zephyr/subsys/net/lib/lwm2m/Kconfig

260 lines
7.2 KiB
Text
Raw Normal View History

net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
#
# Copyright (c) 2017 Linaro Limited
#
# SPDX-License-Identifier: Apache-2.0
#
menuconfig LWM2M
bool "OMA LWM2M protocol stack"
select COAP
select HTTP_PARSER_URL
select NET_SOCKETS
select NET_SOCKETS_POSIX_NAMES
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
help
This option adds logic for managing OMA LWM2M data
if LWM2M
module = LWM2M
module-dep = LOG
module-str = Log level for LWM2M library
source "subsys/net/Kconfig.template.log_config.net"
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
config LWM2M_DTLS_SUPPORT
bool "Enable DTLS support in the LwM2M client"
select TLS_CREDENTIALS
select NET_SOCKETS_SOCKOPT_TLS
select NET_SOCKETS_ENABLE_DTLS
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
config LWM2M_ENGINE_STACK_SIZE
int "LWM2M engine stack size"
default 2560 if NET_LOG
default 2048
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
help
Set the stack size for the LWM2M library engine (used for handling
OBSERVE and NOTIFY events)
config LWM2M_ENGINE_MAX_MESSAGES
int "LWM2M engine max. message object"
default 10
help
Set the maximum message objects for the LWM2M library client
config LWM2M_COAP_BLOCK_SIZE
int "LWM2M CoAP block-wise transfer size"
default 256
range 64 1024
help
CoAP block size used by LWM2M when performing block-wise
transfers. Possible values: 16, 32, 64, 128, 256, 512 and 1024.
config LWM2M_ENGINE_MESSAGE_HEADER_SIZE
int "Room for CoAP header data"
default 48
range 24 128
help
Extra room allocated to handle CoAP header data
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
config LWM2M_ENGINE_MAX_PENDING
int "LWM2M engine max. pending objects"
default 5
help
Set the maximum pending objects for the LWM2M library client
config LWM2M_ENGINE_MAX_REPLIES
int "LWM2M engine max. reply objects"
default 5
help
Set the maximum reply objects for the LWM2M library client
config LWM2M_ENGINE_MAX_OBSERVER
int "Maximum # of observable LWM2M resources"
default 10
range 5 200
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
help
This value sets the maximum number of resources which can be
added to the observe notification list.
config LWM2M_ENGINE_DEFAULT_LIFETIME
int "LWM2M engine default server connection lifetime"
default 30
range 15 65535
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
help
Set the default lifetime (in seconds) for the LWM2M library engine
config LWM2M_LOCAL_PORT
int "LWM2M client port"
default 0
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
help
This is the client port for LWM2M communication. The default
setting of 0 sets a random port for the client to be used for
outgoing communication.
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
config LWM2M_SECURITY_INSTANCE_COUNT
int "Maximum # of LWM2M Security object instances"
default 1
default 2 if LWM2M_RD_CLIENT_SUPPORT_BOOTSTRAP
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
range 1 10
help
This setting establishes the total count of LWM2M Security instances
available to the client.
config LWM2M_SECURITY_KEY_SIZE
int "Buffer size of the security key resources"
default 16
range 16 256
help
This setting establishes the size of the key (pre-shared / public)
resources in the security object instances.
config LWM2M_SERVER_DEFAULT_PMIN
int "Default server record PMIN"
default 10
help
Default minimum amount of time in seconds the client must wait
between notifications. If a resource has to be notified during this
minimum time period, the notification must be sent after the time
period expires.
config LWM2M_SERVER_DEFAULT_PMAX
int "Default server record PMAX"
default 60
help
Default maximum amount of time in seconds the client may wait
between notifications. When this time period expires a notification
must be sent.
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
config LWM2M_SERVER_INSTANCE_COUNT
int "Maximum # of LWM2M Server object instances"
default 1
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
range 1 10
help
This setting establishes the total count of LWM2M Server instances
available to the client (including: bootstrap and regular servers).
config LWM2M_RD_CLIENT_SUPPORT
bool "support for LWM2M client bootstrap/registration state machine"
default y
help
Client will use registration state machine to locate and connect to
LWM2M servers (including bootstrap server support)
config LWM2M_RD_CLIENT_SUPPORT_BOOTSTRAP
bool "Enable bootstrap support"
help
Enabling this setting allows the RD client to support bootstrap mode.
