zephyr/subsys/bluetooth/host/conn.c
Johan Hedberg d67416321e Bluetooth: hci_raw: Add support for specifying buffer headroom
The HCI transport implemented by an application using the HCI raw
interface may have its own buffer headroom requirements. Currently the
available headroom gets completely determined by the selected HCI
driver. E.g. most of the time this is the native controller driver
which doesn't reserve any headroom at all.

To cover for the needs of HCI raw users, add a new Kconfig variable
for the apps to set to whatever they need. Correspondingly, use the
maximum of the HCI driver and HCI raw headroom requirements for the
buffer pool definitions and the headroom initializations.

Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2019-11-20 19:29:06 +01:00

2534 lines
56 KiB
C

/* conn.c - Bluetooth connection handling */
/*
* Copyright (c) 2015-2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr.h>
#include <string.h>
#include <errno.h>
#include <stdbool.h>
#include <sys/atomic.h>
#include <sys/byteorder.h>
#include <sys/util.h>
#include <sys/slist.h>
#include <debug/stack.h>
#include <sys/__assert.h>
#include <bluetooth/hci.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/conn.h>
#include <bluetooth/hci_driver.h>
#include <bluetooth/att.h>
#define BT_DBG_ENABLED IS_ENABLED(CONFIG_BT_DEBUG_CONN)
#define LOG_MODULE_NAME bt_conn
#include "common/log.h"
#include "hci_core.h"
#include "conn_internal.h"
#include "l2cap_internal.h"
#include "keys.h"
#include "smp.h"
#include "att_internal.h"
#include "gatt_internal.h"
NET_BUF_POOL_DEFINE(acl_tx_pool, CONFIG_BT_L2CAP_TX_BUF_COUNT,
BT_L2CAP_BUF_SIZE(CONFIG_BT_L2CAP_TX_MTU),
BT_BUF_USER_DATA_MIN, NULL);
#if CONFIG_BT_L2CAP_TX_FRAG_COUNT > 0
#if defined(BT_CTLR_TX_BUFFER_SIZE)
#define FRAG_SIZE BT_L2CAP_BUF_SIZE(BT_CTLR_TX_BUFFER_SIZE - 4)
#else
#define FRAG_SIZE BT_L2CAP_BUF_SIZE(CONFIG_BT_L2CAP_TX_MTU)
#endif
/* Dedicated pool for fragment buffers in case queued up TX buffers don't
* fit the controllers buffer size. We can't use the acl_tx_pool for the
* fragmentation, since it's possible that pool is empty and all buffers
* are queued up in the TX queue. In such a situation, trying to allocate
* another buffer from the acl_tx_pool would result in a deadlock.
*/
NET_BUF_POOL_FIXED_DEFINE(frag_pool, CONFIG_BT_L2CAP_TX_FRAG_COUNT, FRAG_SIZE,
NULL);
#endif /* CONFIG_BT_L2CAP_TX_FRAG_COUNT > 0 */
/* How long until we cancel HCI_LE_Create_Connection */
#define CONN_TIMEOUT K_SECONDS(CONFIG_BT_CREATE_CONN_TIMEOUT)
#if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_BREDR)
const struct bt_conn_auth_cb *bt_auth;
#endif /* CONFIG_BT_SMP || CONFIG_BT_BREDR */
static struct bt_conn conns[CONFIG_BT_MAX_CONN];
static struct bt_conn_cb *callback_list;
#define conn_tx(buf) ((struct bt_conn_tx_data *)net_buf_user_data(buf))
static struct bt_conn_tx conn_tx[CONFIG_BT_CONN_TX_MAX];
K_FIFO_DEFINE(free_tx);
#if defined(CONFIG_BT_BREDR)
static struct bt_conn sco_conns[CONFIG_BT_MAX_SCO_CONN];
enum pairing_method {
LEGACY, /* Legacy (pre-SSP) pairing */
JUST_WORKS, /* JustWorks pairing */
PASSKEY_INPUT, /* Passkey Entry input */
