zephyr/drivers/timer/arcv2_timer0.c

466 lines
11 KiB
C
Raw Normal View History

/*
* Copyright (c) 2014-2015 Wind River Systems, Inc.
* Copyright (c) 2018 Synopsys Inc, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <drivers/timer/system_timer.h>
#include <sys_clock.h>
#include <spinlock.h>
#include <arch/arc/v2/aux_regs.h>
#include <soc.h>
/*
* note: This implementation assumes Timer0 is present. Be sure
* to build the ARC CPU with Timer0.
*
* If secureshield is present and secure firmware is configured,
* use secure Timer 0
*/
#ifdef CONFIG_ARC_SECURE_FIRMWARE
#undef _ARC_V2_TMR0_COUNT
#undef _ARC_V2_TMR0_CONTROL
#undef _ARC_V2_TMR0_LIMIT
#undef IRQ_TIMER0
#define _ARC_V2_TMR0_COUNT _ARC_V2_S_TMR0_COUNT
#define _ARC_V2_TMR0_CONTROL _ARC_V2_S_TMR0_CONTROL
#define _ARC_V2_TMR0_LIMIT _ARC_V2_S_TMR0_LIMIT
#define IRQ_TIMER0 IRQ_SEC_TIMER0
#endif
#define _ARC_V2_TMR_CTRL_IE 0x1 /* interrupt enable */
#define _ARC_V2_TMR_CTRL_NH 0x2 /* count only while not halted */
#define _ARC_V2_TMR_CTRL_W 0x4 /* watchdog mode enable */
#define _ARC_V2_TMR_CTRL_IP 0x8 /* interrupt pending flag */
/* Minimum cycles in the future to try to program. */
#define MIN_DELAY 1024
/* arc timer has 32 bit, here use 31 bit to avoid the possible
* overflow,e.g, 0xffffffff + any value will cause overflow
*/
#define COUNTER_MAX 0x7fffffff
#define TIMER_STOPPED 0x0
#define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define MAX_TICKS ((COUNTER_MAX / CYC_PER_TICK) - 1)
#define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
#define TICKLESS (IS_ENABLED(CONFIG_TICKLESS_KERNEL))
#define SMP_TIMER_DRIVER (CONFIG_SMP && CONFIG_MP_NUM_CPUS > 1)
static struct k_spinlock lock;
#if SMP_TIMER_DRIVER
volatile static uint64_t last_time;
volatile static uint64_t start_time;
#else
static uint32_t last_load;
/*
* This local variable holds the amount of timer cycles elapsed
* and it is updated in z_timer_int_handler and z_clock_set_timeout().
*
* Note:
* At an arbitrary point in time the "current" value of the
* HW timer is calculated as:
*
* t = cycle_counter + elapsed();
*/
static uint32_t cycle_count;
/*
* This local variable holds the amount of elapsed HW cycles
* that have been announced to the kernel.
*/
static uint32_t announced_cycles;
/*
* This local variable holds the amount of elapsed HW cycles due to
* timer wraps ('overflows') and is used in the calculation
* in elapsed() function, as well as in the updates to cycle_count.
*
* Note:
* Each time cycle_count is updated with the value from overflow_cycles,
* the overflow_cycles must be reset to zero.
*/
static volatile uint32_t overflow_cycles;
#endif
/**
*
* @brief Get contents of Timer0 count register
*
* @return Current Timer0 count
*/
static ALWAYS_INLINE uint32_t timer0_count_register_get(void)
{
return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_COUNT);
}
/**
*
* @brief Set Timer0 count register to the specified value
*
* @return N/A
*/
static ALWAYS_INLINE void timer0_count_register_set(uint32_t value)
{
z_arc_v2_aux_reg_write(_ARC_V2_TMR0_COUNT, value);
}
/**
*
* @brief Get contents of Timer0 control register
*
* @return N/A
*/
static ALWAYS_INLINE uint32_t timer0_control_register_get(void)
{
return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_CONTROL);
}
/**
*
* @brief Set Timer0 control register to the specified value
*
* @return N/A
*/
static ALWAYS_INLINE void timer0_control_register_set(uint32_t value)
{
z_arc_v2_aux_reg_write(_ARC_V2_TMR0_CONTROL, value);
}
/**
*
* @brief Get contents of Timer0 limit register
*
* @return N/A
*/
static ALWAYS_INLINE uint32_t timer0_limit_register_get(void)
{
return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_LIMIT);
}
/**
*
* @brief Set Timer0 limit register to the specified value
*
* @return N/A
*/
static ALWAYS_INLINE void timer0_limit_register_set(uint32_t count)
{
z_arc_v2_aux_reg_write(_ARC_V2_TMR0_LIMIT, count);
}
#if !SMP_TIMER_DRIVER
/* This internal function calculates the amount of HW cycles that have
* elapsed since the last time the absolute HW cycles counter has been
* updated. 'cycle_count' may be updated either by the ISR, or
* in z_clock_set_timeout().
