2015-04-10 16:44:37 -07:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2014-2015 Wind River Systems, Inc.
|
|
|
|
*
|
2017-01-18 17:01:01 -08:00
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
2015-04-10 16:44:37 -07:00
|
|
|
*/
|
|
|
|
|
2015-12-04 10:09:39 -05:00
|
|
|
/**
|
|
|
|
* @file
|
|
|
|
* @brief Variables needed needed for system clock
|
|
|
|
*
|
2015-10-20 09:42:33 -07:00
|
|
|
*
|
|
|
|
* Declare variables used by both system timer device driver and kernel
|
|
|
|
* components that use timer functionality.
|
2015-07-01 17:22:39 -04:00
|
|
|
*/
|
2015-04-10 16:44:37 -07:00
|
|
|
|
2018-09-14 10:43:44 -07:00
|
|
|
#ifndef ZEPHYR_INCLUDE_SYS_CLOCK_H_
|
|
|
|
#define ZEPHYR_INCLUDE_SYS_CLOCK_H_
|
2015-04-10 16:44:37 -07:00
|
|
|
|
2019-06-26 10:33:55 -04:00
|
|
|
#include <sys/util.h>
|
2019-06-26 10:33:41 -04:00
|
|
|
#include <sys/dlist.h>
|
2018-09-19 09:35:43 -07:00
|
|
|
|
2019-08-12 12:54:52 -05:00
|
|
|
#include <toolchain.h>
|
|
|
|
#include <zephyr/types.h>
|
|
|
|
|
2019-10-31 06:16:00 -05:00
|
|
|
#include <sys/time_units.h>
|
2019-06-28 11:16:50 -07:00
|
|
|
|
2016-01-22 12:38:49 -05:00
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
kernel: tickless: Add tickless kernel support
Adds event based scheduling logic to the kernel. Updates
management of timeouts, timers, idling etc. based on
time tracked at events rather than periodic ticks. Provides
interfaces for timers to announce and get next timer expiry
based on kernel scheduling decisions involving time slicing
of threads, timeouts and idling. Uses wall time units instead
of ticks in all scheduling activities.
The implementation involves changes in the following areas
1. Management of time in wall units like ms/us instead of ticks
The existing implementation already had an option to configure
number of ticks in a second. The new implementation builds on
top of that feature and provides option to set the size of the
scheduling granurality to mili seconds or micro seconds. This
allows most of the current implementation to be reused. Due to
this re-use and co-existence with tick based kernel, the names
of variables may contain the word "tick". However, in the
tickless kernel implementation, it represents the currently
configured time unit, which would be be mili seconds or
micro seconds. The APIs that take time as a parameter are not
impacted and they continue to pass time in mili seconds.
2. Timers would not be programmed in periodic mode
generating ticks. Instead they would be programmed in one
shot mode to generate events at the time the kernel scheduler
needs to gain control for its scheduling activities like
timers, timeouts, time slicing, idling etc.
3. The scheduler provides interfaces that the timer drivers
use to announce elapsed time and get the next time the scheduler
needs a timer event. It is possible that the scheduler may not
need another timer event, in which case the system would wait
for a non-timer event to wake it up if it is idling.
4. New APIs are defined to be implemented by timer drivers. Also
they need to handler timer events differently. These changes
have been done in the HPET timer driver. In future other timers
that support tickles kernel should implement these APIs as well.
These APIs are to re-program the timer, update and announce
elapsed time.
5. Philosopher and timer_api applications have been enabled to
test tickless kernel. Separate configuration files are created
which define the necessary CONFIG flags. Run these apps using
following command
make pristine && make BOARD=qemu_x86 CONF_FILE=prj_tickless.conf qemu
Jira: ZEP-339 ZEP-1946 ZEP-948
Change-Id: I7d950c31bf1ff929a9066fad42c2f0559a2e5983
Signed-off-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-02-05 19:37:19 -08:00
|
|
|
#ifdef CONFIG_TICKLESS_KERNEL
|
|
|
|
extern int _sys_clock_always_on;
|
2019-03-08 14:19:05 -07:00
|
|
|
extern void z_enable_sys_clock(void);
|
kernel: tickless: Add tickless kernel support
Adds event based scheduling logic to the kernel. Updates
management of timeouts, timers, idling etc. based on
time tracked at events rather than periodic ticks. Provides
interfaces for timers to announce and get next timer expiry
based on kernel scheduling decisions involving time slicing
of threads, timeouts and idling. Uses wall time units instead
of ticks in all scheduling activities.
