zephyr/arch/riscv/core/isr.S

647 lines
17 KiB
ArmAsm
Raw Normal View History

arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
/*
* Copyright (c) 2016 Jean-Paul Etienne <fractalclone@gmail.com>
* Copyright (c) 2018 Foundries.io Ltd
* Copyright (c) 2020 BayLibre, SAS
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
*
* SPDX-License-Identifier: Apache-2.0
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
*/
#include <zephyr/toolchain.h>
#include <zephyr/linker/sections.h>
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
#include <offsets_short.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/sys/util.h>
#include <zephyr/kernel.h>
#include <zephyr/syscall.h>
#include <zephyr/arch/riscv/csr.h>
#include <zephyr/arch/riscv/syscall.h>
#include "asm_macros.inc"
riscv: Add support for hardware stacking / unstacking Some RISC-V SoCs implement a mechanism for hardware supported stacking / unstacking of registers during ISR / exceptions. What happens is that on ISR / exception entry part of the context is automatically saved by the hardware on the stack without software intervention, and the same part of the context is restored by the hardware usually on mret. This is currently not yet supported by Zephyr, where the full context must be saved by software in the full fledged ESF. This patcheset is trying to address exactly this case. At least three things are needed to support in a general fashion this problem: (1) a way to store in software only the part of the ESF not already stacked by hardware, (2) a way to restore in software only the part of the context that is not going to be restored by hardware and (3) a way to define a custom ESF. Point (3) is important because the full ESF frame is now composed by a custom part depending on the hardware (that can choose which register to stack / unstack and the order they are saved onto the stack) and a part defined in software for the remaining part of the context. In this patch a new CONFIG_RISCV_SOC_HAS_ISR_STACKING is introduced that enables the code path supporting the three points by the mean of three macros that must be implemented by the user in a soc_stacking.h file: SOC_ISR_SW_STACKING, SOC_ISR_SW_UNSTACKING and SOC_ISR_STACKING_ESF (refer to the symbol help for more details). This is an example of soc_isr_stacking.h for an hardware that doesn't do any hardware stacking / unstacking but everything is managed in software: #ifndef __SOC_ISR_STACKING #define __SOC_ISR_STACKING #if !defined(_ASMLANGUAGE) #define SOC_ISR_STACKING_ESF_DECLARE \ struct __esf { \ unsigned long ra; \ unsigned long t0; \ unsigned long t1; \ unsigned long t2; \ unsigned long t3; \ unsigned long t4; \ unsigned long t5; \ unsigned long t6; \ unsigned long a0; \ unsigned long a1; \ unsigned long a2; \ unsigned long a3; \ unsigned long a4; \ unsigned long a5; \ unsigned long a6; \ unsigned long a7; \ unsigned long mepc; \ unsigned long mstatus; \ unsigned long s0; \ } __aligned(16) #else #define SOC_ISR_SW_STACKING \ addi sp, sp, -__z_arch_esf_t_SIZEOF; \ DO_CALLER_SAVED(sr); #define SOC_ISR_SW_UNSTACKING \ DO_CALLER_SAVED(lr); #endif /* _ASMLANGUAGE */ #endif /* __SOC_ISR_STACKING */ Signed-off-by: Carlo Caione <ccaione@baylibre.com>
2022-12-27 20:14:51 +01:00
#ifdef CONFIG_RISCV_SOC_HAS_ISR_STACKING
#include <soc_isr_stacking.h>
#endif
/* Convenience macro for loading/storing register states. */