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
config LWM2M_PEER_PORT
int "LWM2M server port"
depends on LWM2M_RD_CLIENT_SUPPORT
default 5683
help
This is the default server port to connect to for LWM2M communication
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
config LWM2M_CONN_MON_OBJ_SUPPORT
bool "Connectivity Monitoring object support"
help
Include support for LWM2M Connectivity Monitoring Object (ID 4)
config LWM2M_CONN_MON_BEARER_MAX
int "Maximum # of available network bearer resource instances"
depends on LWM2M_CONN_MON_OBJ_SUPPORT
default 1
help
This value sets the maximum number of available network bearer
resource instances. These are displayed via the
"Connection Monitoring" object /4/0/1.
config LWM2M_CONN_MON_APN_MAX
int "Maximum # of APN resource instances"
depends on LWM2M_CONN_MON_OBJ_SUPPORT
default 1
help
This value sets the maximum number of APN resource instances.
These are displayed via the "Connection Monitoring" object /4/0/7.
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
config LWM2M_FIRMWARE_UPDATE_OBJ_SUPPORT
bool "Firmware Update object support"
default y
help
Include support for LWM2M Firmware Update Object (ID 5)
config LWM2M_FIRMWARE_UPDATE_PULL_SUPPORT
bool "Firmware Update object pull support"
default y
depends on LWM2M_FIRMWARE_UPDATE_OBJ_SUPPORT
depends on (HTTP_PARSER || HTTP_PARSER_URL)
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
help
Include support for pulling a file from a remote server via
block transfer and "FIRMWARE PACKAGE URI" resource. This option
adds another UDP context and packet handling.
config LWM2M_FIRMWARE_UPDATE_PULL_LOCAL_PORT
int "LWM2M client firmware pull local port"
default 0
depends on LWM2M_FIRMWARE_UPDATE_PULL_SUPPORT
help
This is the client port for LWM2M firmware download. The default
setting of 0 sets a random port for the client to be used for
outgoing communication.
config LWM2M_NUM_BLOCK1_CONTEXT
int "Maximum # of LWM2M block1 contexts"
default 3
help
This value sets up the maximum number of block1 contexts for
CoAP block-wise transfer we can handle at the same time.
config LWM2M_FIRMWARE_UPDATE_PULL_COAP_PROXY_SUPPORT
bool "Firmware Update object pull via CoAP-CoAP/HTTP proxy support"
depends on LWM2M_FIRMWARE_UPDATE_PULL_SUPPORT
help
Include support for pulling firmware file via a CoAP-CoAP/HTTP proxy.
if LWM2M_FIRMWARE_UPDATE_PULL_COAP_PROXY_SUPPORT
config LWM2M_FIRMWARE_UPDATE_PULL_COAP_PROXY_ADDR
string "CoAP proxy network address"
help
Network address of the CoAP proxy server.
endif # LWM2M_FIRMWARE_UPDATE_PULL_COAP_PROXY_SUPPORT
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
config LWM2M_RW_JSON_SUPPORT
bool "support for JSON writer"
default y
help
Include support for writing JSON data
config LWM2M_DEVICE_PWRSRC_MAX
int "Maximum # of device power source records"
default 5
range 1 20
help
This value sets the maximum number of power source data that a device
can store. These are displayed via the "Device" object /3/0/6,
/3/0/7 and /3/0/8 resources.
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
config LWM2M_DEVICE_ERROR_CODE_MAX
int "Maximum # of device obj error codes to store"
default 10
range 1 20
help
This value sets the maximum number of error codes that the device
object will store before ignoring new values.
config LWM2M_NUM_ATTR
int "Maximum # of LWM2M attributes"
default 20
help
This value sets up the maximum number of LwM2M attributes that
we can handle at the same time.
menu "IPSO Alliance Smart Object Support"
source "subsys/net/lib/lwm2m/Kconfig.ipso"
endmenu
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
endif # LWM2M