zephyr/kernel/thread.c
Andrew Boie cdb94d6425 kernel: add k_panic() and k_oops() APIs
Unlike assertions, these APIs are active at all times. The kernel will
treat these errors in the same way as fatal CPU exceptions. Ultimately,
the policy of what to do with these errors is implemented in
_SysFatalErrorHandler.

If the archtecture supports it, a real CPU exception can be triggered
which will provide a complete register dump and PC value when the
problem occurs. This will provide more helpful information than a fake
exception stack frame (_default_esf) passed to the arch-specific exception
handling code.

Issue: ZEP-843
Change-Id: I8f136905c05bb84772e1c5ed53b8e920d24eb6fd
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
2017-04-22 10:31:49 -04:00

426 lines
9.1 KiB
C

/*
* Copyright (c) 2010-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Kernel thread support
*
* This module provides general purpose thread support.
*/
#include <kernel.h>
#include <toolchain.h>
#include <sections.h>
#include <kernel_structs.h>
#include <misc/printk.h>
#include <sys_clock.h>
#include <drivers/system_timer.h>
#include <ksched.h>
#include <wait_q.h>
extern struct _static_thread_data _static_thread_data_list_start[];
extern struct _static_thread_data _static_thread_data_list_end[];
#define _FOREACH_STATIC_THREAD(thread_data) \
for (struct _static_thread_data *thread_data = \
_static_thread_data_list_start; \
thread_data < _static_thread_data_list_end; \
thread_data++)
int k_is_in_isr(void)
{
return _is_in_isr();
}
/*
* This function tags the current thread as essential to system operation.
* Exceptions raised by this thread will be treated as a fatal system error.
*/
void _thread_essential_set(void)
{
_current->base.user_options |= K_ESSENTIAL;
}
/*
* This function tags the current thread as not essential to system operation.
* Exceptions raised by this thread may be recoverable.
* (This is the default tag for a thread.)
*/
void _thread_essential_clear(void)
{
_current->base.user_options &= ~K_ESSENTIAL;
}
/*
* This routine indicates if the current thread is an essential system thread.
*
* Returns non-zero if current thread is essential, zero if it is not.
*/
int _is_thread_essential(void)
{
return _current->base.user_options & K_ESSENTIAL;
}
void k_busy_wait(u32_t usec_to_wait)
{
/* use 64-bit math to prevent overflow when multiplying */
u32_t cycles_to_wait = (u32_t)(
(u64_t)usec_to_wait *
(u64_t)sys_clock_hw_cycles_per_sec /
(u64_t)USEC_PER_SEC
);
u32_t start_cycles = k_cycle_get_32();
for (;;) {
u32_t current_cycles = k_cycle_get_32();
/* this handles the rollover on an unsigned 32-bit value */
if ((current_cycles - start_cycles) >= cycles_to_wait) {
break;
}
}
}
#ifdef CONFIG_THREAD_CUSTOM_DATA
void k_thread_custom_data_set(void *value)
{
_current->custom_data = value;
}
void *k_thread_custom_data_get(void)
{
return _current->custom_data;
}
#endif /* CONFIG_THREAD_CUSTOM_DATA */
#if defined(CONFIG_THREAD_MONITOR)
/*
* Remove a thread from the kernel's list of active threads.
*/
void _thread_monitor_exit(struct k_thread *thread)
{
unsigned int key = irq_lock();
if (thread == _kernel.threads) {
_kernel.threads = _kernel.threads->next_thread;
} else {
struct k_thread *prev_thread;
prev_thread = _kernel.threads;
while (thread != prev_thread->next_thread) {
prev_thread = prev_thread->next_thread;
}
prev_thread->next_thread = thread->next_thread;
}
irq_unlock(key);
}
#endif /* CONFIG_THREAD_MONITOR */
/*
* Common thread entry point function (used by all threads)
*
* This routine invokes the actual thread entry point function and passes
* it three arguments. It also handles graceful termination of the thread
* if the entry point function ever returns.
*
* This routine does not return, and is marked as such so the compiler won't
* generate preamble code that is only used by functions that actually return.
*/
FUNC_NORETURN void _thread_entry(void (*entry)(void *, void *, void *),
void *p1, void *p2, void *p3)
{
entry(p1, p2, p3);
#ifdef CONFIG_MULTITHREADING
if (_is_thread_essential()) {
_k_except_reason(_NANO_ERR_INVALID_TASK_EXIT);
}
k_thread_abort(_current);
#else
for (;;) {
k_cpu_idle();
}
#endif
/*
* Compiler can't tell that k_thread_abort() won't return and issues a
* warning unless we tell it that control never gets this far.
*/
CODE_UNREACHABLE;
}
#ifdef CONFIG_MULTITHREADING
static void start_thread(struct k_thread *thread)
{
int key = irq_lock(); /* protect kernel queues */
_mark_thread_as_started(thread);
if (_is_thread_ready(thread)) {
_add_thread_to_ready_q(thread);
if (_must_switch_threads()) {
_Swap(key);
return;
}
}
irq_unlock(key);
}
#endif
#ifdef CONFIG_MULTITHREADING
static void schedule_new_thread(struct k_thread *thread, s32_t delay)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
