/* * Copyright (c) 2019 Richard Osterloh * * SPDX-License-Identifier: Apache-2.0 */ #define LOG_DOMAIN flash_stm32g4 #define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL #include LOG_MODULE_REGISTER(LOG_DOMAIN); #include #include #include #include #include #include #include #include #include "flash_stm32.h" #define STM32G4_SERIES_MAX_FLASH 512 #define BANK2_OFFSET (KB(STM32G4_SERIES_MAX_FLASH) / 2) /* * offset and len must be aligned on 8 for write, * positive and not beyond end of flash */ bool flash_stm32_valid_range(const struct device *dev, off_t offset, uint32_t len, bool write) { #if defined(FLASH_STM32_DBANK) && (CONFIG_FLASH_SIZE < STM32G4_SERIES_MAX_FLASH) /* * In case of bank1/2 discontinuity, the range should not * start before bank2 and end beyond bank1 at the same time. * Locations beyond bank2 are caught by flash_stm32_range_exists. */ if ((offset < BANK2_OFFSET) && (offset + len > FLASH_SIZE / 2)) { return 0; } #endif if (write && !flash_stm32_valid_write(offset, len)) { return false; } return flash_stm32_range_exists(dev, offset, len); } static inline void flush_cache(FLASH_TypeDef *regs) { if (regs->ACR & FLASH_ACR_DCEN) { regs->ACR &= ~FLASH_ACR_DCEN; /* Datasheet: DCRST: Data cache reset * This bit can be written only when the data cache is disabled */ regs->ACR |= FLASH_ACR_DCRST; regs->ACR &= ~FLASH_ACR_DCRST; regs->ACR |= FLASH_ACR_DCEN; } if (regs->ACR & FLASH_ACR_ICEN) { regs->ACR &= ~FLASH_ACR_ICEN; /* Datasheet: ICRST: Instruction cache reset : * This bit can be written only when the instruction cache * is disabled */ regs->ACR |= FLASH_ACR_ICRST; regs->ACR &= ~FLASH_ACR_ICRST; regs->ACR |= FLASH_ACR_ICEN; } } static int write_dword(const struct device *dev, off_t offset, uint64_t val) { volatile uint32_t *flash = (uint32_t *)(offset + FLASH_STM32_BASE_ADDRESS); FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); #if defined(FLASH_STM32_DBANK) bool dcache_enabled = false; #endif /* FLASH_STM32_DBANK */ uint32_t tmp; int rc; /* if the control register is locked, do not fail silently */ if (regs->CR & FLASH_CR_LOCK) { LOG_ERR("CR locked"); return -EIO; } /* Check that no Flash main memory operation is ongoing */ rc = flash_stm32_wait_flash_idle(dev); if (rc < 0) { return rc; } /* Check if this double word is erased and value isn't 0. * * It is allowed to write only zeros over an already written dword * See 3.3.7 in reference manual. */ if ((flash[0] != 0xFFFFFFFFUL || flash[1] != 0xFFFFFFFFUL) && val != 0UL) { LOG_ERR("Word at offs %ld not erased", (long)offset); return -EIO; } #if defined(FLASH_STM32_DBANK) /* * Disable the data cache to avoid the silicon errata ES0430 Rev 7 2.2.2: * "Data cache might be corrupted during Flash memory read-while-write operation" */ if (regs->ACR & FLASH_ACR_DCEN) { dcache_enabled = true; regs->ACR &= (~FLASH_ACR_DCEN); } #endif /* FLASH_STM32_DBANK */ /* Set the PG bit */ regs->CR |= FLASH_CR_PG; /* Flush the register write */ tmp = regs->CR; /* Perform the data write operation at the desired memory address */ flash[0] = (uint32_t)val; flash[1] = (uint32_t)(val >> 32); /* Wait until the BSY bit is cleared */ rc = flash_stm32_wait_flash_idle(dev); /* Clear the PG bit */ regs->CR &= (~FLASH_CR_PG); #if defined(FLASH_STM32_DBANK) /* Reset/enable the data cache if previously enabled */ if (dcache_enabled) { regs->ACR |= FLASH_ACR_DCRST; regs->ACR &= (~FLASH_ACR_DCRST); regs->ACR |= FLASH_ACR_DCEN; } #endif /* FLASH_STM32_DBANK */ return rc; } static int erase_page(const struct device *dev, unsigned int offset) { FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); uint32_t tmp; int rc; int page; /* if the