zephyr/drivers/flash/flash_stm32g4x.c
Francois Ramu 7795558ad5 drivers: flash: stm32 flash base address from the DTS node
For the flash driver, the base address is the MCU internal flash
address (usually 0x8000000). This PR gets the that address
from the device tree node "st,stm32-nv-flash"
instead of relying on the CONFIG_FLASH_BASE_ADDRESS
which might differ when building for another flash memory.

Signed-off-by: Francois Ramu <francois.ramu@st.com>
2024-01-29 14:12:47 -06:00

455 lines
11 KiB
C

/*
* Copyright (c) 2019 Richard Osterloh <richard.osterloh@gmail.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define LOG_DOMAIN flash_stm32g4
#define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_DOMAIN);
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <string.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/sys/barrier.h>
#include <zephyr/init.h>
#include <soc.h>
#include <stm32_ll_system.h>
#include "flash_stm32.h"
#define STM32G4_SERIES_MAX_FLASH 512
#define BANK2_OFFSET (KB(STM32G4_SERIES_MAX_FLASH) / 2)
/*
* offset and len must be aligned on 8 for write,
* positive and not beyond end of flash
*/
bool flash_stm32_valid_range(const struct device *dev, off_t offset,
uint32_t len,
bool write)
{
#if defined(FLASH_STM32_DBANK) && (CONFIG_FLASH_SIZE < STM32G4_SERIES_MAX_FLASH)
/*
* In case of bank1/2 discontinuity, the range should not
* start before bank2 and end beyond bank1 at the same time.
* Locations beyond bank2 are caught by flash_stm32_range_exists.
*/
if ((offset < BANK2_OFFSET) && (offset + len > FLASH_SIZE / 2)) {
return 0;
}
#endif
if (write && !flash_stm32_valid_write(offset, len)) {
return false;
}
return flash_stm32_range_exists(dev, offset, len);
}
static inline void flush_cache(FLASH_TypeDef *regs)
{
if (regs->ACR & FLASH_ACR_DCEN) {
regs->ACR &= ~FLASH_ACR_DCEN;
/* Datasheet: DCRST: Data cache reset
* This bit can be written only when the data cache is disabled
*/
regs->ACR |= FLASH_ACR_DCRST;
regs->ACR &= ~FLASH_ACR_DCRST;
regs->ACR |= FLASH_ACR_DCEN;
}
if (regs->ACR & FLASH_ACR_ICEN) {
regs->ACR &= ~FLASH_ACR_ICEN;
/* Datasheet: ICRST: Instruction cache reset :
* This bit can be written only when the instruction cache
* is disabled
*/
regs->ACR |= FLASH_ACR_ICRST;
regs->ACR &= ~FLASH_ACR_ICRST;
regs->ACR |= FLASH_ACR_ICEN;
}
}
static int write_dword(const struct device *dev, off_t offset, uint64_t val)
{
volatile uint32_t *flash = (uint32_t *)(offset + FLASH_STM32_BASE_ADDRESS);
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
#if defined(FLASH_STM32_DBANK)
bool dcache_enabled = false;
#endif /* FLASH_STM32_DBANK */
uint32_t tmp;
int rc;
/* if the control register is locked, do not fail silently */
if (regs->CR & FLASH_CR_LOCK) {
LOG_ERR("CR locked");
return -EIO;
}
/* Check that no Flash main memory operation is ongoing */
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
/* Check if this double word is erased and value isn't 0.
*
* It is allowed to write only zeros over an already written dword
* See 3.3.7 in reference manual.
