Previously, this was only done if an essential thread self-exited,
and was a runtime check that generated a kernel panic.
Now if any thread has k_thread_abort() called on it, and that thread
is essential to the system operation, this check is made. It is now
an assertion.
_NANO_ERR_INVALID_TASK_EXIT checks and printouts removed since this
is now an assertion.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
It's now possible to instantiate a thread object, but delay its
execution indefinitely. This was already supported with K_THREAD_DEFINE.
A new API, k_thread_start(), now exists to start threads that are in
this state.
The intended use-case is to initialize a thread with K_USER, then grant
it various access permissions, and only then start it.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Garbage values here could wreak havoc on the initial switch to main
depending on how arch-specific _Swap() manages memory permissions when
switching threads.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
All system calls made from userspace which involve pointers to kernel
objects (including device drivers) will need to have those pointers
validated; userspace should never be able to crash the kernel by passing
it garbage.
The actual validation with _k_object_validate() will be in the system
call receiver code, which doesn't exist yet.
- CONFIG_USERSPACE introduced. We are somewhat far away from having an
end-to-end implementation, but at least need a Kconfig symbol to
guard the incoming code with. Formal documentation doesn't exist yet
either, but will appear later down the road once the implementation is
mostly finalized.
- In the memory region for RAM, the data section has been moved last,
past bss and noinit. This ensures that inserting generated tables
with addresses of kernel objects does not change the addresses of
those objects (which would make the table invalid)
- The DWARF debug information in the generated ELF binary is parsed to
fetch the locations of all kernel objects and pass this to gperf to
create a perfect hash table of their memory addresses.
- The generated gperf code doesn't know that we are exclusively working
with memory addresses and uses memory inefficently. A post-processing
script process_gperf.py adjusts the generated code before it is
compiled to work with pointer values directly and not strings
containing them.
- _k_object_init() calls inserted into the init functions for the set of
kernel object types we are going to support so far
Issue: ZEP-2187
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Fixes https://github.com/zephyrproject-rtos/zephyr/issues/1280, but
also many other failures, where output was garbled due to this. Other
similarly affected issues are missing first benchmark (context) in
latency benchmark and some net tests.
Signed-off-by: Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
k_timer_start(timer, duration, period) is API used to
start a timer. Currently duration parameters accepts
only positive number.
But a user may require to do some periodic activity
ASAP and start timer with 0 value. So this patch
allows 0 as minimum value of duration.
In this patch, when duration value is set as 0 then
timer expiration handler is called instead of submiting
this into timeout queue.
Jira: ZEP-2497
Signed-off-by: Youvedeep Singh <youvedeep.singh@intel.com>
The API/Variable names in timing_info looks very speicific to
platform (like systick etc), whereas these variabled are used
across platforms (nrf/arm/quark).
So this patch :-
1. changing API/Variable names to generic one.
2. Creating some of Macros whose implimentation is platform
depenent.
Jira: ZEP-2314
Signed-off-by: Youvedeep Singh <youvedeep.singh@intel.com>
SYS_DLIST_FOR_EACH_CONTAINER is preferable over using
SYS_DLIST_FOR_EACH_NODE as that avoid casting directly which assumes the
node field is always at the beginning.
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
This is necessary in order for k_queue_get to work properly since that
is used with buffer pools which might be used by multiple threads asking
for buffers.
Jira: ZEP-2553
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
The boot banner is being printed after static threads have started, for
example this is visible with tests using ztest.
This puts the banner message before starting any threads.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Partial implementation of the IEEE 1003.1 pthread API, including
mutexes and condition variables in their default behaviors, and
pthread barrier objects. The rwlock and spinlocks abstractions are
not supported in this commit (both only make sense in the presence of
multiple SMP processors).
Note that this is the IPC mechanisms only. The thread creation API
itself is unsupported: Zephyr threads work differently from pthreads
and don't port cleanly in all cases. Likewise the "_INITIALIZER"
macros from pthreads don't work cleanly here, and _DECLARE macros have
been provided to statically initialize pthread primitives in a manner
more native to Zephyr
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
This has been a limitation caused by k_fifo which could only remove
items from the beggining, but with the change to use k_queue in
k_work_q it is now possible to remove items from any position with
use of k_queue_remove.
