
* by the handling interrupt controller.
*/
arm_arch_timer_set_compare(~0ULL);
}
/*
* Clear the event flag so that in case the erratum strikes (the timer's
* vector will still be indicated as pending by the GIC's pending register
* after this ISR has been executed) the error will be detected by the
* check performed upon entry of the ISR -> the event flag is not set,
* therefore, no actual hardware interrupt has occurred.
*/
arm_arch_timer_clear_int_status();
#else
}
#endif /* CONFIG_ARM_ARCH_TIMER_ERRATUM_740657 */
k_spin_unlock(&lock, key);
sys_clock_announce(delta_ticks);
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return;
}
if (idle && ticks == K_TICKS_FOREVER) {
return;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t next_cycle;
if (ticks == K_TICKS_FOREVER) {
next_cycle = last_cycle + CYCLES_MAX;
} else {
next_cycle = (last_tick + last_elapsed + ticks) * CYC_PER_TICK;
if ((next_cycle - last_cycle) > CYCLES_MAX) {
next_cycle = last_cycle + CYCLES_MAX;
}
}
arm_arch_timer_set_compare(next_cycle);
arm_arch_timer_set_irq_mask(false);
k_spin_unlock(&lock, key);
}
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t curr_cycle = arm_arch_timer_count();
uint64_t delta_cycles = curr_cycle - last_cycle;
uint32_t delta_ticks = (cycle_diff_t)delta_cycles / CYC_PER_TICK;
last_elapsed = delta_ticks;
k_spin_unlock(&lock, key);
return delta_ticks;
}
uint32_t sys_clock_cycle_get_32(void)
{
return (uint32_t)arm_arch_timer_count();
}
uint64_t sys_clock_cycle_get_64(void)
{
return arm_arch_timer_count();
}
#ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT
void arch_busy_wait(uint32_t usec_to_wait)
{
if (usec_to_wait == 0) {
return;
}
uint64_t start_cycles = arm_arch_timer_count();
uint64_t cycles_to_wait = sys_clock_hw_cycles_per_sec() / USEC_PER_SEC * usec_to_wait;
for (;;) {
uint64_t current_cycles = arm_arch_timer_count();
/* this handles the rollover on an unsigned 32-bit value */
if ((current_cycles - start_cycles) >= cycles_to_wait) {
break;
}
}
}
#endif
#ifdef CONFIG_SMP
void smp_timer_init(void)
{
/*
* set the initial status of timer0 of each secondary core
*/
arm_arch_timer_set_compare(last_cycle + CYC_PER_TICK);
arm_arch_timer_enable(true);
irq_enable(ARM_ARCH_TIMER_IRQ);
arm_arch_timer_set_irq_mask(false);
}
#endif
static int sys_clock_driver_init(void)
{
IRQ_CONNECT(ARM_ARCH_TIMER_IRQ, ARM_ARCH_TIMER_PRIO,
arm_arch_timer_compare_isr, NULL, ARM_ARCH_TIMER_FLAGS);
arm_arch_timer_init();
#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
cyc_per_tick = sys_clock_hw_cycles_per_sec() / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
cycles_max = CYCLES_MAX_5;
#endif
arm_arch_timer_enable(true);
last_tick = arm_arch_timer_count() / CYC_PER_TICK;
last_cycle = last_tick * CYC_PER_TICK;
arm_arch_timer_set_compare(last_cycle + CYC_PER_TICK);
irq_enable(ARM_ARCH_TIMER_IRQ);
arm_arch_timer_set_irq_mask(false);
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);