This will do until we can set up a proper page pool using
all unused ram for paging structures, heaps, and anonymous
mappings.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
We don't need this for stacks any more and only use this
for pre-calculating the boot page tables size. Move to C
code, this doesn't need to be in headers anywhere.
Names adjusted for conciseness.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
- z_x86_userspace_enter() for both 32-bit and 64-bit now
call into C code to clear the stack buffer and set the
US bits in the page tables for the memory range.
- Page tables are now associated with memory domains,
instead of having separate page tables per thread.
A spinlock protects write access to these page tables,
and read/write access to the list of active page
tables.
- arch_mem_domain_init() implemented, allocating and
copying page tables from the boot page tables.
- struct arch_mem_domain defined for x86. It has
a page table link and also a list node for iterating
over them.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Page table management for x86 is being revised such that there
will not in many cases be a pristine, master set of page tables.
Instead, when mapping memory, use unused PTE bits to store the
original RW, US, and XD settings when the mapping was made.
This will allow memory domains to alter page tables while still
being able to restore the original mapping permissions.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This will be needed when we support memory un-mapping, or
the same user mode page tables on multiple CPUs. Neither
are implemented yet.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
In the code path for nested interrupts, we are not saving
RBX, yet the assembly code is using it as a storage location
for the ISR.
Use RAX. It is backed up in both the nested and non-nested
cases, and the ASM code is not currently using it at that
point.
Fixes: #29594
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Adds the necessary bits to initialize TLS in the stack
area and sets up CPU registers during context switch.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Adds the necessary bits to initialize TLS in the stack
area and sets up CPU registers during context switch.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
This seems like a typo since all other places accessing bus_segs in
this context use i as the index.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
These days all threads are always a member of a memory domain,
remove this NULL check as it won't ever be false.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This function iterates over the thread's memory domain
and updates page tables based on it. We need to be holding
z_mem_domain_lock while this happens.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
fixes the following compilation errors
- sys_cache_line_size was undeclared at first use
- there was an assignment to an rvalue in arch_dcache_flush
Signed-off-by: Maximilian Bachmann <m.bachmann@acontis.com>
The hardcoded APIC ID will be kept as default if the CPU is not found in
ACPI MADT.
Note that ACPI may expose more "CPUs" than there actually are
physically. Thus, make the logic aware of this possibility by checking
the enabled flas. (Non-enabled CPU are ignored).
This fixes up_squared board made of Celeron CPU.
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
No need to mix super short version of names with other structures
having full name. Let's follow a more relevant naming where each and
every attribute name is self-documenting then. (such as s/id/apic_id
etc...)
Also make CONFIG_ACPI usable through IS_ENABLED by enclosing exposed
functions with ifdef CONFIG_ACPI.
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
We are not RAM-constrained and there is an open issue where
exception stack overflows are not caught. Increase this size
so that options like CONFIG_NO_OPTIMIZATIONS work without
incident.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Commit 5632ee26f3 introduced an issue where in order to use MMIO
configuration:
- do_pcie_mmio_cfg is required to be true
- Only set to true in pcie_mm_init()
- Which is only called from pcie_mm_conf()
- Which is only called from pcie_conf() if do_pcie_mmio_cfg is
already true!
The end result is that MMIO configuration will never be used.
Fix the situation by moving the initialization check to pcie_conf().
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
The current instrumentation point for CONFIG_TRACING added in
PR #28512 had two problems:
- If userspace and KPTI are enabled, the tracing point is simply
never run if we are resuming a user thread as the
z_x86_trampoline_to_user function is jumped to and calls
'iret' from there
- Only %rdi is being saved. However, at that location, *all*
caller-saved registers are in use as they contain the
resumed thread's context
Simplest solution is to move this up near where we update page
tables. The #ifdefs are used to make sure we don't push/pop
%rdi more than once. At that point in the code only %rdi
is in use among the volatile registers.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Tracing switched in threads in C code does not work, it needs to happen
in the arch_switch code. See also Xtensa and ARC.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Newer QEMU (5.1) hangs / timeouts on a number of tests on x86_64. In
debugging the issue this is related to a fix in QEMU 5.1 that
validates memory region access. QEMU has the APIC region only allowing
1 to 4 byte access. 64-bit access is treated as an error.