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
This makes use of POLL_EVENT in case k_poll is enabled which is
preferable over wait_q as that allows objects to be removed for the
data_q at any time.
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Save some memory for small memory systems when running ztests. We have
our own stack in ztest so we should be able to get away reducing down
the main stack.
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
* add nested interrupt support for interrupts
+ use a varibale exc_nest_count to trace nest interrupt and exception
+ regular interrupts can be nested by regular interrupts and fast
interrupts
+ fast interrupt's priority is the highest, cannot be nested
* remove the firq stack and exception stack
+ remove the coressponding kconfig option
+ all interrupts (normal and fast) and exceptions will be handled
in the same stack (_interrupt stack)
+ the pros are, smaller memory footprint (no firq stack), simpler
stack management, simpler codes, etc.. The cons are, possible
10-15 instructions overhead for the case where fast irq nests
regular irq
* add the case of ARC in test/kernel/gen_isr_table
Signed-off-by: Wayne Ren <wei.ren@synopsys.com>
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
If there are multiple preemptive threads with same priority, and any
one thread preempts before its time slice expires (due to yields/
semaphore take/queue etc), then next schedules thread is getting
lower time slide than expected.
This patch fixes this issue by accounting time expired when a thread
releases CPU before its time slide expires.
Jira: ZEP-2217/ZEP-2218
Signed-off-by: Youvedeep Singh <youvedeep.singh@intel.com>
Historically, stacks were just character buffers and could be treated
as such if the user wanted to look inside the stack data, and also
declared as an array of the desired stack size.
This is no longer the case. Certain architectures will create a memory
region much larger to account for MPU/MMU guard pages. Unfortunately,
the kernel interfaces treat both the declared stack, and the valid
stack buffer within it as the same char * data type, even though these
absolutely cannot be used interchangeably.
We introduce an opaque k_thread_stack_t which gets instantiated by
K_THREAD_STACK_DECLARE(), this is no longer treated by the compiler
as a character pointer, even though it really is.
To access the real stack buffer within, the result of
K_THREAD_STACK_BUFFER() can be used, which will return a char * type.
This should catch a bunch of programming mistakes at build time:
- Declaring a character array outside of K_THREAD_STACK_DECLARE() and
passing it to K_THREAD_CREATE
- Directly examining the stack created by K_THREAD_STACK_DECLARE()
which is not actually the memory desired and may trigger a CPU
exception
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This test was just wrong. If the current thread did not race with any
others during the allocation process, then the result will be false
because it was detected so earlier in the function. If we did race,
then sure: it might be true now if someone snuck in and freed a block.
But so what? We already have the block we want to break. The
behavior in the code as written was to early-exit from the break loop,
returning a buffer that was larger than the one requested (though
otherwise benign -- we wouldn't leak, just waste memory). No idea
what I was thinking.
Thanks to Du Quanwen for the diagnosis.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Subsequent patches will set this guard page as unmapped,
triggering a page fault on access. If this is due to
stack overflow, a double fault will be triggered,
which we are now capable of handling with a switch to
a know good stack.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Adds common and Kinetis-specific adc device tree properties, and updates
all Kinetis SoC and board dts files to include adc nodes.
Jira: ZEP-1396
Signed-off-by: Maureen Helm <maureen.helm@nxp.com>
Introduce a configurable boot delay option (defaulting to none) that
happens right after printing a boot delay banner, #before calling
main() in kernel/init.c:_main(), before taking timestamps for _main()
and once all the infrastructure is in place. Move also the boot banner
to happen after this delay.
The rationale for this is some boards will boot really fast and print
out some test case output in the serial port before the system that is
monitoring the serial port is able to read from the serial port.
This happens in MCUs whose serial port is embedded in a USB connection
which also is used to power the MCU board. When powering it on by
powering the USB port, there is a time it takes the host system to
detect the USB connection, enumerate the serial port, configure it and
load, start and read from the serial port. At this time, it might have
printed the output of the serial port.