*/
if ((flash[0] != 0xFFFFFFFFUL ||
flash[1] != 0xFFFFFFFFUL) && val != 0UL) {
LOG_ERR("Word at offs %ld not erased", (long)offset);
return -EIO;
}
#if defined(FLASH_STM32_DBANK)
/*
* Disable the data cache to avoid the silicon errata ES0430 Rev 7 2.2.2:
* "Data cache might be corrupted during Flash memory read-while-write operation"
*/
if (regs->ACR & FLASH_ACR_DCEN) {
dcache_enabled = true;
regs->ACR &= (~FLASH_ACR_DCEN);
}
#endif /* FLASH_STM32_DBANK */
/* Set the PG bit */
regs->CR |= FLASH_CR_PG;
/* Flush the register write */
tmp = regs->CR;
/* Perform the data write operation at the desired memory address */
flash[0] = (uint32_t)val;
flash[1] = (uint32_t)(val >> 32);
/* Wait until the BSY bit is cleared */
rc = flash_stm32_wait_flash_idle(dev);
/* Clear the PG bit */
regs->CR &= (~FLASH_CR_PG);
#if defined(FLASH_STM32_DBANK)
/* Reset/enable the data cache if previously enabled */
if (dcache_enabled) {
regs->ACR |= FLASH_ACR_DCRST;
regs->ACR &= (~FLASH_ACR_DCRST);
regs->ACR |= FLASH_ACR_DCEN;
}
#endif /* FLASH_STM32_DBANK */
return rc;
}
static int erase_page(const struct device *dev, unsigned int offset)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
uint32_t tmp;
int rc;
int page;
/* if the control register is locked, do not fail silently */
if (regs->CR & FLASH_CR_LOCK) {
LOG_ERR("CR locked");
return -EIO;
}
/* Check that no Flash memory operation is ongoing */
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
#if defined(FLASH_STM32_DBANK)
bool bank_swap;
/* Check whether bank1/2 are swapped */
bank_swap = (LL_SYSCFG_GetFlashBankMode() == LL_SYSCFG_BANKMODE_BANK2);
if ((offset < (FLASH_SIZE / 2)) && !bank_swap) {
/* The pages to be erased is in bank 1 */
regs->CR &= ~FLASH_CR_BKER_Msk;
page = offset / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d on bank 1", page);
} else if ((offset >= BANK2_OFFSET) && bank_swap) {
/* The pages to be erased is in bank 1 */
regs->CR &= ~FLASH_CR_BKER_Msk;
page = (offset - BANK2_OFFSET) / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d on bank 1", page);
} else if ((offset < (FLASH_SIZE / 2)) && bank_swap) {
/* The pages to be erased is in bank 2 */
regs->CR |= FLASH_CR_BKER;
page = offset / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d on bank 2", page);
} else if ((offset >= BANK2_OFFSET) && !bank_swap) {
/* The pages to be erased is in bank 2 */
regs->CR |= FLASH_CR_BKER;
page = (offset - BANK2_OFFSET) / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d on bank 2", page);
} else {
LOG_ERR("Offset %d does not exist", offset);
return -EINVAL;
}
#else
page = offset / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d", page);
#endif
/* Set the PER bit and select the page you wish to erase */
regs->CR |= FLASH_CR_PER;
regs->CR &= ~FLASH_CR_PNB_Msk;
regs->CR |= (page << FLASH_CR_PNB_Pos);
/* Set the STRT bit */
regs->CR |= FLASH_CR_STRT;
/* flush the register write */
tmp = regs->CR;
/* Wait for the BSY bit */
rc = flash_stm32_wait_flash_idle(dev);
flush_cache(regs);
#ifdef FLASH_STM32_DBANK
regs->CR &= ~(FLASH_CR_PER | FLASH_CR_BKER);
#else
regs->CR &= ~(FLASH_CR_PER);
#endif
return rc;
}
int flash_stm32_block_erase_loop(const struct device *dev,
unsigned int offset,
unsigned int len)
{
unsigned int address = offset;
int rc = 0;
for (; address <= offset + len - 1 ; address += FLASH_PAGE_SIZE) {
rc = erase_page(dev, address);
if (rc < 0) {
break;
}
}
return rc;
}
int flash_stm32_write_range(const struct device *dev, unsigned int offset,
const void *data, unsigned int len)
{
int i, rc = 0;
for (i = 0; i < len; i += 8, offset += 8) {
rc = write_dword(dev, offset, ((const uint64_t *) data)[i>>3]);
if (rc < 0) {
return rc;
}
}
return rc;
}
static __unused int write_optb(const struct device *dev, uint32_t mask,
uint32_t value)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
int rc;
if (regs->CR & FLASH_CR_OPTLOCK) {
return -EIO;
}
if ((regs->OPTR & mask) == value) {
return 0;
}
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
regs->OPTR = (regs->OPTR & ~mask) | value;
regs->CR |= FLASH_CR_OPTSTRT;
/* Make sure previous write is completed. */
barrier_dsync_fence_full();
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
return 0;
}
#if defined(CONFIG_FLASH_STM32_WRITE_PROTECT)
/*
* Remark for future development implementing Write Protection for the L4 parts:
*
* STM32L4 allows for 2 write protected memory areas, c.f. FLASH_WEP1AR, FLASH_WRP1BR
* which are defined by their start and end pages.
*
* Other STM32 parts (i.e. F4 series) uses bitmask to select sectors.