PASSKEY_DISPLAY, /* Passkey Entry display */
PASSKEY_CONFIRM, /* Passkey confirm */
};
/* based on table 5.7, Core Spec 4.2, Vol.3 Part C, 5.2.2.6 */
static const u8_t ssp_method[4 /* remote */][4 /* local */] = {
{ JUST_WORKS, JUST_WORKS, PASSKEY_INPUT, JUST_WORKS },
{ JUST_WORKS, PASSKEY_CONFIRM, PASSKEY_INPUT, JUST_WORKS },
{ PASSKEY_DISPLAY, PASSKEY_DISPLAY, PASSKEY_INPUT, JUST_WORKS },
{ JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS },
};
#endif /* CONFIG_BT_BREDR */
struct k_sem *bt_conn_get_pkts(struct bt_conn *conn)
{
#if defined(CONFIG_BT_BREDR)
if (conn->type == BT_CONN_TYPE_BR || !bt_dev.le.mtu) {
return &bt_dev.br.pkts;
}
#endif /* CONFIG_BT_BREDR */
return &bt_dev.le.pkts;
}
static inline const char *state2str(bt_conn_state_t state)
{
switch (state) {
case BT_CONN_DISCONNECTED:
return "disconnected";
case BT_CONN_CONNECT_SCAN:
return "connect-scan";
case BT_CONN_CONNECT_DIR_ADV:
return "connect-dir-adv";
case BT_CONN_CONNECT:
return "connect";
case BT_CONN_CONNECTED:
return "connected";
case BT_CONN_DISCONNECT:
return "disconnect";
default:
return "(unknown)";
}
}
static void notify_connected(struct bt_conn *conn)
{
struct bt_conn_cb *cb;
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->connected) {
cb->connected(conn, conn->err);
}
}
if (!conn->err) {
bt_gatt_connected(conn);
}
}
static void notify_disconnected(struct bt_conn *conn)
{
struct bt_conn_cb *cb;
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->disconnected) {
cb->disconnected(conn, conn->err);
}
}
}
void notify_le_param_updated(struct bt_conn *conn)
{
struct bt_conn_cb *cb;
/* If new connection parameters meet requirement of pending
* parameters don't send slave conn param request anymore on timeout
*/
if (atomic_test_bit(conn->flags, BT_CONN_SLAVE_PARAM_SET) &&
conn->le.interval >= conn->le.interval_min &&
conn->le.interval <= conn->le.interval_max &&
conn->le.latency == conn->le.pending_latency &&
conn->le.timeout == conn->le.pending_timeout) {
atomic_clear_bit(conn->flags, BT_CONN_SLAVE_PARAM_SET);
}
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->le_param_updated) {
cb->le_param_updated(conn, conn->le.interval,
conn->le.latency,
conn->le.timeout);
}
}
}
bool le_param_req(struct bt_conn *conn, struct bt_le_conn_param *param)
{
struct bt_conn_cb *cb;
if (!bt_le_conn_params_valid(param)) {
return false;
}
for (cb = callback_list; cb; cb = cb->_next) {
if (!cb->le_param_req) {
continue;
}
if (!cb->le_param_req(conn, param)) {
return false;
}
/* The callback may modify the parameters so we need to
* double-check that it returned valid parameters.
*/
if (!bt_le_conn_params_valid(param)) {
return false;
}
}
/* Default to accepting if there's no app callback */
return true;
}
static int send_conn_le_param_update(struct bt_conn *conn,
const struct bt_le_conn_param *param)
{
BT_DBG("conn %p features 0x%02x params (%d-%d %d %d)", conn,
conn->le.features[0], param->interval_min,
param->interval_max, param->latency, param->timeout);
/* Use LE connection parameter request if both local and remote support
* it; or if local role is master then use LE connection update.