The implementation involves changes in the following areas
1. Management of time in wall units like ms/us instead of ticks
The existing implementation already had an option to configure
number of ticks in a second. The new implementation builds on
top of that feature and provides option to set the size of the
scheduling granurality to mili seconds or micro seconds. This
allows most of the current implementation to be reused. Due to
this re-use and co-existence with tick based kernel, the names
of variables may contain the word "tick". However, in the
tickless kernel implementation, it represents the currently
configured time unit, which would be be mili seconds or
micro seconds. The APIs that take time as a parameter are not
impacted and they continue to pass time in mili seconds.
2. Timers would not be programmed in periodic mode
generating ticks. Instead they would be programmed in one
shot mode to generate events at the time the kernel scheduler
needs to gain control for its scheduling activities like
timers, timeouts, time slicing, idling etc.
3. The scheduler provides interfaces that the timer drivers
use to announce elapsed time and get the next time the scheduler
needs a timer event. It is possible that the scheduler may not
need another timer event, in which case the system would wait
for a non-timer event to wake it up if it is idling.
4. New APIs are defined to be implemented by timer drivers. Also
they need to handler timer events differently. These changes
have been done in the HPET timer driver. In future other timers
that support tickles kernel should implement these APIs as well.
These APIs are to re-program the timer, update and announce
elapsed time.
5. Philosopher and timer_api applications have been enabled to
test tickless kernel. Separate configuration files are created
which define the necessary CONFIG flags. Run these apps using
following command
make pristine && make BOARD=qemu_x86 CONF_FILE=prj_tickless.conf qemu
Jira: ZEP-339 ZEP-1946 ZEP-948
Change-Id: I7d950c31bf1ff929a9066fad42c2f0559a2e5983
Signed-off-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-02-05 19:37:19 -08:00
|
|
|
#endif
|
2015-11-20 16:26:25 -05:00
|
|
|
|
2018-09-19 09:35:43 -07:00
|
|
|
#if defined(CONFIG_SYS_CLOCK_EXISTS) && \
|
|
|
|
(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 0)
|
|
|
|
#error "SYS_CLOCK_HW_CYCLES_PER_SEC must be non-zero!"
|
|
|
|
#endif
|
2015-04-10 16:44:37 -07:00
|
|
|
|
2015-04-10 17:16:14 -04:00
|
|
|
/* number of nsec per usec */
|
2018-12-04 15:13:27 -08:00
|
|
|
#define NSEC_PER_USEC 1000U
|
2015-04-10 17:16:14 -04:00
|
|
|
|
2015-08-20 15:59:19 -04:00
|
|
|
/* number of microseconds per millisecond */
|
2018-12-04 15:13:27 -08:00
|
|
|
#define USEC_PER_MSEC 1000U
|
2015-08-20 15:59:19 -04:00
|
|
|
|
|
|
|
/* number of milliseconds per second */
|
2018-12-04 15:13:27 -08:00
|
|
|
#define MSEC_PER_SEC 1000U
|
2015-08-20 15:59:19 -04:00
|
|
|
|
2015-10-01 17:24:49 -04:00
|
|
|
/* number of microseconds per second */
|
|
|
|
#define USEC_PER_SEC ((USEC_PER_MSEC) * (MSEC_PER_SEC))
|
|
|
|
|
|
|
|
/* number of nanoseconds per second */
|
|
|
|
#define NSEC_PER_SEC ((NSEC_PER_USEC) * (USEC_PER_MSEC) * (MSEC_PER_SEC))
|
|
|
|
|
|
|
|
|
2018-09-19 09:35:43 -07:00
|
|
|
/* kernel clocks */
|
|
|
|
|
|
|
|
/*
|
2019-05-07 15:53:51 -07:00
|
|
|
* We default to using 64-bit intermediates in timescale conversions,
|
|
|
|
* but if the HW timer cycles/sec, ticks/sec and ms/sec are all known
|
|
|
|
* to be nicely related, then we can cheat with 32 bits instead.