Change the APIC EOI access in locore.S back to just doing a 32-bit
access.
Fixes # 28453
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
The boot code of x86_64 initializes the stack (if enabled)
with a hard-coded size for the ISR stack. However,
the stack being used does not have to be the ISR stack,
and can be any defined stacks. So pass in the actual size
of the stack so the stack can be initialized properly.
Fixes#21843
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Changes to paging code ensured that the NULL virtual page is
never mapped. Since RAM is identity mapped, on a PC-like
system accessing the BIOS Data Area in the first 4K requires
a memory mapping. We need to read this to probe the ACPI RSDP.
Additionally check that the BDA has something in it as well
and not a bunch of zeroes.
It is unclear whether this function is truly safe on UEFI
systems, but that is for another day.
Fixes: #27867
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
When probing for PCI-E device resources, it is possible that
configuration via MMIO is not available. This may caused by
BIOS or its settings. So when CONFIG_PCIE_MMIO_CFG=y, have
a fallback path to config devices via PIO. The inability to
config via MMIO has been observed on a couple UP Squared
boards.
Fixes#27339
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
This code had one purpose only, feed timing information into a test and
was not used by anything else. The custom trace points unfortunatly were
not accurate and this test was delivering informatin that conflicted
with other tests we have due to placement of such trace points in the
architecture and kernel code.
For such measurements we are planning to use the tracing functionality
in a special mode that would be used for metrics without polluting the
architecture and kernel code with additional tracing and timing code.
Furthermore, much of the assembly code used had issues.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
We no longer plan to support a split address space with
the kernel in high memory and per-process address spaces.
Because of this, we can simplify some things. System RAM
is now always identity mapped at boot.
We no longer require any virtual-to-physical translation
for page tables, and can remove the dual-mapping logic
from the page table generation script since we won't need
to transition the instruction point off of physical
addresses.
CONFIG_KERNEL_VM_BASE and CONFIG_KERNEL_VM_LIMIT
have been removed. The kernel's address space always
starts at CONFIG_SRAM_BASE_ADDRESS, of a fixed size
specified by CONFIG_KERNEL_VM_SIZE.
Driver MMIOs and other uses of k_mem_map() are still
virtually mapped, and the later introduction of demand
paging will result in only a subset of system RAM being
a fixed identity mapping instead of all of it.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
In order to be possible to debug usermode threads need to be able
issue breakpoint and debug exceptions. To do this it is necessary to
set DPL bits to, at least, the same CPL level.
Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
It implements gdb remote protocol to talk with a host gdb during the
debug session. The implementation is divided in three layers:
1 - The top layer that is responsible for the gdb remote protocol.
2 - An architecture specific layer responsible to write/read registers,
set breakpoints, handle exceptions, ...
3 - A transport layer to be used to communicate with the host
The communication with GDB in the host is synchronous and the systems
stops execution waiting for instructions and return its execution after
a "continue" or "step" command. The protocol has an exception that is
when the host sends a packet to cause an interruption, usually triggered
by a Ctrl-C. This implementation ignores this instruction though.
This initial work supports only X86 using uart as backend.
Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
Now that device_api attribute is unmodified at runtime, as well as all
the other attributes, it is possible to switch all device driver
instance to be constant.
A coccinelle rule is used for this:
@r_const_dev_1
disable optional_qualifier
@
@@
-struct device *
+const struct device *
@r_const_dev_2
disable optional_qualifier
@
@@
-struct device * const
+const struct device *
Fixes#27399
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
The x86 paging code has been rewritten to support another paging mode
and non-identity virtual mappings.