*/
if ((BT_FEAT_LE_CONN_PARAM_REQ_PROC(bt_dev.le.features) &&
BT_FEAT_LE_CONN_PARAM_REQ_PROC(conn->le.features) &&
!atomic_test_bit(conn->flags, BT_CONN_SLAVE_PARAM_L2CAP)) ||
(conn->role == BT_HCI_ROLE_MASTER)) {
int rc;
rc = bt_conn_le_conn_update(conn, param);
/* store those in case of fallback to L2CAP */
if (rc == 0) {
conn->le.pending_latency = param->latency;
conn->le.pending_timeout = param->timeout;
}
return rc;
}
/* If remote master does not support LL Connection Parameters Request
* Procedure
*/
return bt_l2cap_update_conn_param(conn, param);
}
static void conn_update_timeout(struct k_work *work)
{
struct bt_conn *conn = CONTAINER_OF(work, struct bt_conn, update_work);
const struct bt_le_conn_param *param;
BT_DBG("conn %p", conn);
if (conn->state == BT_CONN_DISCONNECTED) {
bt_l2cap_disconnected(conn);
notify_disconnected(conn);
/* Release the reference we took for the very first
* state transition.
*/
bt_conn_unref(conn);
return;
}
if (conn->type != BT_CONN_TYPE_LE) {
return;
}
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
conn->role == BT_CONN_ROLE_MASTER) {
/* we don't call bt_conn_disconnect as it would also clear
* auto connect flag if it was set, instead just cancel
* connection directly
*/
bt_hci_cmd_send(BT_HCI_OP_LE_CREATE_CONN_CANCEL, NULL);
return;
}
#if defined (CONFIG_BT_GAP_PERIPHERAL_PREF_PARAMS)
/* if application set own params use those, otherwise use defaults */
if (atomic_test_and_clear_bit(conn->flags, BT_CONN_SLAVE_PARAM_SET)) {
param = BT_LE_CONN_PARAM(conn->le.interval_min,
conn->le.interval_max,
conn->le.pending_latency,
conn->le.pending_timeout);
send_conn_le_param_update(conn, param);
} else {
param = BT_LE_CONN_PARAM(CONFIG_BT_PERIPHERAL_PREF_MIN_INT,
CONFIG_BT_PERIPHERAL_PREF_MAX_INT,
CONFIG_BT_PERIPHERAL_PREF_SLAVE_LATENCY,
CONFIG_BT_PERIPHERAL_PREF_TIMEOUT);
send_conn_le_param_update(conn, param);
}
#else
/* update only if application set own params */
if (atomic_test_and_clear_bit(conn->flags, BT_CONN_SLAVE_PARAM_SET)) {
param = BT_LE_CONN_PARAM(conn->le.interval_min,
conn->le.interval_max,
conn->le.latency,
conn->le.timeout);
send_conn_le_param_update(conn, param);
}
#endif
atomic_set_bit(conn->flags, BT_CONN_SLAVE_PARAM_UPDATE);
}
static void tx_free(struct bt_conn_tx *tx)
{
if (tx->conn) {
bt_conn_unref(tx->conn);
tx->conn = NULL;
}
tx->data.cb = NULL;
tx->data.user_data = NULL;
k_fifo_put(&free_tx, tx);
}
static void tx_notify_cb(struct k_work *work)
{
struct bt_conn_tx *tx = CONTAINER_OF(work, struct bt_conn_tx, work);
struct bt_conn *conn;
struct bt_conn_tx_data data;
BT_DBG("tx %p conn %p cb %p user_data %p", tx, tx->conn, tx->data.cb,
tx->data.user_data);
/* Copy over the params */
conn = bt_conn_ref(tx->conn);
data = tx->data;
/* Free up TX notify since there may be user waiting */
tx_free(tx);
/* Run the callback, at this point it should be safe to allocate new
* buffers since the TX should have been unblocked by tx_free.