While manually it is possible to press a reset button, on automation
setups this adds a lot of overhead and cabling or modifications to the
MCU that are easier (and cheaper) to overcome with this delay. Other
options (like using a separate serial line) might not be possible or
add a lot of cabling and cost, plus it'd also add extra build
configuration.
Change-Id: I2f4d1ba356de6cefa19b4ef5c9f19f87885d4dfd
Signed-off-by: Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
Commit 1bc2fdc70 ("dts: arm: STM32 boards use DT to configure I2C")
added a new Kconfig option, HAS_DTS_I2C, which should be set when the
target supports configuration of I2C peripherals via Device Tree.
Currently, STM32 targets select this. However, the fact that
HAS_DTS_I2C has no default is causing prompting when building Zephyr
on other targets with DTS. To avoid this and allow builds to complete
as usual, have HAS_DTS_I2C default to n.
Signed-off-by: Marti Bolivar <marti.bolivar@linaro.org>
Upcoming memory protection features will be placing some additional
constraints on kernel objects:
- They need to reside in memory owned by the kernel and not the
application
- Certain kernel object validation schemes will require some run-time
initialization of all kernel objects before they can be used.
Per Ben these initializer macros were never intended to be public. It is
not forbidden to use them, but doing so requires care: the memory being
initialized must reside in kernel space, and extra runtime
initialization steps may need to be peformed before they are fully
usable as kernel objects. In particular, kernel subsystems or drivers
whose objects are already in kernel memory may still need to use these
macros if they define kernel objects as members of a larger data
structure.
It is intended that application developers instead use the
K_<object>_DEFINE macros, which will automatically put the object in the
right memory and add them to a section which can be iterated over at
boot to complete initiailization.
There was no K_WORK_DEFINE() macro for creating struct k_work objects,
this is now added.
k_poll_event and k_poll_signal are intended to be instatiated from
application memory and have not been changed.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Configure I2C using DT for the following STM32 boards:
disco_l475_iot1
nucleo_f401re
96b_carbon
olimexino_stm32
Signed-off-by: Yannis Damigos <giannis.damigos@gmail.com>
Applications will have their own BSS and data sections which
will need to be additionally copied.
This covers the common C implementation of these functions.
Arches which implement their own optimized versions will need
to be updated.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
1. Changed _tsc_read() to k_cycles_get_32(). Thus reading the
time stamp will be agnostic of the architecutre used.
2. Changed the variable names from *_tsc to *_time_stamp.
JIRA: ZEP-1426
Signed-off-by: Adithya Baglody <adithya.nagaraj.baglody@intel.com>
The existing __stack decorator is not flexible enough for upcoming
thread stack memory protection scenarios. Wrap the entire thing in
a declaration macro abstraction instead, which can be implemented
on a per-arch or per-SOC basis.
Issue: ZEP-2185
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
One of the stack sentinel policies was to check the sentinel
any time a cooperative context switch is done (i.e, _Swap is
called).
This was done by adding a hook to _check_stack_sentinel in
every arch's __swap function.
This way is cleaner as we just have the hook in one inline
function rather than implemented in several different assembly
dialects.
The check upon interrupt is now made unconditionally rather
than checking if we are calling __swap, since the check now
is only called on cooperative _Swap(). The interrupt is always
serviced first.
Issue: ZEP-2244
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
The kernel tracks time slice usage with the _time_slice_elapsed global.
Every time the timer interrupt goes off and the timer driver calls
_nano_sys_clock_tick_announce() with the elapsed time, this is added to
_time_slice_elapsed. If it exceeds the total time slice, the thread is
moved to the back of the queue for that priority level and
_time_slice_elapsed is reset to zero.
In a non-tickless kernel, this is the only time _time_slice_elapsed is
reset. If a thread uses up a partial time slice, and then cooperatively
switches to another thread, the next thread will inherit the remaining
time slice, causing it not to be able to run as long as it ought to.
