Both operands of an operator in the arithmetic conversions performed shall have the same essential type category. Changes are related to converting the integer constants to the unsigned integer constants Signed-off-by: Aastha Grover <aastha.grover@intel.com>
404 lines
10 KiB
C
404 lines
10 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <kernel.h>
|
|
#include <string.h>
|
|
#include <sys/__assert.h>
|
|
#include <sys/mempool_base.h>
|
|
#include <sys/mempool.h>
|
|
#include <sys/check.h>
|
|
|
|
#ifdef CONFIG_MISRA_SANE
|
|
#define LVL_ARRAY_SZ(n) (8 * sizeof(void *) / 2)
|
|
#else
|
|
#define LVL_ARRAY_SZ(n) (n)
|
|
#endif
|
|
|
|
static void *block_ptr(struct sys_mem_pool_base *p, size_t lsz, int block)
|
|
{
|
|
return (uint8_t *)p->buf + lsz * block;
|
|
}
|
|
|
|
static int block_num(struct sys_mem_pool_base *p, void *block, int sz)
|
|
{
|
|
return ((uint8_t *)block - (uint8_t *)p->buf) / sz;
|
|
}
|
|
|
|
/* Places a 32 bit output pointer in word, and an integer bit index
|
|
* within that word as the return value
|
|
*/
|
|
static int get_bit_ptr(struct sys_mem_pool_base *p, int level, int bn,
|
|
uint32_t **word)
|
|
{
|
|
uint32_t *bitarray = level <= p->max_inline_level ?
|
|
p->levels[level].bits : p->levels[level].bits_p;
|
|
|
|
*word = &bitarray[bn / 32];
|
|
|
|
return bn & 0x1f;
|
|
}
|
|
|
|
static void set_alloc_bit(struct sys_mem_pool_base *p, int level, int bn)
|
|
{
|
|
uint32_t *word;
|
|
int bit = get_bit_ptr(p, level, bn, &word);
|
|
|
|
*word |= (1<<bit);
|
|
}
|
|
|
|
static void clear_alloc_bit(struct sys_mem_pool_base *p, int level, int bn)
|
|
{
|
|
uint32_t *word;
|
|
int bit = get_bit_ptr(p, level, bn, &word);
|
|
|
|
*word &= ~(1<<bit);
|
|
}
|
|
|
|
#ifdef CONFIG_ASSERT
|
|
static inline bool alloc_bit_is_set(struct sys_mem_pool_base *p,
|
|
int level, int bn)
|
|
{
|
|
uint32_t *word;
|
|
int bit = get_bit_ptr(p, level, bn, &word);
|
|
|
|
return (*word >> bit) & 1U;
|
|
}
|
|
#endif
|
|
|
|
/* Returns all four of the allocated bits for the specified blocks
|
|
* "partners" in the bottom 4 bits of the return value
|
|
*/
|
|
static int partner_alloc_bits(struct sys_mem_pool_base *p, int level, int bn)
|
|
{
|
|
uint32_t *word;
|
|
int bit = get_bit_ptr(p, level, bn, &word);
|
|
|
|
return (*word >> (4*(bit / 4))) & 0xfU;
|
|
}
|
|
|
|
void z_sys_mem_pool_base_init(struct sys_mem_pool_base *p)
|
|
{
|
|
int i;
|
|
size_t buflen = p->n_max * p->max_sz, sz = p->max_sz;
|
|
uint32_t *bits = (uint32_t *)((uint8_t *)p->buf + buflen);
|
|
|
|
p->max_inline_level = -1;
|
|
|
|
for (i = 0; i < p->n_levels; i++) {
|
|
size_t nblocks = buflen / sz;
|
|
|
|
sys_dlist_init(&p->levels[i].free_list);
|
|
|
|
if (nblocks <= sizeof(p->levels[i].bits)*8) {
|
|
p->max_inline_level = i;
|
|
} else {
|
|
p->levels[i].bits_p = bits;
|
|
bits += (nblocks + 31)/32;
|
|
}
|
|
|
|
sz = WB_DN(sz / 4);
|
|
}
|
|
|
|
for (i = 0; i < p->n_max; i++) {
|
|
void *block = block_ptr(p, p->max_sz, i);
|
|
|
|
sys_dlist_append(&p->levels[0].free_list, block);
|
|
}
|
|
}
|
|
|
|
/* A note on synchronization:
|
|
*
|
|
* For k_mem_pools which are interrupt safe, all manipulation of the actual
|
|
* pool data happens in one of alloc_block()/free_block() or break_block().
|
|
* All of these transition between a state where the caller "holds" a block
|
|
* pointer that is marked used in the store and one where she doesn't (or else
|
|
* they will fail, e.g. if there isn't a free block). So that is the basic
|
|
* operation that needs synchronization, which we can do piecewise as needed in
|
|
* small one-block chunks to preserve latency. At most (in free_block) a
|
|
* single locked operation consists of four bit sets and dlist removals. If the
|
|
* overall allocation operation fails, we just free the block we have (putting
|
|
* a block back into the list cannot fail) and return failure.