*
* Additionally, the function updates the 'overflow_cycles' counter, that
* holds the amount of elapsed HW cycles due to (possibly) multiple
* timer wraps (overflows).
*
* Prerequisites:
* - reprogramming of LIMIT must be clearing the COUNT
* - ISR must be clearing the 'overflow_cycles' counter.
* - no more than one counter-wrap has occurred between
* - the timer reset or the last time the function was called
* - and until the current call of the function is completed.
* - the function is invoked with interrupts disabled.
*/
static uint32_t elapsed(void)
{
uint32_t val, ctrl;
do {
val = timer0_count_register_get();
ctrl = timer0_control_register_get();
} while (timer0_count_register_get() < val);
if (ctrl & _ARC_V2_TMR_CTRL_IP) {
overflow_cycles += last_load;
/* clear the IP bit of the control register */
timer0_control_register_set(_ARC_V2_TMR_CTRL_NH |
_ARC_V2_TMR_CTRL_IE);
/* use sw triggered irq to remember the timer irq request
* which may be cleared by the above operation. when elapsed ()
* is called in z_timer_int_handler, no need to do this.
*/
if (!z_arc_v2_irq_unit_is_in_isr() ||
z_arc_v2_aux_reg_read(_ARC_V2_ICAUSE) != IRQ_TIMER0) {
z_arc_v2_aux_reg_write(_ARC_V2_AUX_IRQ_HINT,
IRQ_TIMER0);
}
}
return val + overflow_cycles;
}
#endif
/**
*
* @brief System clock periodic tick handler
*
* This routine handles the system clock tick interrupt. It always
* announces one tick when TICKLESS is not enabled, or multiple ticks
* when TICKLESS is enabled.
*
* @return N/A
*/
static void timer_int_handler(void *unused)
{
ARG_UNUSED(unused);
uint32_t dticks;
#if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 1
uint64_t curr_time;
k_spinlock_key_t key;
/* clear the IP bit of the control register */
timer0_control_register_set(_ARC_V2_TMR_CTRL_NH |
_ARC_V2_TMR_CTRL_IE);
key = k_spin_lock(&lock);
/* gfrc is the wall clock */
curr_time = z_arc_connect_gfrc_read();
dticks = (curr_time - last_time) / CYC_PER_TICK;
/* last_time should be aligned to ticks */
last_time += dticks * CYC_PER_TICK;
k_spin_unlock(&lock, key);
z_clock_announce(dticks);
#else
/* timer_int_handler may be triggered by timer irq or
* software helper irq
*/
/* irq with higher priority may call z_clock_set_timeout
* so need a lock here
*/
uint32_t key;
key = arch_irq_lock();
elapsed();
cycle_count += overflow_cycles;
overflow_cycles = 0;
arch_irq_unlock(key);
dticks = (cycle_count - announced_cycles) / CYC_PER_TICK;
announced_cycles += dticks * CYC_PER_TICK;
z_clock_announce(TICKLESS ? dticks : 1);
#endif
}
/**
*
* @brief Initialize and enable the system clock
*
* This routine is used to program the ARCv2 timer to deliver interrupts at the
* rate specified via the CYC_PER_TICK.
*
* @return 0
*/
int z_clock_driver_init(struct device *device)
{
ARG_UNUSED(device);
/* ensure that the timer will not generate interrupts */
timer0_control_register_set(0);
#if SMP_TIMER_DRIVER
IRQ_CONNECT(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY,
timer_int_handler, NULL, 0);
timer0_limit_register_set(CYC_PER_TICK - 1);
last_time = z_arc_connect_gfrc_read();
start_time = last_time;
#else
last_load = CYC_PER_TICK;
overflow_cycles = 0;
announced_cycles = 0;
IRQ_CONNECT(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY,
timer_int_handler, NULL, 0);
timer0_limit_register_set(last_load - 1);
#ifdef CONFIG_BOOT_TIME_MEASUREMENT
cycle_count = timer0_count_register_get();
#endif
#endif
timer0_count_register_set(0);
timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE);
/* everything has been configured: safe to enable the interrupt */
irq_enable(IRQ_TIMER0);
return 0;
}
void z_clock_set_timeout(int32_t ticks, bool idle)
{
/* If the kernel allows us to miss tick announcements in idle,
* then shut off the counter. (Note: we can assume if idle==true
* that interrupts are already disabled)
*/
#if SMP_TIMER_DRIVER
/* as 64-bits GFRC is used as wall clock, it's ok to ignore idle
* systick will not be missed.