#define DO_CALLER_SAVED(op) \
RV_E( op t0, __z_arch_esf_t_t0_OFFSET(sp) );\
RV_E( op t1, __z_arch_esf_t_t1_OFFSET(sp) );\
RV_E( op t2, __z_arch_esf_t_t2_OFFSET(sp) );\
RV_I( op t3, __z_arch_esf_t_t3_OFFSET(sp) );\
RV_I( op t4, __z_arch_esf_t_t4_OFFSET(sp) );\
RV_I( op t5, __z_arch_esf_t_t5_OFFSET(sp) );\
RV_I( op t6, __z_arch_esf_t_t6_OFFSET(sp) );\
RV_E( op a0, __z_arch_esf_t_a0_OFFSET(sp) );\
RV_E( op a1, __z_arch_esf_t_a1_OFFSET(sp) );\
RV_E( op a2, __z_arch_esf_t_a2_OFFSET(sp) );\
RV_E( op a3, __z_arch_esf_t_a3_OFFSET(sp) );\
RV_E( op a4, __z_arch_esf_t_a4_OFFSET(sp) );\
RV_E( op a5, __z_arch_esf_t_a5_OFFSET(sp) );\
RV_I( op a6, __z_arch_esf_t_a6_OFFSET(sp) );\
RV_I( op a7, __z_arch_esf_t_a7_OFFSET(sp) );\
RV_E( op ra, __z_arch_esf_t_ra_OFFSET(sp) )
.macro get_current_cpu dst
#if defined(CONFIG_SMP) || defined(CONFIG_USERSPACE)
csrr \dst, mscratch
#else
la \dst, _kernel + ___kernel_t_cpus_OFFSET
#endif
.endm
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
/* imports */
GDATA(_sw_isr_table)
GTEXT(__soc_is_irq)
GTEXT(__soc_handle_irq)
GTEXT(_Fault)
#ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE
GTEXT(__soc_save_context)
GTEXT(__soc_restore_context)
#endif /* CONFIG_RISCV_SOC_CONTEXT_SAVE */
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
GTEXT(z_riscv_fatal_error)
GTEXT(z_get_next_switch_handle)
GTEXT(z_riscv_switch)
GTEXT(z_riscv_thread_start)
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
#ifdef CONFIG_TRACING
GTEXT(sys_trace_isr_enter)
GTEXT(sys_trace_isr_exit)
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
#endif
#ifdef CONFIG_USERSPACE
GDATA(_k_syscall_table)
#endif
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
/* exports */
GTEXT(_isr_wrapper)
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
/* use ABI name of registers for the sake of simplicity */
/*
* Generic architecture-level IRQ handling, along with callouts to
* SoC-specific routines.
*
* Architecture level IRQ handling includes basic context save/restore
* of standard registers and calling ISRs registered at Zephyr's driver
* level.
*
* Since RISC-V does not completely prescribe IRQ handling behavior,
* implementations vary (some implementations also deviate from
* what standard behavior is defined). Hence, the arch level code expects
* the following functions to be provided at the SOC level:
*
* - __soc_is_irq: decide if we're handling an interrupt or an exception
* - __soc_handle_irq: handle SoC-specific details for a pending IRQ
* (e.g. clear a pending bit in a SoC-specific register)
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
*
* If CONFIG_RISCV_SOC_CONTEXT_SAVE=y, calls to SoC-level context save/restore
* routines are also made here. For details, see the Kconfig help text.
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
*/
/*
* Handler called upon each exception/interrupt/fault
*/
SECTION_FUNC(exception.entry, _isr_wrapper)
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
#ifdef CONFIG_USERSPACE
/* retrieve address of _current_cpu preserving s0 */
csrrw s0, mscratch, s0
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
/* preserve t0 and t1 temporarily */
sr t0, _curr_cpu_arch_user_exc_tmp0(s0)
sr t1, _curr_cpu_arch_user_exc_tmp1(s0)
/* determine if we come from user space */
csrr t0, mstatus
li t1, MSTATUS_MPP
and t0, t0, t1
bnez t0, 1f