There does exist code to properly reset the elapsed count, but it was
only compiled in a tickless kernel. Now it is built any time
CONFIG_TIMESLICING is enabled.
Issue: ZEP-2107
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Fixes sparse warning:
<snip>/zephyr/kernel/sched.c:368:6: warning: symbol '_dump_ready_q' was not declared. Should it be static?
Change-Id: I156e89f1d74178bbd99cc25e532da544c7ebee60
Signed-off-by: Maciek Borzecki <maciek.borzecki@gmail.com>
Fixes sparse warnings:
<snip>/zephyr/kernel/timer.c:15:16: warning: symbol '_trace_list_k_timer' was not declared. Should it be static?
<snip>/zephyr/kernel/sem.c:32:14: warning: symbol'_trace_list_k_sem' was not declared. Should it be static?
<snip>/zephyr/kernel/stack.c:24:16: warning: symbol '_trace_list_k_stack' was not declared. Should it be static?
<snip>/zephyr/kernel/queue.c:27:16: warning: symbol '_trace_list_k_queue' was not declared. Should it be static?
<snip>/zephyr/kernel/pipes.c:40:15: warning: symbol '_trace_list_k_pipe' was not declared. Should it be static?
<snip>/zephyr/kernel/mutex.c:46:16: warning: symbol '_trace_list_k_mutex' was not declared. Should it be static?
<snip>/zephyr/kernel/msg_q.c:26:15: warning: symbol '_trace_list_k_msgq' was not declared. Should it be static?
<snip>/zephyr/kernel/mem_slab.c:20:19: warning: symbol '_trace_list_k_mem_slab' was not declared. Should it be static?
<snip>/zephyr/kernel/mailbox.c:53:15: warning: symbol '_trace_list_k_mbox' was not declared. Should it be static?
Change-Id: I42d55aea9855b9c1dd560852ca033c9a19f1ac21
Signed-off-by: Maciek Borzecki <maciek.borzecki@gmail.com>
Fixes sparse warning:
CHECK <snip>/zephyr/kernel/thread.c
<snip>/zephyr/kernel/thread.c:184:20: error: symbol '_thread_entry' redeclared with different type (originally declared at <snip>/zephyr/kernel/include/nano_internal.h:43) - different modifiers
CC kernel/thread.o
Change-Id: I2223493cdf97c811c661773f8fd430e6c00cbaa0
Signed-off-by: Maciek Borzecki <maciek.borzecki@gmail.com>
This places a sentinel value at the lowest 4 bytes of a stack
memory region and checks it at various intervals, including when
servicing interrupts or context switching.
This is implemented on all arches except ARC, which supports stack
bounds checking directly in hardware.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
The initial dummy thread context used for the initial __swap to
the main thread at early kernel initialization was not marked as a dummy
thread as it ought to be.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This patch amounts to a mostly complete rewrite of the k_mem_pool
allocator, which had been the source of historical complaints vs. the
one easily available in newlib. The basic design of the allocator is
unchanged (it's still a 4-way buddy allocator), but the implementation
has made different choices throughout. Major changes:
Space efficiency: The old implementation required ~2.66 bytes per
"smallest block" in overhead, plus 16 bytes per log4 "level" of the
allocation tree, plus a global tracking struct of 32 bytes and a very
surprising 12 byte overhead (in struct k_mem_block) per active
allocation on top of the returned data pointer. This new allocator
uses a simple bit array as the only per-block storage and places the
free list into the freed blocks themselves, requiring only ~1.33 bits
per smallest block, 12 bytes per level, 32 byte globally and only 4
bytes of per-allocation bookeeping. And it puts more of the generated
tree into BSS, slightly reducing binary sizes for non-trivial pool
sizes (even as the code size itself has increased a tiny bit).
IRQ safe: atomic operations on the store have been cut down to be at
most "4 bit sets and dlist operations" (i.e. a few dozen
instructions), reducing latency significantly and allowing us to lock
against interrupts cleanly from all APIs. Allocations and frees can
be done from ISRs now without limitation (well, obviously you can't
sleep, so "timeout" must be K_NO_WAIT).