|
2018-09-19 09:35:43 -07:00
|
|
|
*/
|
|
|
|
|
2019-05-07 15:53:51 -07:00
|
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS
|
2018-09-19 09:35:43 -07:00
|
|
|
|
2019-05-07 15:53:51 -07:00
|
|
|
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME) || \
|
|
|
|
(MSEC_PER_SEC % CONFIG_SYS_CLOCK_TICKS_PER_SEC) || \
|
|
|
|
(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC % CONFIG_SYS_CLOCK_TICKS_PER_SEC)
|
|
|
|
#define _NEED_PRECISE_TICK_MS_CONVERSION
|
2018-09-19 09:35:43 -07:00
|
|
|
#endif
|
2019-05-07 15:53:51 -07:00
|
|
|
|
2018-09-19 09:35:43 -07:00
|
|
|
#endif
|
|
|
|
|
2019-10-03 11:43:10 -07:00
|
|
|
#define __ticks_to_ms(t) __DEPRECATED_MACRO \
|
2019-10-31 06:36:10 -05:00
|
|
|
k_ticks_to_ms_floor64((u64_t)(t))
|
2019-10-03 11:43:10 -07:00
|
|
|
#define z_ms_to_ticks(t) \
|
2019-10-31 06:36:10 -05:00
|
|
|
((s32_t)k_ms_to_ticks_ceil32((u32_t)(t)))
|
2019-10-03 11:43:10 -07:00
|
|
|
#define __ticks_to_us(t) __DEPRECATED_MACRO \
|
2019-10-31 06:36:10 -05:00
|
|
|
((s32_t)k_ticks_to_us_floor32((u32_t)(t)))
|
2019-10-03 11:43:10 -07:00
|
|
|
#define z_us_to_ticks(t) __DEPRECATED_MACRO \
|
2019-10-31 06:36:10 -05:00
|
|
|
((s32_t)k_us_to_ticks_ceil32((u32_t)(t)))
|
2019-10-03 11:43:10 -07:00
|
|
|
#define sys_clock_hw_cycles_per_tick() __DEPRECATED_MACRO \
|
2019-10-31 06:36:10 -05:00
|
|
|
((int)k_ticks_to_cyc_floor32(1U))
|
2019-10-03 11:43:10 -07:00
|
|
|
#define SYS_CLOCK_HW_CYCLES_TO_NS64(t) __DEPRECATED_MACRO \
|
2019-12-17 13:36:02 +02:00
|
|
|
k_cyc_to_ns_floor64((u64_t)(t))
|
2019-10-03 11:43:10 -07:00
|
|
|
#define SYS_CLOCK_HW_CYCLES_TO_NS(t) __DEPRECATED_MACRO \
|
|
|
|
((u32_t)k_cyc_to_ns_floor64(t))
|
2019-05-09 16:46:46 -07:00
|
|
|
|
2018-09-19 09:35:43 -07:00
|
|
|
/* added tick needed to account for tick in progress */
|
|
|
|
#define _TICK_ALIGN 1
|
|
|
|
|
2015-04-10 17:16:14 -04:00
|
|
|
/*
|
|
|
|
* SYS_CLOCK_HW_CYCLES_TO_NS_AVG converts CPU clock cycles to nanoseconds
|
|
|
|
* and calculates the average cycle time
|
|
|
|
*/
|
|
|
|
#define SYS_CLOCK_HW_CYCLES_TO_NS_AVG(X, NCYCLES) \
|
2019-10-03 11:43:10 -07:00
|
|
|
(u32_t)(k_cyc_to_ns_floor64(X) / NCYCLES)
|
2015-04-10 17:16:14 -04:00
|
|
|
|
2016-11-17 12:24:22 -05:00
|
|
|
/**
|
|
|
|
* @defgroup clock_apis Kernel Clock APIs
|
|
|
|
* @ingroup kernel_apis
|
|
|
|
* @{
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @} end defgroup clock_apis
|
|
|
|
*/
|
|
|
|
|
2018-09-19 14:17:00 -07:00
|
|
|
/**
|
|
|
|
*
|
|
|
|
* @brief Return the lower part of the current system tick count
|
|
|
|
*
|
|
|
|
* @return the current system tick count
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
u32_t z_tick_get_32(void);
|
|
|
|
|
|
|
|
/**
|
|
|
|
*
|
|
|
|
* @brief Return the current system tick count
|
|
|
|
*
|
|
|
|
* @return the current system tick count
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
s64_t z_tick_get(void);
|
|
|
|
|
2018-09-27 16:50:00 -07:00
|
|
|
#ifndef CONFIG_SYS_CLOCK_EXISTS
|
|
|
|
#define z_tick_get() (0)
|
|
|
|
#define z_tick_get_32() (0)
|
|
|
|
#endif
|
2015-04-10 16:44:37 -07:00
|
|
|
|
2018-09-19 09:35:43 -07:00
|
|
|
/* timeouts */
|
|
|
|
|
|
|
|
struct _timeout;
|
|
|
|
typedef void (*_timeout_func_t)(struct _timeout *t);
|
|
|
|
|
|
|
|
struct _timeout {
|
|
|
|
sys_dnode_t node;
|
2018-09-27 16:50:00 -07:00
|
|
|
s32_t dticks;
|
|
|
|
_timeout_func_t fn;
|
2018-09-19 09:35:43 -07:00
|
|
|
};
|
|
|
|
|
2016-01-22 12:38:49 -05:00
|
|
|
#ifdef __cplusplus
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2018-09-14 10:43:44 -07:00
|
|
|
#endif /* ZEPHYR_INCLUDE_SYS_CLOCK_H_ */
|