/* in user space we were: switch to our privileged stack */
mv t0, sp
lr sp, _curr_cpu_arch_user_exc_sp(s0)
/* Save user stack value. Coming from user space, we know this
* can't overflow the privileged stack. The esf will be allocated
* later but it is safe to store our saved user sp here. */
sr t0, (-__z_arch_esf_t_SIZEOF + __z_arch_esf_t_sp_OFFSET)(sp)
/* Make sure tls pointer is sane */
lr t0, ___cpu_t_current_OFFSET(s0)
lr tp, _thread_offset_to_tls(t0)
/* Clear our per-thread usermode flag */
lui t0, %tprel_hi(is_user_mode)
add t0, t0, tp, %tprel_add(is_user_mode)
sb zero, %tprel_lo(is_user_mode)(t0)
1:
/* retrieve original t0/t1 values */
lr t0, _curr_cpu_arch_user_exc_tmp0(s0)
lr t1, _curr_cpu_arch_user_exc_tmp1(s0)
/* retrieve original s0 and restore _current_cpu in mscratch */
csrrw s0, mscratch, s0
#endif
#ifdef CONFIG_RISCV_SOC_HAS_ISR_STACKING
SOC_ISR_SW_STACKING
#else
/* Save caller-saved registers on current thread stack. */
addi sp, sp, -__z_arch_esf_t_SIZEOF
DO_CALLER_SAVED(sr) ;
#endif /* CONFIG_RISCV_SOC_HAS_ISR_STACKING */
/* Save s0 in the esf and load it with &_current_cpu. */
sr s0, __z_arch_esf_t_s0_OFFSET(sp)
get_current_cpu s0
/* Save MEPC register */
csrr t0, mepc
sr t0, __z_arch_esf_t_mepc_OFFSET(sp)
/* Save MSTATUS register */
csrr t2, mstatus
sr t2, __z_arch_esf_t_mstatus_OFFSET(sp)
#if defined(CONFIG_FPU_SHARING)
/* determine if this is an Illegal Instruction exception */
csrr t0, mcause
li t1, 2 /* 2 = illegal instruction */
bne t0, t1, no_fp
/* determine if FPU access was disabled */
csrr t0, mstatus
li t1, MSTATUS_FS
and t0, t0, t1
bnez t0, no_fp
/* determine if we trapped on an FP instruction. */
csrr t2, mtval /* get faulting instruction */
andi t0, t2, 0x7f /* keep only the opcode bits */
xori t1, t0, 0b1010011 /* OP-FP */
beqz t1, is_fp
ori t0, t0, 0b0100000
xori t1, t0, 0b0100111 /* LOAD-FP / STORE-FP */
#if !defined(CONFIG_RISCV_ISA_EXT_C)
bnez t1, no_fp
#else
beqz t1, is_fp
/* remaining non RVC (0b11) and RVC with 0b01 are not FP instructions */
andi t1, t0, 1
bnez t1, no_fp
/*
* 001...........00 = C.FLD RV32/64 (RV128 = C.LQ)
* 001...........10 = C.FLDSP RV32/64 (RV128 = C.LQSP)
* 011...........00 = C.FLW RV32 (RV64/128 = C.LD)
* 011...........10 = C.FLWSPP RV32 (RV64/128 = C.LDSP)
* 101...........00 = C.FSD RV32/64 (RV128 = C.SQ)
* 101...........10 = C.FSDSP RV32/64 (RV128 = C.SQSP)
* 111...........00 = C.FSW RV32 (RV64/128 = C.SD)
* 111...........10 = C.FSWSP RV32 (RV64/128 = C.SDSP)
*
* so must be .01............. on RV64 and ..1............. on RV32.
*/
srli t0, t2, 8
#if defined(CONFIG_64BIT)
andi t1, t0, 0b01100000
xori t1, t1, 0b00100000
bnez t1, no_fp
#else
andi t1, t0, 0b00100000
beqz t1, no_fp
#endif
#endif /* CONFIG_RISCV_ISA_EXT_C */
is_fp: /* Process the FP trap and quickly return from exception */
la ra, fp_trap_exit
mv a0, sp
tail z_riscv_fpu_trap
no_fp: /* increment _current->arch.exception_depth */
lr t0, ___cpu_t_current_OFFSET(s0)
lb t1, _thread_offset_to_exception_depth(t0)
add t1, t1, 1
sb t1, _thread_offset_to_exception_depth(t0)
/* configure the FPU for exception mode */
call z_riscv_fpu_enter_exc
#endif
#ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE
/* Handle context saving at SOC level. */
addi a0, sp, __z_arch_esf_t_soc_context_OFFSET
jal ra, __soc_save_context
#endif /* CONFIG_RISCV_SOC_CONTEXT_SAVE */
/*
* Check if exception is the result of an interrupt or not.
