Simplify the logic around xtensa_mmu_init. - Do not have a different path to init part of kernel - Call xtensa_mmu_init from C Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
494 lines
14 KiB
C
494 lines
14 KiB
C
/*
|
|
* Copyright (c) 2022 Intel Corporation
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/cache.h>
|
|
#include <zephyr/arch/xtensa/xtensa_mmu.h>
|
|
#include <zephyr/linker/linker-defs.h>
|
|
#include <zephyr/logging/log.h>
|
|
#include <zephyr/kernel/mm.h>
|
|
#include <zephyr/toolchain.h>
|
|
#include <xtensa/corebits.h>
|
|
#include <xtensa_mmu_priv.h>
|
|
|
|
#include <kernel_arch_func.h>
|
|
#include <mmu.h>
|
|
|
|
/* Fixed data TLB way to map the page table */
|
|
#define MMU_PTE_WAY 7
|
|
|
|
/* Fixed data TLB way to map VECBASE */
|
|
#define MMU_VECBASE_WAY 8
|
|
|
|
/* Level 1 contains page table entries
|
|
* necessary to map the page table itself.
|
|
*/
|
|
#define XTENSA_L1_PAGE_TABLE_ENTRIES 1024U
|
|
|
|
/* Level 2 contains page table entries
|
|
* necessary to map the page table itself.
|
|
*/
|
|
#define XTENSA_L2_PAGE_TABLE_ENTRIES 1024U
|
|
|
|
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
|
|
|
|
BUILD_ASSERT(CONFIG_MMU_PAGE_SIZE == 0x1000,
|
|
"MMU_PAGE_SIZE value is invalid, only 4 kB pages are supported\n");
|
|
|
|
/*
|
|
* Level 1 page table has to be 4Kb to fit into one of the wired entries.
|
|
* All entries are initialized as INVALID, so an attempt to read an unmapped
|
|
* area will cause a double exception.
|
|
*/
|
|
uint32_t l1_page_table[XTENSA_L1_PAGE_TABLE_ENTRIES] __aligned(KB(4));
|
|
|
|
/*
|
|
* Each table in the level 2 maps a 4Mb memory range. It consists of 1024 entries each one
|
|
* covering a 4Kb page.
|
|
*/
|
|
static uint32_t l2_page_tables[CONFIG_XTENSA_MMU_NUM_L2_TABLES][XTENSA_L2_PAGE_TABLE_ENTRIES]
|
|
__aligned(KB(4));
|
|
|
|
/*
|
|
* This additional variable tracks which l2 tables are in use. This is kept separated from
|
|
* the tables to keep alignment easier.
|
|
*/
|
|
static ATOMIC_DEFINE(l2_page_tables_track, CONFIG_XTENSA_MMU_NUM_L2_TABLES);
|
|
|
|
extern char _heap_end[];
|
|
extern char _heap_start[];
|
|
extern char __data_start[];
|
|
extern char __data_end[];
|
|
extern char _bss_start[];
|
|
extern char _bss_end[];
|
|
|
|
/*
|
|
* Static definition of all code & data memory regions of the
|
|
* current Zephyr image. This information must be available &
|
|
* processed upon MMU initialization.
|
|
*/
|
|
|
|
static const struct xtensa_mmu_range mmu_zephyr_ranges[] = {
|
|
/*
|
|
* Mark the zephyr execution regions (data, bss, noinit, etc.)
