drivers: intc: Fix for ESP32C6 interrupt sources allocation

Fix to properly allocate IRQs for interrupt sources over 60.
It also screens out non-allocatable IRQs used by the CPU.

Signed-off-by: Raffael Rostagno <raffael.rostagno@espressif.com>
This commit is contained in:
Raffael Rostagno 2024-05-14 12:33:47 -03:00 committed by Anas Nashif
commit 67e43f6a81
4 changed files with 124 additions and 23 deletions

View file

@ -5,7 +5,7 @@
config INTC_ESP32 config INTC_ESP32
bool "Interrupt allocator for Xtensa-based Espressif SoCs" bool "Interrupt allocator for Xtensa-based Espressif SoCs"
default y if SOC_FAMILY_ESPRESSIF_ESP32 && !SOC_SERIES_ESP32C3 default y if SOC_FAMILY_ESPRESSIF_ESP32 && !SOC_SERIES_ESP32C3 && !SOC_SERIES_ESP32C6
help help
Enable custom interrupt allocator for Espressif SoCs based on Xtensa Enable custom interrupt allocator for Espressif SoCs based on Xtensa
architecture. architecture.

View file

@ -3,7 +3,7 @@
config INTC_ESP32C3 config INTC_ESP32C3
bool "ESP32C3 interrupt controller driver" bool "ESP32C3 interrupt controller driver"
depends on SOC_SERIES_ESP32C3 depends on SOC_SERIES_ESP32C3 || SOC_SERIES_ESP32C6
default y default y
help help
Enables the esp32c3 interrupt controller driver to handle ISR Enables the esp32c3 interrupt controller driver to handle ISR