* (SOC dependent). Following the RISC-V architecture spec, the MSB
* of the mcause register is used to indicate whether an exception
* is the result of an interrupt or an exception/fault. But for some
* SOCs (like pulpino or riscv-qemu), the MSB is never set to indicate
* interrupt. Hence, check for interrupt/exception via the __soc_is_irq
* function (that needs to be implemented by each SOC). The result is
* returned via register a0 (1: interrupt, 0 exception)
*/
jal ra, __soc_is_irq
/* If a0 != 0, jump to is_interrupt */
bnez a0, is_interrupt
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
/*
* If the exception is the result of an ECALL, check whether to
* perform a context-switch or an IRQ offload. Otherwise call _Fault
* to report the exception.
*/
csrr t0, mcause
li t2, SOC_MCAUSE_EXP_MASK
and t0, t0, t2
/*
* If mcause == SOC_MCAUSE_ECALL_EXP, handle system call from
* kernel thread.
*/
li t1, SOC_MCAUSE_ECALL_EXP
beq t0, t1, is_kernel_syscall
#ifdef CONFIG_USERSPACE
/*
* If mcause == SOC_MCAUSE_USER_ECALL_EXP, handle system call
* for user mode thread.
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
*/
li t1, SOC_MCAUSE_USER_ECALL_EXP
beq t0, t1, is_user_syscall
#endif /* CONFIG_USERSPACE */
/*
* Call _Fault to handle exception.
* Stack pointer is pointing to a z_arch_esf_t structure, pass it
* to _Fault (via register a0).
* If _Fault shall return, set return address to
* no_reschedule to restore stack.
*/
mv a0, sp
la ra, no_reschedule
tail _Fault
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
is_kernel_syscall:
/*
* A syscall is the result of an ecall instruction, in which case the
* MEPC will contain the address of the ecall instruction.
* Increment saved MEPC by 4 to prevent triggering the same ecall
* again upon exiting the ISR.
*
* It's safe to always increment by 4, even with compressed
* instructions, because the ecall instruction is always 4 bytes.
*/
lr t0, __z_arch_esf_t_mepc_OFFSET(sp)
addi t0, t0, 4
sr t0, __z_arch_esf_t_mepc_OFFSET(sp)
#ifdef CONFIG_PMP_STACK_GUARD
/* Re-activate PMP for m-mode */
li t1, MSTATUS_MPP
csrc mstatus, t1
li t1, MSTATUS_MPRV
csrs mstatus, t1
#endif
/* Determine what to do. Operation code is in t0. */
lr t0, __z_arch_esf_t_t0_OFFSET(sp)
.if RV_ECALL_RUNTIME_EXCEPT != 0; .err; .endif
beqz t0, do_fault
#if defined(CONFIG_IRQ_OFFLOAD)
li t1, RV_ECALL_IRQ_OFFLOAD
beq t0, t1, do_irq_offload
#endif
#ifdef CONFIG_RISCV_ALWAYS_SWITCH_THROUGH_ECALL
li t1, RV_ECALL_SCHEDULE
bne t0, t1, skip_schedule
lr a0, __z_arch_esf_t_a0_OFFSET(sp)
lr a1, __z_arch_esf_t_a1_OFFSET(sp)
j reschedule
skip_schedule:
#endif
/* default fault code is K_ERR_KERNEL_OOPS */
li a0, 3
j 1f
do_fault:
/* Handle RV_ECALL_RUNTIME_EXCEPT. Retrieve reason in a0, esf in A1. */
lr a0, __z_arch_esf_t_a0_OFFSET(sp)
1: mv a1, sp
tail z_riscv_fatal_error
#if defined(CONFIG_IRQ_OFFLOAD)
do_irq_offload:
/*
* Retrieve provided routine and argument from the stack.
* Routine pointer is in saved a0, argument in saved a1
* so we load them with a1/a0 (reversed).