|
|
* cacheable, read / write and non-executable
|
|
*/
|
|
{
|
|
/* This includes .data, .bss and various kobject sections. */
|
|
.start = (uint32_t)_image_ram_start,
|
|
.end = (uint32_t)_image_ram_end,
|
|
#ifdef CONFIG_XTENSA_RPO_CACHE
|
|
.attrs = Z_XTENSA_MMU_W,
|
|
#else
|
|
.attrs = Z_XTENSA_MMU_W | Z_XTENSA_MMU_CACHED_WB,
|
|
#endif
|
|
.name = "data",
|
|
},
|
|
/* System heap memory */
|
|
{
|
|
.start = (uint32_t)_heap_start,
|
|
.end = (uint32_t)_heap_end,
|
|
#ifdef CONFIG_XTENSA_RPO_CACHE
|
|
.attrs = Z_XTENSA_MMU_W,
|
|
#else
|
|
.attrs = Z_XTENSA_MMU_W | Z_XTENSA_MMU_CACHED_WB,
|
|
#endif
|
|
.name = "heap",
|
|
},
|
|
/* Mark text segment cacheable, read only and executable */
|
|
{
|
|
.start = (uint32_t)__text_region_start,
|
|
.end = (uint32_t)__text_region_end,
|
|
.attrs = Z_XTENSA_MMU_X | Z_XTENSA_MMU_CACHED_WB,
|
|
.name = "text",
|
|
},
|
|
/* Mark rodata segment cacheable, read only and non-executable */
|
|
{
|
|
.start = (uint32_t)__rodata_region_start,
|
|
.end = (uint32_t)__rodata_region_end,
|
|
.attrs = Z_XTENSA_MMU_CACHED_WB,
|
|
.name = "rodata",
|
|
},
|
|
};
|
|
|
|
static inline uint32_t *alloc_l2_table(void)
|
|
{
|
|
uint16_t idx;
|
|
|
|
for (idx = 0; idx < CONFIG_XTENSA_MMU_NUM_L2_TABLES; idx++) {
|
|
if (!atomic_test_and_set_bit(l2_page_tables_track, idx)) {
|
|
return (uint32_t *)&l2_page_tables[idx];
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void map_memory_range(const uint32_t start, const uint32_t end,
|
|
const uint32_t attrs)
|
|
{
|
|
uint32_t page, *table;
|
|
|
|
for (page = start; page < end; page += CONFIG_MMU_PAGE_SIZE) {
|
|
uint32_t pte = Z_XTENSA_PTE(page, Z_XTENSA_KERNEL_RING, attrs);
|
|
uint32_t l2_pos = Z_XTENSA_L2_POS(page);
|
|
uint32_t l1_pos = page >> 22;
|
|
|
|
if (l1_page_table[l1_pos] == Z_XTENSA_MMU_ILLEGAL) {
|
|
table = alloc_l2_table();
|
|
|
|
__ASSERT(table != NULL, "There is no l2 page table available to "
|
|
"map 0x%08x\n", page);
|
|
|
|
l1_page_table[l1_pos] =
|
|
Z_XTENSA_PTE((uint32_t)table, Z_XTENSA_KERNEL_RING,
|
|
Z_XTENSA_MMU_CACHED_WT);
|
|
}
|
|
|
|
table = (uint32_t *)(l1_page_table[l1_pos] & Z_XTENSA_PTE_PPN_MASK);
|
|
table[l2_pos] = pte;
|
|
}
|
|
}
|
|
|
|
static void map_memory(const uint32_t start, const uint32_t end,
|
|
const uint32_t attrs)
|
|
{
|
|
map_memory_range(start, end, attrs);
|
|
|
|
#ifdef CONFIG_XTENSA_MMU_DOUBLE_MAP
|
|
if (arch_xtensa_is_ptr_uncached((void *)start)) {
|
|
map_memory_range(POINTER_TO_UINT(z_soc_cached_ptr((void *)start)),
|
|
POINTER_TO_UINT(z_soc_cached_ptr((void *)end)),
|
|
attrs | Z_XTENSA_MMU_CACHED_WB);
|
|
} else if (arch_xtensa_is_ptr_cached((void *)start)) {
|
|
map_memory_range(POINTER_TO_UINT(z_soc_uncached_ptr((void *)start)),
|
|
POINTER_TO_UINT(z_soc_uncached_ptr((void *)end)), attrs);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void xtensa_init_page_tables(void)
|
|
{
|
|
volatile uint8_t entry;
|
|
uint32_t page;
|
|
|
|
for (page = 0; page < XTENSA_L1_PAGE_TABLE_ENTRIES; page++) {
|
|
l1_page_table[page] = Z_XTENSA_MMU_ILLEGAL;
|
|
}
|
|
|
|
for (entry = 0; entry < ARRAY_SIZE(mmu_zephyr_ranges); entry++) {
|
|
const struct xtensa_mmu_range *range = &mmu_zephyr_ranges[entry];
|
|
|
|
map_memory(range->start, range->end, range->attrs);
|
|
}
|
|
|
|
/**
|
|
* GCC complains about usage of the SoC MMU range ARRAY_SIZE
|
|
* (xtensa_soc_mmu_ranges) as the default weak declaration is
|
|
* an empty array, and any access to its element is considered
|
|
* out of bound access. However, we have a number of element
|
|
* variable to guard against this (... if done correctly).
|
|
* Besides, this will almost be overridden by the SoC layer.
|
|
* So tell GCC to ignore this.