|
|
*
|
|
* For user mode compatible sys_mem_pool pools, a semaphore is used at the API
|
|
* level since using that does not introduce latency issues like locking
|
|
* interrupts does.
|
|
*/
|
|
|
|
static inline int pool_irq_lock(struct sys_mem_pool_base *p)
|
|
{
|
|
if (p->flags & SYS_MEM_POOL_KERNEL) {
|
|
return irq_lock();
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline void pool_irq_unlock(struct sys_mem_pool_base *p, int key)
|
|
{
|
|
if (p->flags & SYS_MEM_POOL_KERNEL) {
|
|
irq_unlock(key);
|
|
}
|
|
}
|
|
|
|
static void *block_alloc(struct sys_mem_pool_base *p, int l, size_t lsz)
|
|
{
|
|
sys_dnode_t *block;
|
|
|
|
block = sys_dlist_get(&p->levels[l].free_list);
|
|
if (block != NULL) {
|
|
set_alloc_bit(p, l, block_num(p, block, lsz));
|
|
}
|
|
return block;
|
|
}
|
|
|
|
/* Called with lock held */
|
|
static unsigned int bfree_recombine(struct sys_mem_pool_base *p, int level,
|
|
size_t *lsizes, int bn, unsigned int key)
|
|
{
|
|
while (level >= 0) {
|
|
int i, lsz = lsizes[level];
|
|
void *block = block_ptr(p, lsz, bn);
|
|
|
|
/* Detect common double-free occurrences */
|
|
__ASSERT(alloc_bit_is_set(p, level, bn),
|
|
"mempool double-free detected at %p", block);
|
|
|
|
/* Put it back */
|
|
clear_alloc_bit(p, level, bn);
|
|
sys_dlist_append(&p->levels[level].free_list, block);
|
|
|
|
/* Relax the lock (might result in it being taken, which is OK!) */
|
|
pool_irq_unlock(p, key);
|
|
key = pool_irq_lock(p);
|
|
|
|
/* Check if we can recombine its superblock, and repeat */
|
|
if (level == 0 || partner_alloc_bits(p, level, bn) != 0) {
|
|
return key;
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
int b = (bn & ~3) + i;
|
|
|
|
sys_dlist_remove(block_ptr(p, lsz, b));
|
|
}
|
|
|
|
/* Free the larger block */
|
|
level = level - 1;
|
|
bn = bn / 4;
|
|
}
|
|
__ASSERT(0, "out of levels");
|
|
return -1;
|
|
}
|
|
|
|
static void block_free(struct sys_mem_pool_base *p, int level,
|
|
size_t *lsizes, int bn)
|
|
{
|
|
unsigned int key = pool_irq_lock(p);
|
|
|
|
key = bfree_recombine(p, level, lsizes, bn, key);
|
|
pool_irq_unlock(p, key);
|
|
}
|
|
|
|
/* Takes a block of a given level, splits it into four blocks of the
|
|
* next smaller level, puts three into the free list as in
|
|
* block_free() but without the need to check adjacent bits or
|
|
* recombine, and returns the remaining smaller block.
|
|
*/
|
|
static void *block_break(struct sys_mem_pool_base *p, void *block, int l,
|
|
size_t *lsizes)
|
|
{
|
|
int i, bn;
|
|
|
|
bn = block_num(p, block, lsizes[l]);
|
|
set_alloc_bit(p, l + 1, 4*bn);
|
|
|
|
for (i = 1; i < 4; i++) {
|
|
int lsz = lsizes[l + 1];
|
|
void *block2 = (lsz * i) + (char *)block;
|
|
|
|
sys_dlist_append(&p->levels[l + 1].free_list, block2);
|
|
}
|
|
|
|
return block;
|
|
}
|
|
|
|
int z_sys_mem_pool_block_alloc(struct sys_mem_pool_base *p, size_t size,
|
|
uint32_t *level_p, uint32_t *block_p, void **data_p)
|
|
{
|
|
int i, from_l, alloc_l = -1;
|
|
unsigned int key;
|
|
void *data = NULL;
|
|
size_t lsizes[LVL_ARRAY_SZ(p->n_levels)];
|
|
|
|
/* Walk down through levels, finding the one from which we
|
|
* want to allocate and the smallest one with a free entry
|
|
* from which we can split an allocation if needed. Along the
|
|
* way, we populate an array of sizes for each level so we
|
|
* don't need to waste RAM storing it.
|
|
*/
|
|
lsizes[0] = p->max_sz;
|
|
for (i = 0; i < p->n_levels; i++) {
|
|
if (i > 0) {
|
|
lsizes[i] = WB_DN(lsizes[i-1] / 4);
|
|
}
|
|
|
|
if (lsizes[i] < size) {
|
|
break;
|
|
}
|
|
|
|
alloc_l = i;
|
|
}
|
|
|
|
if (alloc_l < 0) {
|
|
*data_p = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Now walk back down the levels (i.e. toward bigger sizes)
|
|
* looking for an available block. Start at the smallest
|
|
* enclosing block found above (note that because that loop
|
|
* was done without synchronization, it may no longer be
|
|
* available!) as a useful optimization. Note that the
|
|
* removal of the block from the list and the re-addition of
|
|
* its the three unused children needs to be performed
|
|
* atomically, otherwise we open up a situation where we can
|
|
* "steal" the top level block of the whole heap, causing a
|
|
* spurious -ENOMEM.