*
* To implement Write Protection for L4 one should thus add a new EX_OP like
* FLASH_STM32_EX_OP_SECTOR_WP_RANGED in stm32_flash_api_extensions.h
*/
#endif /* CONFIG_FLASH_STM32_WRITE_PROTECT */
#if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION)
int flash_stm32_update_rdp(const struct device *dev, bool enable,
bool permanent)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
uint8_t current_level, target_level;
current_level =
(regs->OPTR & FLASH_OPTR_RDP_Msk) >> FLASH_OPTR_RDP_Pos;
target_level = current_level;
/*
* 0xAA = RDP level 0 (no protection)
* 0xCC = RDP level 2 (permanent protection)
* others = RDP level 1 (protection active)
*/
switch (current_level) {
case FLASH_STM32_RDP2:
if (!enable || !permanent) {
LOG_ERR("RDP level 2 is permanent and can't be changed!");
return -ENOTSUP;
}
break;
case FLASH_STM32_RDP0:
if (enable) {
target_level = FLASH_STM32_RDP1;
if (permanent) {
#if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION_PERMANENT_ALLOW)
target_level = FLASH_STM32_RDP2;
#else
LOG_ERR("Permanent readout protection (RDP "
"level 0 -> 2) not allowed");
return -ENOTSUP;
#endif
}
}
break;
default: /* FLASH_STM32_RDP1 */
if (enable && permanent) {
#if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION_PERMANENT_ALLOW)
target_level = FLASH_STM32_RDP2;
#else
LOG_ERR("Permanent readout protection (RDP "
"level 1 -> 2) not allowed");
return -ENOTSUP;
#endif
}
if (!enable) {
#if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION_DISABLE_ALLOW)
target_level = FLASH_STM32_RDP0;
#else
LOG_ERR("Disabling readout protection (RDP "
"level 1 -> 0) not allowed");
return -EACCES;
#endif
}
}
/* Update RDP level if needed */
if (current_level != target_level) {
LOG_INF("RDP changed from 0x%02x to 0x%02x", current_level,
target_level);
write_optb(dev, FLASH_OPTR_RDP_Msk,
(uint32_t)target_level << FLASH_OPTR_RDP_Pos);
}
return 0;
}
int flash_stm32_get_rdp(const struct device *dev, bool *enabled,
bool *permanent)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
uint8_t current_level;
current_level =
(regs->OPTR & FLASH_OPTR_RDP_Msk) >> FLASH_OPTR_RDP_Pos;
/*
* 0xAA = RDP level 0 (no protection)
* 0xCC = RDP level 2 (permanent protection)
* others = RDP level 1 (protection active)
*/
switch (current_level) {
case FLASH_STM32_RDP2:
*enabled = true;
*permanent = true;
break;
case FLASH_STM32_RDP0:
*enabled = false;
*permanent = false;
break;
default: /* FLASH_STM32_RDP1 */
*enabled = true;
*permanent = false;
}
return 0;
}
#endif /* CONFIG_FLASH_STM32_READOUT_PROTECTION */
void flash_stm32_page_layout(const struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
ARG_UNUSED(dev);
#if defined(FLASH_STM32_DBANK) && (CONFIG_FLASH_SIZE < STM32G4_SERIES_MAX_FLASH)
#define PAGES_PER_BANK ((FLASH_SIZE / FLASH_PAGE_SIZE) / 2)
static struct flash_pages_layout stm32g4_flash_layout[3];
if (stm32g4_flash_layout[0].pages_count == 0) {
/* Bank1 */
stm32g4_flash_layout[0].pages_count = PAGES_PER_BANK;
stm32g4_flash_layout[0].pages_size = FLASH_PAGE_SIZE;
/* Dummy page corresponding to discontinuity between bank1/2 */
stm32g4_flash_layout[1].pages_count = 1;
stm32g4_flash_layout[1].pages_size = BANK2_OFFSET
- (PAGES_PER_BANK * FLASH_PAGE_SIZE);
/* Bank2 */
stm32g4_flash_layout[2].pages_count = PAGES_PER_BANK;
stm32g4_flash_layout[2].pages_size = FLASH_PAGE_SIZE;
}
#else
static struct flash_pages_layout stm32g4_flash_layout[1];
if (stm32g4_flash_layout[0].pages_count == 0) {
stm32g4_flash_layout[0].pages_count = FLASH_SIZE
/ FLASH_PAGE_SIZE;
stm32g4_flash_layout[0].pages_size = FLASH_PAGE_SIZE;
}
#endif
*layout = stm32g4_flash_layout;
*layout_size = ARRAY_SIZE(stm32g4_flash_layout);
}
/* Override weak function */
int flash_stm32_check_configuration(void)
{
#if defined(FLASH_STM32_DBANK)
if (READ_BIT(FLASH->OPTR, FLASH_STM32_DBANK) == 0U) {
/* Single bank not supported when dualbank is possible */
LOG_ERR("Single bank configuration not supported");
return -ENOTSUP;
}
#endif
return 0;
}