Deterministic performance: there is no more "defragmentation" step
that must be manually managed. Block coalescing is done synchronously
at free time and takes constant time (strictly log4(num_levels)), as
the detection of four free "partner bits" is just a simple shift and
mask operation.
Cleaner behavior with odd sizes. The old code assumed that the
specified maximum size would be a power of four multiple of the
minimum size, making use of non-standard buffer sizes problematic.
This implementation re-aligns the sub-blocks at each level and can
handle situations wehre alignment restrictions mean fewer than 4x will
be available. If you want precise layout control, you can still
specify the sizes rigorously. It just doesn't break if you don't.
More portable: the original implementation made use of GNU assembler
macros embedded inline within C __asm__ statements. Not all
toolchains are actually backed by a GNU assembler even when the
support the GNU assembly syntax. This is pure C, albeit with some
hairy macros to expand the compile-time-computed values.
Related changes that had to be rolled into this patch for bisectability:
* The new allocator has a firm minimum block size of 8 bytes (to store
the dlist_node_t). It will "work" with smaller requested min_size
values, but obviously makes no firm promises about layout or how
many will be available. Unfortunately many of the tests were
written with very small 4-byte minimum sizes and to assume exactly
how many they could allocate. Bump the sizes to match the allocator
minimum.
* The mbox and pipes API made use of the internals of k_mem_block and
had to be ported to the new scheme. Blocks no longer store a
backpointer to the pool that allocated them (it's an integer ID in a
bitfield) , so if you want to "nullify" them you have to use the
data pointer.
* test_mbox_api had a bug were it was prematurely freeing k_mem_blocks
that it sent through the mailbox. This worked in the old allocator
because the memory wouldn't be touched when freed, but now we stuff
list pointers in there and the bug was exposed.
* Remove test_mpool_options: the options (related to defragmentation
behavior) tested no longer exist.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Unline k_thread_spawn(), the struct k_thread can live anywhere and not
in the thread's stack region. This will be useful for memory protection
scenarios where private kernel structures for a thread are not
accessible by that thread, or we want to allow the thread to use all the
stack space we gave it.
This requires a change to the internal _new_thread() API as we need to
provide a separate pointer for the k_thread.
By default, we still create internal threads with the k_thread in stack
memory. Forthcoming patches will change this, but we first need to make
it easier to define k_thread memory of variable size depending on
whether we need to store coprocessor state or not.
Change-Id: I533bbcf317833ba67a771b356b6bbc6596bf60f5
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Newlib names this function __errno(), so if we want Zephyr to work
with Newlib seamlessly, it's better to just follow Newlib's naming
convention for Zephyr's own minimal libc.
Signed-off-by: Paul Sokolovsky <paul.sokolovsky@linaro.org>
Currently, a queue/fifo getter chooses how long to wait for an
element. But there are scenarios when putter would know better,
there should be a way to expire getter's timeout to make it run
again. k_queue_cancel_wait() and k_fifo_cancel_wait() functions
do just that. They cause corresponding *_get() functions to return
with NULL value, as if timeout expired on getter's side (even
K_FOREVER).
This can be used to signal out of band conditions from putter to
getter, e.g. end of processing, error, configuration change, etc.
A specific event would be communicated to getter by other means
(e.g. using existing shared context structures).
Without this call, achieving the same effect would require e.g.
calling k_fifo_put() with a pointer to a special sentinal memory
structure - such structure would need to be allocated somewhere
and somehow, and getter would need to recognize it from a normal
data item. Having cancel_wait() functions offers an elegant
alternative. From this perspective, these calls can be seen as
an equivalent to e.g. k_fifo_put(fifo, NULL), except that such
call won't work in practice.
Change-Id: I47b7f690dc325a80943082bcf5345c41649e7024
Signed-off-by: Paul Sokolovsky <paul.sokolovsky@linaro.org>
fix misspelling in Kconfig files that would show up in configuration
documentation and screens.
Signed-off-by: David B. Kinder <david.b.kinder@intel.com>