|
|
*/
|
|
#if defined(__GNUC__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Warray-bounds"
|
|
#endif
|
|
for (entry = 0; entry < xtensa_soc_mmu_ranges_num; entry++) {
|
|
const struct xtensa_mmu_range *range = &xtensa_soc_mmu_ranges[entry];
|
|
|
|
map_memory(range->start, range->end, range->attrs);
|
|
}
|
|
#if defined(__GNUC__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
sys_cache_data_flush_all();
|
|
}
|
|
|
|
__weak void arch_xtensa_mmu_post_init(bool is_core0)
|
|
{
|
|
ARG_UNUSED(is_core0);
|
|
}
|
|
|
|
void z_xtensa_mmu_init(void)
|
|
{
|
|
volatile uint8_t entry;
|
|
uint32_t ps, vecbase;
|
|
|
|
if (_current_cpu->id == 0) {
|
|
/* This is normally done via arch_kernel_init() inside z_cstart().
|
|
* However, before that is called, we go through the sys_init of
|
|
* INIT_LEVEL_EARLY, which is going to result in TLB misses.
|
|
* So setup whatever necessary so the exception handler can work
|
|
* properly.
|
|
*/
|
|
xtensa_init_page_tables();
|
|
}
|
|
|
|
/* Set the page table location in the virtual address */
|
|
xtensa_ptevaddr_set((void *)Z_XTENSA_PTEVADDR);
|
|
|
|
/* Next step is to invalidate the tlb entry that contains the top level
|
|
* page table. This way we don't cause a multi hit exception.
|
|
*/
|
|
xtensa_dtlb_entry_invalidate_sync(Z_XTENSA_TLB_ENTRY(Z_XTENSA_PAGE_TABLE_VADDR, 6));
|
|
xtensa_itlb_entry_invalidate_sync(Z_XTENSA_TLB_ENTRY(Z_XTENSA_PAGE_TABLE_VADDR, 6));
|
|
|
|
/* We are not using a flat table page, so we need to map
|
|
* only the top level page table (which maps the page table itself).
|
|
*
|
|
* Lets use one of the wired entry, so we never have tlb miss for
|
|
* the top level table.
|
|
*/
|
|
xtensa_dtlb_entry_write(Z_XTENSA_PTE((uint32_t)l1_page_table, Z_XTENSA_KERNEL_RING,
|
|
Z_XTENSA_MMU_CACHED_WT),
|
|
Z_XTENSA_TLB_ENTRY(Z_XTENSA_PAGE_TABLE_VADDR, MMU_PTE_WAY));
|
|
|
|
/* Before invalidate the text region in the TLB entry 6, we need to
|
|
* map the exception vector into one of the wired entries to avoid
|
|
* a page miss for the exception.
|
|
*/
|
|
__asm__ volatile("rsr.vecbase %0" : "=r"(vecbase));
|
|
|
|
xtensa_itlb_entry_write_sync(
|
|
Z_XTENSA_PTE(vecbase, Z_XTENSA_KERNEL_RING,
|
|
Z_XTENSA_MMU_X | Z_XTENSA_MMU_CACHED_WT),
|
|
Z_XTENSA_TLB_ENTRY(
|
|
Z_XTENSA_PTEVADDR + MB(4), 3));
|
|
|
|
xtensa_dtlb_entry_write_sync(
|
|
Z_XTENSA_PTE(vecbase, Z_XTENSA_KERNEL_RING,
|
|
Z_XTENSA_MMU_X | Z_XTENSA_MMU_CACHED_WT),
|
|
Z_XTENSA_TLB_ENTRY(
|
|
Z_XTENSA_PTEVADDR + MB(4), 3));
|
|
|
|
/* Temporarily uses KernelExceptionVector for level 1 interrupts
|
|
* handling. This is due to UserExceptionVector needing to jump to
|
|
* _Level1Vector. The jump ('j') instruction offset is incorrect
|
|
* when we move VECBASE below.
|
|
*/
|
|
__asm__ volatile("rsr.ps %0" : "=r"(ps));
|
|
ps &= ~PS_UM;
|
|
__asm__ volatile("wsr.ps %0; rsync" :: "a"(ps));
|
|
|
|
__asm__ volatile("wsr.vecbase %0; rsync\n\t"
|
|
:: "a"(Z_XTENSA_PTEVADDR + MB(4)));
|
|
|
|
|
|
/* Finally, lets invalidate all entries in way 6 as the page tables
|
|
* should have already mapped the regions we care about for boot.