- Paging code now uses an array of paging level characteristics and
walks tables using for loops. This is opposed to having different
functions for every paging level and lots of #ifdefs. The code is
now more concise and adding new paging modes should be trivial.
- We now support 32-bit, PAE, and IA-32e page tables.
- The page tables created by gen_mmu.py are now installed at early
boot. There are no longer separate "flat" page tables. These tables
are mutable at any time.
- The x86_mmu code now has a private header. Many definitions that did
not need to be in public scope have been moved out of mmustructs.h
and either placed in the C file or in the private header.
- Improvements to dumping page table information, with the physical
mapping and flags all shown
- arch_mem_map() implemented
- x86 userspace/memory domain code ported to use the new
infrastructure.
- add logic for physical -> virtual instruction pointer transition,
including cleaning up identity mappings after this takes place.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
The address was being truncated because we were using
32-bit registers. CONFIG_MMU is always enabled on 64-bit,
remove the #ifdef.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Move tracing switched_in and switched_out to the architecture code and
remove duplications. This changes swap tracing for x86, xtensa.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
This set of functions seem to be there just because of historical
reasons, stemming from Kbuild. They are non-obvious and prone to errors,
so remove them in favor of the `_ifdef()` ones with an explicit
`CONFIG_` condition.
Script used:
git grep -l _if_kconfig | xargs sed -E -i
"s/_if_kconfig\(\s*(\w*)/_ifdef(CONFIG_\U\1\E \1/g"
Signed-off-by: Carles Cufi <carles.cufi@nordicsemi.no>
These stacks are appropriate for threads that run purely in
supervisor mode, and also as stacks for interrupt and exception
handling.
Two new arch defines are introduced:
- ARCH_KERNEL_STACK_GUARD_SIZE
- ARCH_KERNEL_STACK_OBJ_ALIGN
New public declaration macros:
- K_KERNEL_STACK_RESERVED
- K_KERNEL_STACK_EXTERN
- K_KERNEL_STACK_DEFINE
- K_KERNEL_STACK_ARRAY_DEFINE
- K_KERNEL_STACK_MEMBER
- K_KERNEL_STACK_SIZEOF
If user mode is not enabled, K_KERNEL_STACK_* and K_THREAD_STACK_*
are equivalent.
Separately generated privilege elevation stacks are now declared
like kernel stacks, removing the need for K_PRIVILEGE_STACK_ALIGN.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This now takes a stack pointer as an argument with TLS
and random offsets accounted for properly.
Based on #24467 authored by Flavio Ceolin.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
The core kernel computes the initial stack pointer
for a thread, properly aligning it and subtracting out
any random offsets or thread-local storage areas.
arch_new_thread() no longer needs to make any calculations,
an initial stack frame may be placed at the bounds of
the new 'stack_ptr' parameter passed in. This parameter
replaces 'stack_size'.
thread->stack_info is now set before arch_new_thread()
is invoked, z_new_thread_init() has been removed.
The values populated may need to be adjusted on arches
which carve-out MPU guard space from the actual stack
buffer.
thread->stack_info now has a new member 'delta' which
indicates any offset applied for TLS or random offset.
It's used so the calculations don't need to be repeated
if the thread later drops to user mode.
CONFIG_INIT_STACKS logic is now performed inside
z_setup_new_thread(), before arch_new_thread() is called.
thread->stack_info is now defined as the canonical
user-accessible area within the stack object, including
random offsets and TLS. It will never include any
carved-out memory for MPU guards and must be updated at
runtime if guards are removed.
Available stack space is now optimized. Some arches may
need to significantly round up the buffer size to account
for page-level granularity or MPU power-of-two requirements.
This space is now accounted for and used by virtue of
the Z_THREAD_STACK_SIZE_ADJUST() call in z_setup_new_thread.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
MISRA-C wants the parameter names in a function implementaion
to match the names used by the header prototype.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>