*/
lr a1, __z_arch_esf_t_a0_OFFSET(sp)
lr a0, __z_arch_esf_t_a1_OFFSET(sp)
/* Increment _current_cpu->nested */
lw t1, ___cpu_t_nested_OFFSET(s0)
addi t2, t1, 1
sw t2, ___cpu_t_nested_OFFSET(s0)
bnez t1, 1f
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
/* Switch to interrupt stack */
mv t0, sp
lr sp, ___cpu_t_irq_stack_OFFSET(s0)
/* Save thread stack pointer on interrupt stack */
addi sp, sp, -16
sr t0, 0(sp)
1:
/* Execute provided routine (argument is in a0 already). */
jalr ra, a1, 0
/* Leave through the regular IRQ exit path */
j irq_done
#endif /* CONFIG_IRQ_OFFLOAD */
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
#ifdef CONFIG_USERSPACE
is_user_syscall:
#ifdef CONFIG_PMP_STACK_GUARD
/*
* We came from userspace and need to reconfigure the
* PMP for kernel mode stack guard.
*/
lr a0, ___cpu_t_current_OFFSET(s0)
call z_riscv_pmp_stackguard_enable
#endif
/* It is safe to re-enable IRQs now */
csrs mstatus, MSTATUS_IEN
/*
* Same as for is_kernel_syscall: increment saved MEPC by 4 to
* prevent triggering the same ecall again upon exiting the ISR.
*/
lr t1, __z_arch_esf_t_mepc_OFFSET(sp)
addi t1, t1, 4
sr t1, __z_arch_esf_t_mepc_OFFSET(sp)
/* Restore argument registers from user stack */
lr a0, __z_arch_esf_t_a0_OFFSET(sp)
lr a1, __z_arch_esf_t_a1_OFFSET(sp)
lr a2, __z_arch_esf_t_a2_OFFSET(sp)
lr a3, __z_arch_esf_t_a3_OFFSET(sp)
lr a4, __z_arch_esf_t_a4_OFFSET(sp)
lr a5, __z_arch_esf_t_a5_OFFSET(sp)
lr t0, __z_arch_esf_t_t0_OFFSET(sp)
#if defined(CONFIG_RISCV_ISA_RV32E)
/* Stack alignment for RV32E is 4 bytes */
addi sp, sp, -4
mv t1, sp
sw t1, 0(sp)
#else
mv a6, sp
#endif /* CONFIG_RISCV_ISA_RV32E */
/* validate syscall limit */
li t1, K_SYSCALL_LIMIT
bltu t0, t1, valid_syscall_id
/* bad syscall id. Set arg1 to bad id and set call_id to SYSCALL_BAD */
mv a0, t0
li t0, K_SYSCALL_BAD
valid_syscall_id:
la t2, _k_syscall_table
slli t1, t0, RV_REGSHIFT # Determine offset from indice value
add t2, t2, t1 # Table addr + offset = function addr
lr t2, 0(t2) # Load function address
/* Execute syscall function */
jalr ra, t2, 0
#if defined(CONFIG_RISCV_ISA_RV32E)
addi sp, sp, 4
#endif /* CONFIG_RISCV_ISA_RV32E */
/* Update a0 (return value) on the stack */
sr a0, __z_arch_esf_t_a0_OFFSET(sp)
/* Disable IRQs again before leaving */
csrc mstatus, MSTATUS_IEN
j might_have_rescheduled
#endif /* CONFIG_USERSPACE */
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
is_interrupt:
#ifdef CONFIG_PMP_STACK_GUARD
#ifdef CONFIG_USERSPACE
/*
* If we came from userspace then we need to reconfigure the
* PMP for kernel mode stack guard.