control register is locked, do not fail silently */ if (regs->CR & FLASH_CR_LOCK) { LOG_ERR("CR locked"); return -EIO; } /* Check that no Flash memory operation is ongoing */ rc = flash_stm32_wait_flash_idle(dev); if (rc < 0) { return rc; } #if defined(FLASH_STM32_DBANK) bool bank_swap; /* Check whether bank1/2 are swapped */ bank_swap = (LL_SYSCFG_GetFlashBankMode() == LL_SYSCFG_BANKMODE_BANK2); if ((offset < (FLASH_SIZE / 2)) && !bank_swap) { /* The pages to be erased is in bank 1 */ regs->CR &= ~FLASH_CR_BKER_Msk; page = offset / FLASH_PAGE_SIZE; LOG_DBG("Erase page %d on bank 1", page); } else if ((offset >= BANK2_OFFSET) && bank_swap) { /* The pages to be erased is in bank 1 */ regs->CR &= ~FLASH_CR_BKER_Msk; page = (offset - BANK2_OFFSET) / FLASH_PAGE_SIZE; LOG_DBG("Erase page %d on bank 1", page); } else if ((offset < (FLASH_SIZE / 2)) && bank_swap) { /* The pages to be erased is in bank 2 */ regs->CR |= FLASH_CR_BKER; page = offset / FLASH_PAGE_SIZE; LOG_DBG("Erase page %d on bank 2", page); } else if ((offset >= BANK2_OFFSET) && !bank_swap) { /* The pages to be erased is in bank 2 */ regs->CR |= FLASH_CR_BKER; page = (offset - BANK2_OFFSET) / FLASH_PAGE_SIZE; LOG_DBG("Erase page %d on bank 2", page); } else { LOG_ERR("Offset %d does not exist", offset); return -EINVAL; } #else page = offset / FLASH_PAGE_SIZE; LOG_DBG("Erase page %d", page); #endif /* Set the PER bit and select the page you wish to erase */ regs->CR |= FLASH_CR_PER; regs->CR &= ~FLASH_CR_PNB_Msk; regs->CR |= (page << FLASH_CR_PNB_Pos); /* Set the STRT bit */ regs->CR |= FLASH_CR_STRT; /* flush the register write */ tmp = regs->CR; /* Wait for the BSY bit */ rc = flash_stm32_wait_flash_idle(dev); flush_cache(regs); #ifdef FLASH_STM32_DBANK regs->CR &= ~(FLASH_CR_PER | FLASH_CR_BKER); #else regs->CR &= ~(FLASH_CR_PER); #endif return rc; } int flash_stm32_block_erase_loop(const struct device *dev, unsigned int offset, unsigned int len) { unsigned int address = offset; int rc = 0; for (; address <= offset + len - 1 ; address += FLASH_PAGE_SIZE) { rc = erase_page(dev, address); if (rc < 0) { break; } } return rc; } int flash_stm32_write_range(const struct device *dev, unsigned int offset, const void *data, unsigned int len) { int i, rc = 0; for (i = 0; i < len; i += 8, offset += 8) { rc = write_dword(dev, offset, ((const uint64_t *) data)[i>>3]); if (rc < 0) { return rc; } } return rc; } static __unused int write_optb(const struct device *dev, uint32_t mask, uint32_t value) { FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); int rc; if (regs->CR & FLASH_CR_OPTLOCK) { return -EIO; } if ((regs->OPTR & mask) == value) { return 0; } rc = flash_stm32_wait_flash_idle(dev); if (rc < 0) { return rc; } regs->OPTR = (regs->OPTR & ~mask) | value; regs->CR |= FLASH_CR_OPTSTRT; /* Make sure previous write is completed. */ barrier_dsync_fence_full(); rc = flash_stm32_wait_flash_idle(dev); if (rc < 0) { return rc; } return 0; } #if defined(CONFIG_FLASH_STM32_WRITE_PROTECT) /* * Remark for future development implementing Write Protection for the L4 parts: * * STM32L4 allows for 2 write protected memory areas, c.f. FLASH_WEP1AR, FLASH_WRP1BR * which are defined by their start and end pages. * * Other STM32 parts (i.e. F4 series) uses bitmask to select sectors. * * To implement Write Protection for L4 one should thus add a new EX_OP like * FLASH_STM32_EX_OP_SECTOR_WP_RANGED in stm32_flash_api_extensions.h */ #endif /* CONFIG_FLASH_STM32_WRITE_PROTECT */ #if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION) int flash_stm32_update_rdp(const struct device *dev, bool enable, bool