|
|
*/
|
|
for (entry = 0; entry < BIT(XCHAL_ITLB_ARF_ENTRIES_LOG2); entry++) {
|
|
__asm__ volatile("iitlb %[idx]\n\t"
|
|
"isync"
|
|
:: [idx] "a"((entry << 29) | 6));
|
|
}
|
|
|
|
for (entry = 0; entry < BIT(XCHAL_DTLB_ARF_ENTRIES_LOG2); entry++) {
|
|
__asm__ volatile("idtlb %[idx]\n\t"
|
|
"dsync"
|
|
:: [idx] "a"((entry << 29) | 6));
|
|
}
|
|
|
|
/* Map VECBASE to a fixed data TLB */
|
|
xtensa_dtlb_entry_write(
|
|
Z_XTENSA_PTE((uint32_t)vecbase,
|
|
Z_XTENSA_KERNEL_RING, Z_XTENSA_MMU_CACHED_WB),
|
|
Z_XTENSA_TLB_ENTRY((uint32_t)vecbase, MMU_VECBASE_WAY));
|
|
|
|
/*
|
|
* Pre-load TLB for vecbase so exception handling won't result
|
|
* in TLB miss during boot, and that we can handle single
|
|
* TLB misses.
|
|
*/
|
|
xtensa_itlb_entry_write_sync(
|
|
Z_XTENSA_PTE(vecbase, Z_XTENSA_KERNEL_RING,
|
|
Z_XTENSA_MMU_X | Z_XTENSA_MMU_CACHED_WT),
|
|
Z_XTENSA_AUTOFILL_TLB_ENTRY(vecbase));
|
|
|
|
/* To finish, just restore vecbase and invalidate TLB entries
|
|
* used to map the relocated vecbase.
|
|
*/
|
|
__asm__ volatile("wsr.vecbase %0; rsync\n\t"
|
|
:: "a"(vecbase));
|
|
|
|
/* Restore PS_UM so that level 1 interrupt handling will go to
|
|
* UserExceptionVector.
|
|
*/
|
|
__asm__ volatile("rsr.ps %0" : "=r"(ps));
|
|
ps |= PS_UM;
|
|
__asm__ volatile("wsr.ps %0; rsync" :: "a"(ps));
|
|
|
|
xtensa_dtlb_entry_invalidate_sync(Z_XTENSA_TLB_ENTRY(Z_XTENSA_PTEVADDR + MB(4), 3));
|
|
xtensa_itlb_entry_invalidate_sync(Z_XTENSA_TLB_ENTRY(Z_XTENSA_PTEVADDR + MB(4), 3));
|
|
|
|
arch_xtensa_mmu_post_init(_current_cpu->id == 0);
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES
|
|
/* Zephyr's linker scripts for Xtensa usually puts
|
|
* something before z_mapped_start (aka .text),
|
|
* i.e. vecbase, so that we need to reserve those
|
|
* space or else k_mem_map() would be mapping those,
|
|
* resulting in faults.
|
|
*/
|
|
__weak void arch_reserved_pages_update(void)
|
|
{
|
|
uintptr_t page;
|
|
struct z_page_frame *pf;
|
|
int idx;
|
|
|
|
for (page = CONFIG_SRAM_BASE_ADDRESS, idx = 0;
|
|
page < (uintptr_t)z_mapped_start;
|
|
page += CONFIG_MMU_PAGE_SIZE, idx++) {
|
|
pf = &z_page_frames[idx];
|
|
|
|
pf->flags |= Z_PAGE_FRAME_RESERVED;
|
|
}
|
|
}
|
|
#endif /* CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES */
|
|
|
|
static bool l2_page_table_map(void *vaddr, uintptr_t phys, uint32_t flags)
|
|
{
|
|
uint32_t l1_pos = (uint32_t)vaddr >> 22;
|
|
uint32_t pte = Z_XTENSA_PTE(phys, Z_XTENSA_KERNEL_RING, flags);
|
|
uint32_t l2_pos = Z_XTENSA_L2_POS((uint32_t)vaddr);
|
|
uint32_t *table;
|
|
|
|
if (l1_page_table[l1_pos] == Z_XTENSA_MMU_ILLEGAL) {
|
|
table = alloc_l2_table();
|
|
|
|
if (table == NULL) {
|
|
return false;
|
|
}
|
|
|
|
l1_page_table[l1_pos] = Z_XTENSA_PTE((uint32_t)table, Z_XTENSA_KERNEL_RING,
|
|
Z_XTENSA_MMU_CACHED_WT);
|
|
}
|
|
|
|
table = (uint32_t *)(l1_page_table[l1_pos] & Z_XTENSA_PTE_PPN_MASK);
|
|
table[l2_pos] = pte;
|
|
|
|
if ((flags & Z_XTENSA_MMU_X) == Z_XTENSA_MMU_X) {
|
