zephyr/subsys/net/lib/lwm2m/Kconfig

206 lines
5.5 KiB
Text
Raw Normal View History

net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
#
# Copyright (c) 2017 Linaro Limited
#
# SPDX-License-Identifier: Apache-2.0
#
menuconfig LWM2M
bool "OMA LWM2M protocol stack"
select COAP
select NET_APP_CLIENT
select HTTP_PARSER_URL
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
help
This option adds logic for managing OMA LWM2M data
if LWM2M
module = LWM2M
module-dep = LOG
module-str = Log level for LWM2M library
source "subsys/net/Kconfig.template.log_config.net"
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
config LWM2M_DTLS_SUPPORT
bool "Enable DTLS support in the LwM2M client"
select MBEDTLS
select MBEDTLS_ENABLE_HEAP
select NET_APP_DTLS
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
config LWM2M_ENGINE_STACK_SIZE
int "LWM2M engine stack size"
default 1536 if NET_LOG
Kconfig: Use the first default with a satisfied condition Up until now, Zephyr has patched Kconfig to use the last 'default' with a satisfied condition, instead of the first one. I'm not sure why the patch was added (it predates Kconfiglib), but I suspect it's related to Kconfig.defconfig files. There are at least three problems with the patch: 1. It's inconsistent with how Kconfig works in other projects, which might confuse newcomers. 2. Due to oversights, earlier 'range' properties are still preferred, as well as earlier 'default' properties on choices. In addition to being inconsistent, this makes it impossible to override 'range' properties and choice 'default' properties if the base definition of the symbol/choice already has 'range'/'default' properties. I've seen errors caused by the inconsistency, and I suspect there are more. 3. A fork of Kconfiglib that adds the patch needs to be maintained. Get rid of the patch and go back to standard Kconfig behavior, as follows: 1. Include the Kconfig.defconfig files first instead of last in Kconfig.zephyr. 2. Include boards/Kconfig and arch/<arch>/Kconfig first instead of last in arch/Kconfig. 3. Include arch/<arch>/soc/*/Kconfig first instead of last in arch/<arch>/Kconfig. 4. Swap a few other 'source's to preserve behavior for some scattered symbols with multiple definitions. Swap 'source's in some no-op cases too, where it might match the intent. 5. Reverse the defaults on symbol definitions that have more than one default. Skip defaults that are mutually exclusive, e.g. where each default has an 'if <some board>' condition. They are already safe. 6. Remove the prefer-later-defaults patch from Kconfiglib. Testing was done with a Python script that lists all Kconfig symbols/choices with multiple defaults, along with a whitelist of fixed symbols. The script also verifies that there are no "unreachable" defaults hidden by defaults without conditions As an additional test, zephyr/.config was generated before and after the change for several samples and checked to be identical (after sorting). This commit includes some default-related cleanups as well: - Simplify some symbol definitions, e.g. where a default has 'if FOO' when the symbol already has 'depends on FOO'. - Remove some redundant 'default ""' for string symbols. This is the implicit default. Piggyback fixes for swapped ranges on BT_L2CAP_RX_MTU and BT_L2CAP_TX_MTU (caused by confusing inconsistency). Piggyback some fixes for style nits too, e.g. unindented help texts. Signed-off-by: Ulf Magnusson <Ulf.Magnusson@nordicsemi.no>
2018-07-30 10:57:47 +02:00
default 1024
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
help
Set the stack size for the LWM2M library engine (used for handling
OBSERVE and NOTIFY events)
config LWM2M_ENGINE_MAX_MESSAGES
int "LWM2M engine max. message object"
default 10
help
Set the maximum message objects for the LWM2M library client
config LWM2M_COAP_BLOCK_SIZE
int "LWM2M CoAP block-wise transfer size"
default 256
range 64 1024
help
CoAP block size used by LWM2M when performing block-wise
transfers. Possible values: 16, 32, 64, 128, 256, 512 and 1024.
config LWM2M_ENGINE_MESSAGE_HEADER_SIZE
int "Room for CoAP header data"
default 48
range 24 128
help
Extra room allocated to handle CoAP header data
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
config LWM2M_ENGINE_MAX_PENDING
int "LWM2M engine max. pending objects"
default 5
help
Set the maximum pending objects for the LWM2M library client
config LWM2M_ENGINE_MAX_REPLIES
int "LWM2M engine max. reply objects"
default 5
help
Set the maximum reply objects for the LWM2M library client
config LWM2M_ENGINE_MAX_OBSERVER
int "Maximum # of observable LWM2M resources"
default 10
range 5 200
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
help
This value sets the maximum number of resources which can be
added to the observe notification list.
config LWM2M_ENGINE_DEFAULT_LIFETIME
int "LWM2M engine default server connection lifetime"
default 30
range 15 65535
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
help
Set the default lifetime (in seconds) for the LWM2M library engine
config LWM2M_LOCAL_PORT
int "LWM2M client port"
default 0
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
help
This is the client port for LWM2M communication. The default
setting of 0 sets a random port for the client to be used for
outgoing communication.