View file

@ -41,7 +41,34 @@ LOG_MODULE_REGISTER(intc_esp32c3, CONFIG_LOG_DEFAULT_LEVEL);
#define ESP32C3_INTC_SRCS_PER_IRQ 2 #define ESP32C3_INTC_SRCS_PER_IRQ 2
#define ESP32C3_INTC_AVAILABLE_IRQS 30 #define ESP32C3_INTC_AVAILABLE_IRQS 30
static uint32_t esp_intr_enabled_mask[2] = {0, 0}; #if defined(CONFIG_SOC_SERIES_ESP32C6)
#define IRQ_NA 0xFF /* IRQ not available */
#define IRQ_FREE 0xFE
#define ESP32C6_INTC_SRCS_PER_IRQ 2
#define ESP32C6_INTC_AVAILABLE_IRQS 31
/* For ESP32C6 only CPU peripheral interrupts number
* 1, 2, 5, 6, 8 ~ 31 are available.
* IRQ 31 is reserved for disabled interrupts
*/
static uint8_t esp_intr_irq_alloc[ESP32C6_INTC_AVAILABLE_IRQS][ESP32C6_INTC_SRCS_PER_IRQ] = {
[0] = {IRQ_NA, IRQ_NA},
[3] = {IRQ_NA, IRQ_NA},
[4] = {IRQ_NA, IRQ_NA},
[7] = {IRQ_NA, IRQ_NA},
[1 ... 2] = {IRQ_FREE, IRQ_FREE},
[5 ... 6] = {IRQ_FREE, IRQ_FREE},
[8 ... 30] = {IRQ_FREE, IRQ_FREE}
};
#endif
#define STATUS_MASK_NUM 3
static uint32_t esp_intr_enabled_mask[STATUS_MASK_NUM] = {0, 0, 0};
#if defined(CONFIG_SOC_SERIES_ESP32C3)
static uint32_t esp_intr_find_irq_for_source(uint32_t source) static uint32_t esp_intr_find_irq_for_source(uint32_t source)
{ {
@ -62,6 +89,33 @@ static uint32_t esp_intr_find_irq_for_source(uint32_t source)
return irq; return irq;
} }
#elif defined(CONFIG_SOC_SERIES_ESP32C6)
static uint32_t esp_intr_find_irq_for_source(uint32_t source)
{
uint32_t irq = 0;
/* First allocate one source per IRQ, then two
* if there are more sources than free IRQs
*/
for (int j = 0; j < ESP32C6_INTC_SRCS_PER_IRQ; j++) {
for (int i = 0; i < ESP32C6_INTC_AVAILABLE_IRQS; i++) {
if (esp_intr_irq_alloc[i][j] == IRQ_FREE) {
esp_intr_irq_alloc[i][j] = (uint8_t)source;
irq = i;
goto found;
}
}
}
found:
INTC_LOG("Found IRQ: %d for source: %d", irq, source);
return irq;
}
#endif
void esp_intr_initialize(void) void esp_intr_initialize(void)
{ {
/* IRQ 31 is reserved for disabled interrupts, /* IRQ 31 is reserved for disabled interrupts,
@ -75,6 +129,18 @@ void esp_intr_initialize(void)
esp_rom_intr_matrix_set(0, i, ESP32C3_INTC_DISABLED_SLOT); esp_rom_intr_matrix_set(0, i, ESP32C3_INTC_DISABLED_SLOT);
} }
#if defined(CONFIG_SOC_SERIES_ESP32C6)
/* Clear up IRQ allocation */
for (int j = 0; j < ESP32C6_INTC_SRCS_PER_IRQ; j++) {
for (int i = 0; i < ESP32C6_INTC_AVAILABLE_IRQS; i++) {
/* screen out reserved IRQs */
if (esp_intr_irq_alloc[i][j] != IRQ_NA) {
esp_intr_irq_alloc[i][j] = IRQ_FREE;
}
}
}
#endif
/* set global esp32c3's INTC masking level */ /* set global esp32c3's INTC masking level */
esprv_intc_int_set_threshold(ESP32C3_INTC_DEFAULT_THRESHOLD); esprv_intc_int_set_threshold(ESP32C3_INTC_DEFAULT_THRESHOLD);
} }
@ -106,12 +172,14 @@ int esp_intr_alloc(int source,
if (source < 32) { if (source < 32) {
esp_intr_enabled_mask[0] |= (1 << source); esp_intr_enabled_mask[0] |= (1 << source);
} else { } else if (source < 64) {
esp_intr_enabled_mask[1] |= (1 << (source - 32)); esp_intr_enabled_mask[1] |= (1 << (source - 32));
} else if (source < 96) {
esp_intr_enabled_mask[2] |= (1 << (source - 64));
} }
INTC_LOG("Enabled ISRs -- 0: 0x%X -- 1: 0x%X", INTC_LOG("Enabled ISRs -- 0: 0x%X -- 1: 0x%X -- 2: 0x%X",
esp_intr_enabled_mask[0], esp_intr_enabled_mask[1]); esp_intr_enabled_mask[0], esp_intr_enabled_mask[1], esp_intr_enabled_mask[2]);
irq_unlock(key); irq_unlock(key);
irq_enable(source); irq_enable(source);
@ -131,14 +199,28 @@ int esp_intr_disable(int source)
source, source,
ESP32C3_INTC_DISABLED_SLOT); ESP32C3_INTC_DISABLED_SLOT);
#if defined(CONFIG_SOC_SERIES_ESP32C6)
for (int j = 0; j < ESP32C6_INTC_SRCS_PER_IRQ; j++) {
for (int i = 0; i < ESP32C6_INTC_AVAILABLE_IRQS; i++) {
if (esp_intr_irq_alloc[i][j] == source) {
esp_intr_irq_alloc[i][j] = IRQ_FREE;
goto freed;
}
}
}
freed:
#endif
if (source < 32) { if (source < 32) {
esp_intr_enabled_mask[0] &= ~(1 << source); esp_intr_enabled_mask[0] &= ~(1 << source);
} else { } else if (source < 64) {
esp_intr_enabled_mask[1] &= ~(1 << (source - 32)); esp_intr_enabled_mask[1] &= ~(1 << (source - 32));
} else if (source < 96) {
esp_intr_enabled_mask[2] &= ~(1 << (source - 64));
} }
INTC_LOG("Enabled ISRs -- 0: 0x%X -- 1: 0x%X", INTC_LOG("Enabled ISRs -- 0: 0x%X -- 1: 0x%X -- 2: 0x%X",
esp_intr_enabled_mask[0], esp_intr_enabled_mask[1]); esp_intr_enabled_mask[0], esp_intr_enabled_mask[1], esp_intr_enabled_mask[2]);
irq_unlock(key); irq_unlock(key);
@ -158,12 +240,14 @@ int esp_intr_enable(int source)
if (source < 32) { if (source < 32) {
esp_intr_enabled_mask[0] |= (1 << source); esp_intr_enabled_mask[0] |= (1 << source);
} else { } else if (source < 64) {
esp_intr_enabled_mask[1] |= (1 << (source - 32)); esp_intr_enabled_mask[1] |= (1 << (source - 32));
} else if (source < 96) {
esp_intr_enabled_mask[2] |= (1 << (source - 64));
} }
INTC_LOG("Enabled ISRs -- 0: 0x%X -- 1: 0x%X", INTC_LOG("Enabled ISRs -- 0: 0x%X -- 1: 0x%X -- 2: 0x%X",
esp_intr_enabled_mask[0], esp_intr_enabled_mask[1]); esp_intr_enabled_mask[0], esp_intr_enabled_mask[1], esp_intr_enabled_mask[2]);
esprv_intc_int_set_priority(irq, ESP32C3_INTC_DEFAULT_PRIO); esprv_intc_int_set_priority(irq, ESP32C3_INTC_DEFAULT_PRIO);
esprv_intc_int_set_type(irq, INTR_TYPE_LEVEL); esprv_intc_int_set_type(irq, INTR_TYPE_LEVEL);
@ -176,12 +260,12 @@ int esp_intr_enable(int source)
uint32_t esp_intr_get_enabled_intmask(int status_mask_number) uint32_t esp_intr_get_enabled_intmask(int status_mask_number)
{ {
INTC_LOG("Enabled ISRs -- 0: 0x%X -- 1: 0x%X", INTC_LOG("Enabled ISRs -- 0: 0x%X -- 1: 0x%X -- 2: 0x%X",
esp_intr_enabled_mask[0], esp_intr_enabled_mask[1]); esp_intr_enabled_mask[0], esp_intr_enabled_mask[1], esp_intr_enabled_mask[2]);
if (status_mask_number == 0) { if (status_mask_number < STATUS_MASK_NUM) {
return esp_intr_enabled_mask[0]; return esp_intr_enabled_mask[status_mask_number];
} else { } else {
return esp_intr_enabled_mask[1]; return 0; /* error */
} }
} }