*/
data.cb(conn, data.user_data);
bt_conn_unref(conn);
}
static struct bt_conn *conn_new(void)
{
struct bt_conn *conn = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
if (!atomic_get(&conns[i].ref)) {
conn = &conns[i];
break;
}
}
if (!conn) {
return NULL;
}
(void)memset(conn, 0, sizeof(*conn));
k_delayed_work_init(&conn->update_work, conn_update_timeout);
atomic_set(&conn->ref, 1);
return conn;
}
#if defined(CONFIG_BT_BREDR)
void bt_sco_cleanup(struct bt_conn *sco_conn)
{
bt_conn_unref(sco_conn->sco.acl);
sco_conn->sco.acl = NULL;
bt_conn_unref(sco_conn);
}
static struct bt_conn *sco_conn_new(void)
{
struct bt_conn *sco_conn = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(sco_conns); i++) {
if (!atomic_get(&sco_conns[i].ref)) {
sco_conn = &sco_conns[i];
break;
}
}
if (!sco_conn) {
return NULL;
}
(void)memset(sco_conn, 0, sizeof(*sco_conn));
atomic_set(&sco_conn->ref, 1);
return sco_conn;
}
struct bt_conn *bt_conn_create_br(const bt_addr_t *peer,
const struct bt_br_conn_param *param)
{
struct bt_hci_cp_connect *cp;
struct bt_conn *conn;
struct net_buf *buf;
conn = bt_conn_lookup_addr_br(peer);
if (conn) {
switch (conn->state) {
case BT_CONN_CONNECT:
case BT_CONN_CONNECTED:
return conn;
default:
bt_conn_unref(conn);
return NULL;
}
}
conn = bt_conn_add_br(peer);
if (!conn) {
return NULL;
}
buf = bt_hci_cmd_create(BT_HCI_OP_CONNECT, sizeof(*cp));
if (!buf) {
bt_conn_unref(conn);
return NULL;
}
cp = net_buf_add(buf, sizeof(*cp));
(void)memset(cp, 0, sizeof(*cp));
memcpy(&cp->bdaddr, peer, sizeof(cp->bdaddr));
cp->packet_type = sys_cpu_to_le16(0xcc18); /* DM1 DH1 DM3 DH5 DM5 DH5 */
cp->pscan_rep_mode = 0x02; /* R2 */
cp->allow_role_switch = param->allow_role_switch ? 0x01 : 0x00;
cp->clock_offset = 0x0000; /* TODO used cached clock offset */
if (bt_hci_cmd_send_sync(BT_HCI_OP_CONNECT, buf, NULL) < 0) {
bt_conn_unref(conn);
return NULL;
}
bt_conn_set_state(conn, BT_CONN_CONNECT);
conn->role = BT_CONN_ROLE_MASTER;
return conn;
}
struct bt_conn *bt_conn_create_sco(const bt_addr_t *peer)
{
struct bt_hci_cp_setup_sync_conn *cp;
struct bt_conn *sco_conn;
struct net_buf *buf;
int link_type;
sco_conn = bt_conn_lookup_addr_sco(peer);
if (sco_conn) {
switch (sco_conn->state) {
case BT_CONN_CONNECT:
case BT_CONN_CONNECTED:
return sco_conn;
default:
bt_conn_unref(sco_conn);
return NULL;
}
}
if (BT_FEAT_LMP_ESCO_CAPABLE(bt_dev.features)) {
link_type = BT_HCI_ESCO;
} else {
link_type = BT_HCI_SCO;
}
sco_conn = bt_conn_add_sco(peer, link_type);
if (!sco_conn) {
return NULL;
}
buf = bt_hci_cmd_create(BT_HCI_OP_SETUP_SYNC_CONN, sizeof(*cp));
if (!buf) {
bt_sco_cleanup(sco_conn);