*/
lr t0, __z_arch_esf_t_mstatus_OFFSET(sp)
li t1, MSTATUS_MPP
and t0, t0, t1
bnez t0, 1f
lr a0, ___cpu_t_current_OFFSET(s0)
call z_riscv_pmp_stackguard_enable
j 2f
#endif /* CONFIG_USERSPACE */
1: /* Re-activate PMP for m-mode */
li t1, MSTATUS_MPP
csrc mstatus, t1
li t1, MSTATUS_MPRV
csrs mstatus, t1
2:
#endif
/* Increment _current_cpu->nested */
lw t1, ___cpu_t_nested_OFFSET(s0)
addi t2, t1, 1
sw t2, ___cpu_t_nested_OFFSET(s0)
bnez t1, on_irq_stack
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
/* Switch to interrupt stack */
mv t0, sp
lr sp, ___cpu_t_irq_stack_OFFSET(s0)
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
/*
* Save thread stack pointer on interrupt stack
* In RISC-V, stack pointer needs to be 16-byte aligned
*/
addi sp, sp, -16
sr t0, 0(sp)
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
on_irq_stack:
#ifdef CONFIG_TRACING_ISR
call sys_trace_isr_enter
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
#endif
/* Get IRQ causing interrupt */
csrr a0, mcause
li t0, SOC_MCAUSE_EXP_MASK
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
and a0, a0, t0
/*
* Clear pending IRQ generating the interrupt at SOC level
* Pass IRQ number to __soc_handle_irq via register a0
*/
jal ra, __soc_handle_irq
/*
* Call corresponding registered function in _sw_isr_table.
* (table is 2-word wide, we should shift index accordingly)
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
*/
la t0, _sw_isr_table
slli a0, a0, (RV_REGSHIFT + 1)
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
add t0, t0, a0
/* Load argument in a0 register */
lr a0, 0(t0)
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
/* Load ISR function address in register t1 */
lr t1, RV_REGSIZE(t0)
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
/* Call ISR function */
jalr ra, t1, 0
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
#ifdef CONFIG_TRACING_ISR
call sys_trace_isr_exit
#endif
irq_done:
/* Decrement _current_cpu->nested */
lw t2, ___cpu_t_nested_OFFSET(s0)
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
addi t2, t2, -1
sw t2, ___cpu_t_nested_OFFSET(s0)
bnez t2, no_reschedule
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
/* nested count is back to 0: Return to thread stack */
lr sp, 0(sp)
#ifdef CONFIG_STACK_SENTINEL
call z_check_stack_sentinel
#endif
check_reschedule:
/* Get pointer to current thread on this CPU */
lr a1, ___cpu_t_current_OFFSET(s0)
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
/*
* Get next thread to schedule with z_get_next_switch_handle().
* We pass it a NULL as we didn't save the whole thread context yet.
* If no scheduling is necessary then NULL will be returned.
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
*/
addi sp, sp, -16
sr a1, 0(sp)
mv a0, zero
call z_get_next_switch_handle
lr a1, 0(sp)
addi sp, sp, 16
beqz a0, no_reschedule
reschedule:
/*
* Perform context switch:
* a0 = new thread
* a1 = old thread
*/
call z_riscv_switch
z_riscv_thread_start:
might_have_rescheduled:
/* reload s0 with &_current_cpu as it might have changed or be unset */
get_current_cpu s0
no_reschedule:
#ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE
/* Restore context at SOC level */
addi a0, sp, __z_arch_esf_t_soc_context_OFFSET
jal ra, __soc_restore_context
#endif /* CONFIG_RISCV_SOC_CONTEXT_SAVE */
#if defined(CONFIG_FPU_SHARING)
/* FPU handling upon exception mode exit */
mv a0, sp
call z_riscv_fpu_exit_exc
/* decrement _current->arch.exception_depth */
lr t0, ___cpu_t_current_OFFSET(s0)
lb t1, _thread_offset_to_exception_depth(t0)
add t1, t1, -1
sb t1, _thread_offset_to_exception_depth(t0)
fp_trap_exit:
#endif
/* Restore MEPC and MSTATUS registers */
lr t0, __z_arch_esf_t_mepc_OFFSET(sp)
lr t2, __z_arch_esf_t_mstatus_OFFSET(sp)
csrw mepc, t0
csrw mstatus, t2
#ifdef CONFIG_USERSPACE
/*
* Check if we are returning to user mode. If so then we must
* set is_user_mode to true and preserve our kernel mode stack for
* the next exception to come.