View file

@ -19,7 +19,8 @@
#include <soc.h> #include <soc.h>
#include <zephyr/arch/riscv/arch.h> #include <zephyr/arch/riscv/arch.h>
#define ESP32C6_INTSTATUS_SLOT1_THRESHOLD 32 #define ESP32C6_INTSTATUS_REG1_THRESHOLD 32
#define ESP32C6_INTSTATUS_REG2_THRESHOLD 64
void arch_irq_enable(unsigned int irq) void arch_irq_enable(unsigned int irq)
{ {
@ -38,8 +39,10 @@ int arch_irq_is_enabled(unsigned int irq)
if (irq < 32) { if (irq < 32) {
res = esp_intr_get_enabled_intmask(0) & BIT(irq); res = esp_intr_get_enabled_intmask(0) & BIT(irq);
} else { } else if (irq < 64) {
res = esp_intr_get_enabled_intmask(1) & BIT(irq - 32); res = esp_intr_get_enabled_intmask(1) & BIT(irq - 32);
} else {
res = esp_intr_get_enabled_intmask(2) & BIT(irq - 64);
} }
irq_unlock(key); irq_unlock(key);
@ -52,16 +55,30 @@ uint32_t soc_intr_get_next_source(void)
uint32_t status; uint32_t status;
uint32_t source; uint32_t source;
/* Status register for interrupt sources 0 ~ 31 */
status = REG_READ(INTMTX_CORE0_INT_STATUS_REG_0_REG) & status = REG_READ(INTMTX_CORE0_INT_STATUS_REG_0_REG) &
esp_intr_get_enabled_intmask(0); esp_intr_get_enabled_intmask(0);
if (status) { if (status) {
source = __builtin_ffs(status) - 1; source = __builtin_ffs(status) - 1;
} else { goto ret;
status = REG_READ(INTMTX_CORE0_INT_STATUS_REG_1_REG) &
esp_intr_get_enabled_intmask(1);
source = (__builtin_ffs(status) - 1 + ESP32C6_INTSTATUS_SLOT1_THRESHOLD);
} }
/* Status register for interrupt sources 32 ~ 63 */
status = REG_READ(INTMTX_CORE0_INT_STATUS_REG_1_REG) &
esp_intr_get_enabled_intmask(1);
if (status) {
source = (__builtin_ffs(status) - 1 + ESP32C6_INTSTATUS_REG1_THRESHOLD);
goto ret;
}
/* Status register for interrupt sources 64 ~ 76 */
status = REG_READ(INTMTX_CORE0_INT_STATUS_REG_2_REG) &
esp_intr_get_enabled_intmask(2);
source = (__builtin_ffs(status) - 1 + ESP32C6_INTSTATUS_REG2_THRESHOLD);
ret:
return source; return source;
} }