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
config LWM2M_SECURITY_INSTANCE_COUNT
int "Maximum # of LWM2M Security object instances"
default 1
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
range 1 10
help
This setting establishes the total count of LWM2M Security instances
available to the client.
config LWM2M_SERVER_INSTANCE_COUNT
int "Maximum # of LWM2M Server object instances"
default 1
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
range 1 10
help
This setting establishes the total count of LWM2M Server instances
available to the client (including: bootstrap and regular servers).
config LWM2M_RD_CLIENT_SUPPORT
bool "support for LWM2M client bootstrap/registration state machine"
default y
help
Client will use registration state machine to locate and connect to
LWM2M servers (including bootstrap server support)
config LWM2M_PEER_PORT
int "LWM2M server port"
depends on LWM2M_RD_CLIENT_SUPPORT
default 5683
help
This is the server port to connect to for LWM2M communication
config LWM2M_FIRMWARE_UPDATE_OBJ_SUPPORT
bool "Firmware Update object support"
default y
help
Include support for LWM2M Firmware Update Object (ID 5)
config LWM2M_FIRMWARE_UPDATE_PULL_SUPPORT
bool "Firmware Update object pull support"
default y
depends on LWM2M_FIRMWARE_UPDATE_OBJ_SUPPORT
depends on (HTTP_PARSER || HTTP_PARSER_URL)
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
help
Include support for pulling a file from a remote server via
block transfer and "FIRMWARE PACKAGE URI" resource. This option
adds another UDP context and packet handling.
config LWM2M_FIRMWARE_UPDATE_PULL_LOCAL_PORT
int "LWM2M client firmware pull local port"
default 0
depends on LWM2M_FIRMWARE_UPDATE_PULL_SUPPORT
help
This is the client port for LWM2M firmware download. The default
setting of 0 sets a random port for the client to be used for
outgoing communication.
config LWM2M_NUM_BLOCK1_CONTEXT
int "Maximum # of LWM2M block1 contexts"
default 3
help
This value sets up the maximum number of block1 contexts for
CoAP block-wise transfer we can handle at the same time.
config LWM2M_FIRMWARE_UPDATE_PULL_COAP_PROXY_SUPPORT
bool "Firmware Update object pull via CoAP-CoAP/HTTP proxy support"
depends on LWM2M_FIRMWARE_UPDATE_PULL_SUPPORT
help
Include support for pulling firmware file via a CoAP-CoAP/HTTP proxy.
if LWM2M_FIRMWARE_UPDATE_PULL_COAP_PROXY_SUPPORT
config LWM2M_FIRMWARE_UPDATE_PULL_COAP_PROXY_ADDR
string "CoAP proxy network address"
help
Network address of the CoAP proxy server.
endif # LWM2M_FIRMWARE_UPDATE_PULL_COAP_PROXY_SUPPORT
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
config LWM2M_RW_JSON_SUPPORT
bool "support for JSON writer"
default y
help
Include support for writing JSON data
config LWM2M_DEVICE_PWRSRC_MAX
int "Maximum # of device power source records"
default 5
range 1 20
help
This value sets the maximum number of power source data that a device
can store. These are displayed via the "Device" object /3/0/6,
/3/0/7 and /3/0/8 resources.
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
config LWM2M_DEVICE_ERROR_CODE_MAX
int "Maximum # of device obj error codes to store"
default 10
range 1 20
help
This value sets the maximum number of error codes that the device
object will store before ignoring new values.
config LWM2M_NUM_ATTR
int "Maximum # of LWM2M attributes"
default 20
help
This value sets up the maximum number of LwM2M attributes that
we can handle at the same time.
menu "IPSO Alliance Smart Object Support"
source "subsys/net/lib/lwm2m/Kconfig.ipso"
endmenu
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
endif # LWM2M