|
|
*/
|
|
key = pool_irq_lock(p);
|
|
for (i = alloc_l; i >= 0; i--) {
|
|
data = block_alloc(p, i, lsizes[i]);
|
|
|
|
/* Found one. Iteratively break it down to the size
|
|
* we need. Note that we relax the lock to allow a
|
|
* pending interrupt to fire so we don't hurt latency
|
|
* by locking the full loop.
|
|
*/
|
|
if (data != NULL) {
|
|
for (from_l = i; from_l < alloc_l; from_l++) {
|
|
data = block_break(p, data, from_l, lsizes);
|
|
pool_irq_unlock(p, key);
|
|
key = pool_irq_lock(p);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
pool_irq_unlock(p, key);
|
|
|
|
*data_p = data;
|
|
|
|
if (data == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
*level_p = alloc_l;
|
|
*block_p = block_num(p, data, lsizes[alloc_l]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void z_sys_mem_pool_block_free(struct sys_mem_pool_base *p, uint32_t level,
|
|
uint32_t block)
|
|
{
|
|
size_t lsizes[LVL_ARRAY_SZ(p->n_levels)];
|
|
uint32_t i;
|
|
|
|
/* As in z_sys_mem_pool_block_alloc(), we build a table of level sizes
|
|
* to avoid having to store it in precious RAM bytes.
|
|
* Overhead here is somewhat higher because block_free()
|
|
* doesn't inherently need to traverse all the larger
|
|
* sublevels.
|
|
*/
|
|
lsizes[0] = p->max_sz;
|
|
for (i = 1; i <= level; i++) {
|
|
lsizes[i] = WB_DN(lsizes[i-1] / 4);
|
|
}
|
|
|
|
block_free(p, level, lsizes, block);
|
|
}
|
|
|
|
/*
|
|
* Functions specific to user-mode blocks
|
|
*/
|
|
|
|
void *sys_mem_pool_alloc(struct sys_mem_pool *p, size_t size)
|
|
{
|
|
struct sys_mem_pool_block *blk;
|
|
uint32_t level, block;
|
|
char *ret;
|
|
int lock_ret;
|
|
|
|
lock_ret = sys_mutex_lock(&p->mutex, K_FOREVER);
|
|
CHECKIF(lock_ret != 0) {
|
|
return NULL;
|
|
}
|
|
|
|
size += WB_UP(sizeof(struct sys_mem_pool_block));
|
|
if (z_sys_mem_pool_block_alloc(&p->base, size, &level, &block,
|
|
(void **)&ret)) {
|
|
ret = NULL;
|
|
goto out;
|
|
}
|
|
|
|
blk = (struct sys_mem_pool_block *)ret;
|
|
blk->level = level;
|
|
blk->block = block;
|
|
blk->pool = p;
|
|
ret += WB_UP(sizeof(struct sys_mem_pool_block));
|
|
out:
|
|
sys_mutex_unlock(&p->mutex);
|
|
return ret;
|
|
}
|
|
|
|
void sys_mem_pool_free(void *ptr)
|
|
{
|
|
struct sys_mem_pool_block *blk;
|
|
struct sys_mem_pool *p;
|
|
int lock_ret;
|
|
|
|
if (ptr == NULL) {
|
|
return;
|
|
}
|
|
|
|
ptr = (char *)ptr - WB_UP(sizeof(struct sys_mem_pool_block));
|
|
blk = (struct sys_mem_pool_block *)ptr;
|
|
p = blk->pool;
|
|
|
|
lock_ret = sys_mutex_lock(&p->mutex, K_FOREVER);
|
|
CHECKIF(lock_ret != 0) {
|
|
return;
|
|
}
|
|
z_sys_mem_pool_block_free(&p->base, blk->level, blk->block);
|
|
sys_mutex_unlock(&p->mutex);
|
|
}
|
|
|
|
size_t sys_mem_pool_try_expand_inplace(void *ptr, size_t requested_size)
|
|
{
|
|
struct sys_mem_pool_block *blk;
|
|
size_t struct_blk_size = WB_UP(sizeof(struct sys_mem_pool_block));
|
|
size_t block_size, total_requested_size;
|
|
|
|
ptr = (char *)ptr - struct_blk_size;
|
|
blk = (struct sys_mem_pool_block *)ptr;
|
|
|
|
/*
|
|
* Determine size of previously allocated block by its level.
|
|
* Most likely a bit larger than the original allocation
|
|
*/
|
|
block_size = blk->pool->base.max_sz;
|
|
for (int i = 1; i <= blk->level; i++) {
|
|
block_size = WB_DN(block_size / 4);
|
|
}
|
|
|
|
/* We really need this much memory */
|
|
total_requested_size = requested_size + struct_blk_size;
|
|
|
|
if (block_size >= total_requested_size) {
|
|
/* size adjustment can occur in-place */
|
|
return 0;
|
|
}
|
|
return block_size - struct_blk_size;
|
|
}
|