if (delay == 0) {
start_thread(thread);
} else {
s32_t ticks = _TICK_ALIGN + _ms_to_ticks(delay);
int key = irq_lock();
_add_thread_timeout(thread, NULL, ticks);
irq_unlock(key);
}
#else
ARG_UNUSED(delay);
start_thread(thread);
#endif
}
#endif
#ifdef CONFIG_MULTITHREADING
k_tid_t k_thread_spawn(char *stack, size_t stack_size,
void (*entry)(void *, void *, void*),
void *p1, void *p2, void *p3,
int prio, u32_t options, s32_t delay)
{
__ASSERT(!_is_in_isr(), "");
struct k_thread *new_thread = (struct k_thread *)stack;
_new_thread(stack, stack_size, entry, p1, p2, p3, prio, options);
schedule_new_thread(new_thread, delay);
return new_thread;
}
#endif
int k_thread_cancel(k_tid_t tid)
{
struct k_thread *thread = tid;
int key = irq_lock();
if (_has_thread_started(thread) ||
!_is_thread_timeout_active(thread)) {
irq_unlock(key);
return -EINVAL;
}
_abort_thread_timeout(thread);
_thread_monitor_exit(thread);
irq_unlock(key);
return 0;
}
static inline int is_in_any_group(struct _static_thread_data *thread_data,
u32_t groups)
{
return !!(thread_data->init_groups & groups);
}
void _k_thread_group_op(u32_t groups, void (*func)(struct k_thread *))
{
unsigned int key;
__ASSERT(!_is_in_isr(), "");
_sched_lock();
/* Invoke func() on each static thread in the specified group set. */
_FOREACH_STATIC_THREAD(thread_data) {
if (is_in_any_group(thread_data, groups)) {
key = irq_lock();
func(thread_data->thread);
irq_unlock(key);
}
}
/*
* If the current thread is still in a ready state, then let the
* "unlock scheduler" code determine if any rescheduling is needed.
*/
if (_is_thread_ready(_current)) {
k_sched_unlock();
return;
}
/* The current thread is no longer in a ready state--reschedule. */
key = irq_lock();
_sched_unlock_no_reschedule();
_Swap(key);
}
void _k_thread_single_start(struct k_thread *thread)
{
_mark_thread_as_started(thread);
if (_is_thread_ready(thread)) {
_add_thread_to_ready_q(thread);
}
}
void _k_thread_single_suspend(struct k_thread *thread)
{
if (_is_thread_ready(thread)) {
_remove_thread_from_ready_q(thread);
}
_mark_thread_as_suspended(thread);
}
void k_thread_suspend(struct k_thread *thread)
{
unsigned int key = irq_lock();
_k_thread_single_suspend(thread);
if (thread == _current) {
_Swap(key);
} else {
irq_unlock(key);
}
}
void _k_thread_single_resume(struct k_thread *thread)
{
_mark_thread_as_not_suspended(thread);
if (_is_thread_ready(thread)) {
_add_thread_to_ready_q(thread);
}
}
void k_thread_resume(struct k_thread *thread)
{
unsigned int key = irq_lock();
_k_thread_single_resume(thread);
_reschedule_threads(key);
}
void _k_thread_single_abort(struct k_thread *thread)
{
if (thread->fn_abort != NULL) {
thread->fn_abort();
}
if (_is_thread_ready(thread)) {
_remove_thread_from_ready_q(thread);
} else {
if (_is_thread_pending(thread)) {
_unpend_thread(thread);
}
if (_is_thread_timeout_active(thread)) {
_abort_thread_timeout(thread);
}
}
_mark_thread_as_dead(thread);
}
#ifdef CONFIG_MULTITHREADING
void _init_static_threads(void)
{
unsigned int key;
_FOREACH_STATIC_THREAD(thread_data) {
_new_thread(
thread_data->init_stack,
thread_data->init_stack_size,
thread_data->init_entry,
thread_data->init_p1,
thread_data->init_p2,
thread_data->init_p3,
thread_data->init_prio,
thread_data->init_options);
thread_data->thread->init_data = thread_data;
}
_sched_lock();
/*
* Non-legacy static threads may be started immediately or after a
* previously specified delay. Even though the scheduler is locked,
* ticks can still be delivered and processed. Lock interrupts so
* that the countdown until execution begins from the same tick.
*
* Note that static threads defined using the legacy API have a
* delay of K_FOREVER.
*/
key = irq_lock();
_FOREACH_STATIC_THREAD(thread_data) {
if (thread_data->init_delay != K_FOREVER) {
schedule_new_thread(thread_data->thread,
thread_data->init_delay);
}
}
irq_unlock(key);
k_sched_unlock();
}
#endif
void _init_thread_base(struct _thread_base *thread_base, int priority,
u32_t initial_state, unsigned int options)
{
/* k_q_node is initialized upon first insertion in a list */
thread_base->user_options = (u8_t)options;
thread_base->thread_state = (u8_t)initial_state;
thread_base->prio = priority;
thread_base->sched_locked = 0;
/* swap_data does not need to be initialized */
_init_thread_timeout(thread_base);
}
u32_t _k_thread_group_mask_get(struct k_thread *thread)
{
struct _static_thread_data *thread_data = thread->init_data;
return thread_data->init_groups;
}
void _k_thread_group_join(u32_t groups, struct k_thread *thread)
{
struct _static_thread_data *thread_data = thread->init_data;
thread_data->init_groups |= groups;
}
void _k_thread_group_leave(u32_t groups, struct k_thread *thread)
{
struct _static_thread_data *thread_data = thread->init_data;
thread_data->init_groups &= groups;
}