permanent) { FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); uint8_t current_level, target_level; current_level = (regs->OPTR & FLASH_OPTR_RDP_Msk) >> FLASH_OPTR_RDP_Pos; target_level = current_level; /* * 0xAA = RDP level 0 (no protection) * 0xCC = RDP level 2 (permanent protection) * others = RDP level 1 (protection active) */ switch (current_level) { case FLASH_STM32_RDP2: if (!enable || !permanent) { LOG_ERR("RDP level 2 is permanent and can't be changed!"); return -ENOTSUP; } break; case FLASH_STM32_RDP0: if (enable) { target_level = FLASH_STM32_RDP1; if (permanent) { #if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION_PERMANENT_ALLOW) target_level = FLASH_STM32_RDP2; #else LOG_ERR("Permanent readout protection (RDP " "level 0 -> 2) not allowed"); return -ENOTSUP; #endif } } break; default: /* FLASH_STM32_RDP1 */ if (enable && permanent) { #if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION_PERMANENT_ALLOW) target_level = FLASH_STM32_RDP2; #else LOG_ERR("Permanent readout protection (RDP " "level 1 -> 2) not allowed"); return -ENOTSUP; #endif } if (!enable) { #if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION_DISABLE_ALLOW) target_level = FLASH_STM32_RDP0; #else LOG_ERR("Disabling readout protection (RDP " "level 1 -> 0) not allowed"); return -EACCES; #endif } } /* Update RDP level if needed */ if (current_level != target_level) { LOG_INF("RDP changed from 0x%02x to 0x%02x", current_level, target_level); write_optb(dev, FLASH_OPTR_RDP_Msk, (uint32_t)target_level << FLASH_OPTR_RDP_Pos); } return 0; } int flash_stm32_get_rdp(const struct device *dev, bool *enabled, bool *permanent) { FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); uint8_t current_level; current_level = (regs->OPTR & FLASH_OPTR_RDP_Msk) >> FLASH_OPTR_RDP_Pos; /* * 0xAA = RDP level 0 (no protection) * 0xCC = RDP level 2 (permanent protection) * others = RDP level 1 (protection active) */ switch (current_level) { case FLASH_STM32_RDP2: *enabled = true; *permanent = true; break; case FLASH_STM32_RDP0: *enabled = false; *permanent = false; break; default: /* FLASH_STM32_RDP1 */ *enabled = true; *permanent = false; } return 0; } #endif /* CONFIG_FLASH_STM32_READOUT_PROTECTION */ void flash_stm32_page_layout(const struct device *dev, const struct flash_pages_layout **layout, size_t *layout_size) { ARG_UNUSED(dev); #if defined(FLASH_STM32_DBANK) && (CONFIG_FLASH_SIZE < STM32G4_SERIES_MAX_FLASH) #define PAGES_PER_BANK ((FLASH_SIZE / FLASH_PAGE_SIZE) / 2) static struct flash_pages_layout stm32g4_flash_layout[3]; if (stm32g4_flash_layout[0].pages_count == 0) { /* Bank1 */ stm32g4_flash_layout[0].pages_count = PAGES_PER_BANK; stm32g4_flash_layout[0].pages_size = FLASH_PAGE_SIZE; /* Dummy page corresponding to discontinuity between bank1/2 */ stm32g4_flash_layout[1].pages_count = 1; stm32g4_flash_layout[1].pages_size = BANK2_OFFSET - (PAGES_PER_BANK * FLASH_PAGE_SIZE); /* Bank2 */ stm32g4_flash_layout[2].pages_count = PAGES_PER_BANK; stm32g4_flash_layout[2].pages_size = FLASH_PAGE_SIZE; } #else static struct flash_pages_layout stm32g4_flash_layout[1]; if (stm32g4_flash_layout[0].pages_count == 0) { stm32g4_flash_layout[0].pages_count = FLASH_SIZE / FLASH_PAGE_SIZE; stm32g4_flash_layout[0].pages_size = FLASH_PAGE_SIZE; } #endif *layout = stm32g4_flash_layout; *layout_size = ARRAY_SIZE(stm32g4_flash_layout); } /* Override weak function */ int flash_stm32_check_configuration(void) { #if defined(FLASH_STM32_DBANK) if (READ_BIT(FLASH->OPTR, FLASH_STM32_DBANK) == 0U) { /* Single bank not supported when dualbank is possible */ LOG_ERR("Single bank configuration not supported"); return -ENOTSUP; } #endif return 0; }