|
xtensa_itlb_vaddr_invalidate(vaddr);
|
|
}
|
|
xtensa_dtlb_vaddr_invalidate(vaddr);
|
|
return true;
|
|
}
|
|
|
|
void arch_mem_map(void *virt, uintptr_t phys, size_t size, uint32_t flags)
|
|
{
|
|
uint32_t va = (uint32_t)virt;
|
|
uint32_t pa = (uint32_t)phys;
|
|
uint32_t rem_size = (uint32_t)size;
|
|
uint32_t xtensa_flags = 0;
|
|
int key;
|
|
|
|
if (size == 0) {
|
|
LOG_ERR("Cannot map physical memory at 0x%08X: invalid "
|
|
"zero size", (uint32_t)phys);
|
|
k_panic();
|
|
}
|
|
|
|
switch (flags & K_MEM_CACHE_MASK) {
|
|
|
|
case K_MEM_CACHE_WB:
|
|
xtensa_flags |= Z_XTENSA_MMU_CACHED_WB;
|
|
break;
|
|
case K_MEM_CACHE_WT:
|
|
xtensa_flags |= Z_XTENSA_MMU_CACHED_WT;
|
|
break;
|
|
case K_MEM_CACHE_NONE:
|
|
__fallthrough;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if ((flags & K_MEM_PERM_RW) == K_MEM_PERM_RW) {
|
|
xtensa_flags |= Z_XTENSA_MMU_W;
|
|
}
|
|
if ((flags & K_MEM_PERM_EXEC) == K_MEM_PERM_EXEC) {
|
|
xtensa_flags |= Z_XTENSA_MMU_X;
|
|
}
|
|
|
|
key = arch_irq_lock();
|
|
|
|
while (rem_size > 0) {
|
|
bool ret = l2_page_table_map((void *)va, pa, xtensa_flags);
|
|
|
|
ARG_UNUSED(ret);
|
|
__ASSERT(ret, "Virtual address (%u) already mapped", (uint32_t)virt);
|
|
rem_size -= (rem_size >= KB(4)) ? KB(4) : rem_size;
|
|
va += KB(4);
|
|
pa += KB(4);
|
|
}
|
|
|
|
arch_irq_unlock(key);
|
|
}
|
|
|
|
static void l2_page_table_unmap(void *vaddr)
|
|
{
|
|
uint32_t l1_pos = (uint32_t)vaddr >> 22;
|
|
uint32_t l2_pos = Z_XTENSA_L2_POS((uint32_t)vaddr);
|
|
uint32_t *table;
|
|
uint32_t table_pos;
|
|
bool exec;
|
|
|
|
if (l1_page_table[l1_pos] == Z_XTENSA_MMU_ILLEGAL) {
|
|
return;
|
|
}
|
|
|
|
exec = l1_page_table[l1_pos] & Z_XTENSA_MMU_X;
|
|
|
|
table = (uint32_t *)(l1_page_table[l1_pos] & Z_XTENSA_PTE_PPN_MASK);
|
|
table[l2_pos] = Z_XTENSA_MMU_ILLEGAL;
|
|
|
|
for (l2_pos = 0; l2_pos < XTENSA_L2_PAGE_TABLE_ENTRIES; l2_pos++) {
|
|
if (table[l2_pos] != Z_XTENSA_MMU_ILLEGAL) {
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
l1_page_table[l1_pos] = Z_XTENSA_MMU_ILLEGAL;
|
|
table_pos = (table - (uint32_t *)l2_page_tables) / (XTENSA_L2_PAGE_TABLE_ENTRIES);
|
|
atomic_clear_bit(l2_page_tables_track, table_pos);
|
|
|
|
/* Need to invalidate L2 page table as it is no longer valid. */
|
|
xtensa_dtlb_vaddr_invalidate((void *)table);
|
|
|
|
end:
|
|
if (exec) {
|
|
xtensa_itlb_vaddr_invalidate(vaddr);
|
|
}
|
|
xtensa_dtlb_vaddr_invalidate(vaddr);
|
|
}
|
|
|
|
void arch_mem_unmap(void *addr, size_t size)
|
|
{
|
|
uint32_t va = (uint32_t)addr;
|
|
uint32_t rem_size = (uint32_t)size;
|
|
int key;
|
|
|
|
if (addr == NULL) {
|
|
LOG_ERR("Cannot unmap NULL pointer");
|
|
return;
|
|
}
|
|
|
|
if (size == 0) {
|
|
LOG_ERR("Cannot unmap virtual memory with zero size");
|
|
return;
|
|
}
|
|
|
|
key = arch_irq_lock();
|
|
|
|
while (rem_size > 0) {
|
|
l2_page_table_unmap((void *)va);
|
|
rem_size -= (rem_size >= KB(4)) ? KB(4) : rem_size;
|
|
va += KB(4);
|
|
}
|
|
|
|
arch_irq_unlock(key);
|
|
}
|