*/
li t1, MSTATUS_MPP
and t0, t2, t1
bnez t0, 1f
#ifdef CONFIG_PMP_STACK_GUARD
/* Remove kernel stack guard and Reconfigure PMP for user mode */
lr a0, ___cpu_t_current_OFFSET(s0)
call z_riscv_pmp_usermode_enable
#endif
/* Set our per-thread usermode flag */
li t1, 1
lui t0, %tprel_hi(is_user_mode)
add t0, t0, tp, %tprel_add(is_user_mode)
sb t1, %tprel_lo(is_user_mode)(t0)
/* preserve stack pointer for next exception entry */
add t0, sp, __z_arch_esf_t_SIZEOF
sr t0, _curr_cpu_arch_user_exc_sp(s0)
j 2f
1:
/*
* We are returning to kernel mode. Store the stack pointer to
* be re-loaded further down.
*/
addi t0, sp, __z_arch_esf_t_SIZEOF
sr t0, __z_arch_esf_t_sp_OFFSET(sp)
2:
#endif
/* Restore s0 (it is no longer ours) */
lr s0, __z_arch_esf_t_s0_OFFSET(sp)
riscv: Add support for hardware stacking / unstacking Some RISC-V SoCs implement a mechanism for hardware supported stacking / unstacking of registers during ISR / exceptions. What happens is that on ISR / exception entry part of the context is automatically saved by the hardware on the stack without software intervention, and the same part of the context is restored by the hardware usually on mret. This is currently not yet supported by Zephyr, where the full context must be saved by software in the full fledged ESF. This patcheset is trying to address exactly this case. At least three things are needed to support in a general fashion this problem: (1) a way to store in software only the part of the ESF not already stacked by hardware, (2) a way to restore in software only the part of the context that is not going to be restored by hardware and (3) a way to define a custom ESF. Point (3) is important because the full ESF frame is now composed by a custom part depending on the hardware (that can choose which register to stack / unstack and the order they are saved onto the stack) and a part defined in software for the remaining part of the context. In this patch a new CONFIG_RISCV_SOC_HAS_ISR_STACKING is introduced that enables the code path supporting the three points by the mean of three macros that must be implemented by the user in a soc_stacking.h file: SOC_ISR_SW_STACKING, SOC_ISR_SW_UNSTACKING and SOC_ISR_STACKING_ESF (refer to the symbol help for more details). This is an example of soc_isr_stacking.h for an hardware that doesn't do any hardware stacking / unstacking but everything is managed in software: #ifndef __SOC_ISR_STACKING #define __SOC_ISR_STACKING #if !defined(_ASMLANGUAGE) #define SOC_ISR_STACKING_ESF_DECLARE \ struct __esf { \ unsigned long ra; \ unsigned long t0; \ unsigned long t1; \ unsigned long t2; \ unsigned long t3; \ unsigned long t4; \ unsigned long t5; \ unsigned long t6; \ unsigned long a0; \ unsigned long a1; \ unsigned long a2; \ unsigned long a3; \ unsigned long a4; \ unsigned long a5; \ unsigned long a6; \ unsigned long a7; \ unsigned long mepc; \ unsigned long mstatus; \ unsigned long s0; \ } __aligned(16) #else #define SOC_ISR_SW_STACKING \ addi sp, sp, -__z_arch_esf_t_SIZEOF; \ DO_CALLER_SAVED(sr); #define SOC_ISR_SW_UNSTACKING \ DO_CALLER_SAVED(lr); #endif /* _ASMLANGUAGE */ #endif /* __SOC_ISR_STACKING */ Signed-off-by: Carlo Caione <ccaione@baylibre.com>
2022-12-27 20:14:51 +01:00
#ifdef CONFIG_RISCV_SOC_HAS_ISR_STACKING
SOC_ISR_SW_UNSTACKING
#else
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
/* Restore caller-saved registers from thread stack */
DO_CALLER_SAVED(lr)