* However for single core using 32-bits arc timer, idle cannot
* be ignored, as 32-bits timer will overflow in a not-long time.
*/
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-05 15:18:14 -08:00
if (IS_ENABLED(CONFIG_TICKLESS_IDLE) && ticks == K_TICKS_FOREVER) {
timer0_control_register_set(0);
timer0_count_register_set(0);
timer0_limit_register_set(0);
return;
}
#if defined(CONFIG_TICKLESS_KERNEL)
uint32_t delay;
uint32_t key;
ticks = MIN(MAX_TICKS, ticks);
/* Desired delay in the future
* use MIN_DEALY here can trigger the timer
* irq more soon, no need to go to CYC_PER_TICK
* later.
*/
delay = MAX(ticks * CYC_PER_TICK, MIN_DELAY);
key = arch_irq_lock();
timer0_limit_register_set(delay - 1);
timer0_count_register_set(0);
timer0_control_register_set(_ARC_V2_TMR_CTRL_NH |
_ARC_V2_TMR_CTRL_IE);
arch_irq_unlock(key);
#endif
#else
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-05 15:18:14 -08:00
if (IS_ENABLED(CONFIG_TICKLESS_IDLE) && idle
&& ticks == K_TICKS_FOREVER) {
timer0_control_register_set(0);
timer0_count_register_set(0);
timer0_limit_register_set(0);
last_load = TIMER_STOPPED;
return;
}
#if defined(CONFIG_TICKLESS_KERNEL)
uint32_t delay;
uint32_t unannounced;
ticks = MIN(MAX_TICKS, (uint32_t)(MAX((int32_t)(ticks - 1), 0)));
k_spinlock_key_t key = k_spin_lock(&lock);
cycle_count += elapsed();
/* clear counter early to avoid cycle loss as few as possible,
* between cycle_count and clearing 0, few cycles are possible
* to loss
*/
timer0_count_register_set(0);
overflow_cycles = 0U;
/* normal case */
unannounced = cycle_count - announced_cycles;
if ((int32_t)unannounced < 0) {
/* We haven't announced for more than half the 32-bit
* wrap duration, because new timeouts keep being set
* before the existing one fires. Force an announce
* to avoid loss of a wrap event, making sure the
* delay is at least the minimum delay possible.
*/
last_load = MIN_DELAY;
} else {
/* Desired delay in the future */
delay = ticks * CYC_PER_TICK;
/* Round delay up to next tick boundary */
delay += unannounced;
delay =
((delay + CYC_PER_TICK - 1) / CYC_PER_TICK) * CYC_PER_TICK;
delay -= unannounced;
delay = MAX(delay, MIN_DELAY);
last_load = MIN(delay, MAX_CYCLES);
}
timer0_limit_register_set(last_load - 1);
timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE);
k_spin_unlock(&lock, key);
#endif
#endif
}
uint32_t z_clock_elapsed(void)
{
if (!TICKLESS) {
return 0;
}
uint32_t cyc;
k_spinlock_key_t key = k_spin_lock(&lock);
#if SMP_TIMER_DRIVER
cyc = (z_arc_connect_gfrc_read() - last_time);
#else
cyc = elapsed() + cycle_count - announced_cycles;
#endif
k_spin_unlock(&lock, key);
return cyc / CYC_PER_TICK;
}
uint32_t z_timer_cycle_get_32(void)
{
#if SMP_TIMER_DRIVER
return z_arc_connect_gfrc_read() - start_time;
#else
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ret = elapsed() + cycle_count;
k_spin_unlock(&lock, key);
return ret;
#endif
}
#if SMP_TIMER_DRIVER
void smp_timer_init(void)
{
/* set the initial status of timer0 of each slave core
*/
timer0_control_register_set(0);
timer0_count_register_set(0);
timer0_limit_register_set(0);
z_irq_priority_set(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, 0);
irq_enable(IRQ_TIMER0);
}
#endif