riscv: Add support for hardware stacking / unstacking Some RISC-V SoCs implement a mechanism for hardware supported stacking / unstacking of registers during ISR / exceptions. What happens is that on ISR / exception entry part of the context is automatically saved by the hardware on the stack without software intervention, and the same part of the context is restored by the hardware usually on mret. This is currently not yet supported by Zephyr, where the full context must be saved by software in the full fledged ESF. This patcheset is trying to address exactly this case. At least three things are needed to support in a general fashion this problem: (1) a way to store in software only the part of the ESF not already stacked by hardware, (2) a way to restore in software only the part of the context that is not going to be restored by hardware and (3) a way to define a custom ESF. Point (3) is important because the full ESF frame is now composed by a custom part depending on the hardware (that can choose which register to stack / unstack and the order they are saved onto the stack) and a part defined in software for the remaining part of the context. In this patch a new CONFIG_RISCV_SOC_HAS_ISR_STACKING is introduced that enables the code path supporting the three points by the mean of three macros that must be implemented by the user in a soc_stacking.h file: SOC_ISR_SW_STACKING, SOC_ISR_SW_UNSTACKING and SOC_ISR_STACKING_ESF (refer to the symbol help for more details). This is an example of soc_isr_stacking.h for an hardware that doesn't do any hardware stacking / unstacking but everything is managed in software: #ifndef __SOC_ISR_STACKING #define __SOC_ISR_STACKING #if !defined(_ASMLANGUAGE) #define SOC_ISR_STACKING_ESF_DECLARE \ struct __esf { \ unsigned long ra; \ unsigned long t0; \ unsigned long t1; \ unsigned long t2; \ unsigned long t3; \ unsigned long t4; \ unsigned long t5; \ unsigned long t6; \ unsigned long a0; \ unsigned long a1; \ unsigned long a2; \ unsigned long a3; \ unsigned long a4; \ unsigned long a5; \ unsigned long a6; \ unsigned long a7; \ unsigned long mepc; \ unsigned long mstatus; \ unsigned long s0; \ } __aligned(16) #else #define SOC_ISR_SW_STACKING \ addi sp, sp, -__z_arch_esf_t_SIZEOF; \ DO_CALLER_SAVED(sr); #define SOC_ISR_SW_UNSTACKING \ DO_CALLER_SAVED(lr); #endif /* _ASMLANGUAGE */ #endif /* __SOC_ISR_STACKING */ Signed-off-by: Carlo Caione <ccaione@baylibre.com>
2022-12-27 20:14:51 +01:00
#endif /* CONFIG_RISCV_SOC_HAS_ISR_STACKING */
#ifdef CONFIG_USERSPACE
/* retrieve saved stack pointer */
lr sp, __z_arch_esf_t_sp_OFFSET(sp)
#else
/* remove esf from the stack */
addi sp, sp, __z_arch_esf_t_SIZEOF
#endif
arch: added support for the riscv32 architecture RISC-V is an open-source instruction set architecture. Added support for the 32bit version of RISC-V to Zephyr. 1) exceptions/interrupts/faults are handled at the architecture level via the __irq_wrapper handler. Context saving/restoring of registers can be handled at both architecture and SOC levels. If SOC-specific registers need to be saved, SOC level needs to provide __soc_save_context and __soc_restore_context functions that shall be accounted by the architecture level, when corresponding config variable RISCV_SOC_CONTEXT_SAVE is set. 2) As RISC-V architecture does not provide a clear ISA specification about interrupt handling, each RISC-V SOC handles it in its own way. Hence, at the architecture level, the __irq_wrapper handler expects the following functions to be provided by the SOC level: __soc_is_irq: to check if the exception is the result of an interrupt or not. __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in SOC-specific IRQ register) 3) Thread/task scheduling, as well as IRQ offloading are handled via the RISC-V system call ("ecall"), which is also handled via the __irq_wrapper handler. The _Swap asm function just calls "ecall" to generate an exception. 4) As there is no conventional way of handling CPU power save in RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle functions just unlock interrupts and return to the caller, without issuing any CPU power saving instruction. Nonetheless, to allow SOC-level to implement proper CPU power save, nano_cpu_idle and nano_cpu_atomic_idle functions are defined as __weak at the architecture level. Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389 Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 00:24:30 +01:00
mret