return NULL;
}
cp = net_buf_add(buf, sizeof(*cp));
(void)memset(cp, 0, sizeof(*cp));
BT_ERR("handle : %x", sco_conn->sco.acl->handle);
cp->handle = sco_conn->sco.acl->handle;
cp->pkt_type = sco_conn->sco.pkt_type;
cp->tx_bandwidth = 0x00001f40;
cp->rx_bandwidth = 0x00001f40;
cp->max_latency = 0x0007;
cp->retrans_effort = 0x01;
cp->content_format = BT_VOICE_CVSD_16BIT;
if (bt_hci_cmd_send_sync(BT_HCI_OP_SETUP_SYNC_CONN, buf,
NULL) < 0) {
bt_sco_cleanup(sco_conn);
return NULL;
}
bt_conn_set_state(sco_conn, BT_CONN_CONNECT);
return sco_conn;
}
struct bt_conn *bt_conn_lookup_addr_sco(const bt_addr_t *peer)
{
int i;
for (i = 0; i < ARRAY_SIZE(sco_conns); i++) {
if (!atomic_get(&sco_conns[i].ref)) {
continue;
}
if (sco_conns[i].type != BT_CONN_TYPE_SCO) {
continue;
}
if (!bt_addr_cmp(peer, &sco_conns[i].sco.acl->br.dst)) {
return bt_conn_ref(&sco_conns[i]);
}
}
return NULL;
}
struct bt_conn *bt_conn_lookup_addr_br(const bt_addr_t *peer)
{
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
if (!atomic_get(&conns[i].ref)) {
continue;
}
if (conns[i].type != BT_CONN_TYPE_BR) {
continue;
}
if (!bt_addr_cmp(peer, &conns[i].br.dst)) {
return bt_conn_ref(&conns[i]);
}
}
return NULL;
}
struct bt_conn *bt_conn_add_sco(const bt_addr_t *peer, int link_type)
{
struct bt_conn *sco_conn = sco_conn_new();
if (!sco_conn) {
return NULL;
}
sco_conn->sco.acl = bt_conn_lookup_addr_br(peer);
sco_conn->type = BT_CONN_TYPE_SCO;
if (link_type == BT_HCI_SCO) {
if (BT_FEAT_LMP_ESCO_CAPABLE(bt_dev.features)) {
sco_conn->sco.pkt_type = (bt_dev.br.esco_pkt_type &
ESCO_PKT_MASK);
} else {
sco_conn->sco.pkt_type = (bt_dev.br.esco_pkt_type &
SCO_PKT_MASK);
}
} else if (link_type == BT_HCI_ESCO) {
sco_conn->sco.pkt_type = (bt_dev.br.esco_pkt_type &
~EDR_ESCO_PKT_MASK);
}
return sco_conn;
}
struct bt_conn *bt_conn_add_br(const bt_addr_t *peer)
{
struct bt_conn *conn = conn_new();
if (!conn) {
return NULL;
}
bt_addr_copy(&conn->br.dst, peer);
conn->type = BT_CONN_TYPE_BR;
return conn;
}
static int pin_code_neg_reply(const bt_addr_t *bdaddr)
{
struct bt_hci_cp_pin_code_neg_reply *cp;
struct net_buf *buf;
BT_DBG("");
buf = bt_hci_cmd_create(BT_HCI_OP_PIN_CODE_NEG_REPLY, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
bt_addr_copy(&cp->bdaddr, bdaddr);
return bt_hci_cmd_send_sync(BT_HCI_OP_PIN_CODE_NEG_REPLY, buf, NULL);
}
static int pin_code_reply(struct bt_conn *conn, const char *pin, u8_t len)
{
struct bt_hci_cp_pin_code_reply *cp;
struct net_buf *buf;
BT_DBG("");
buf = bt_hci_cmd_create(BT_HCI_OP_PIN_CODE_REPLY, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
bt_addr_copy(&cp->bdaddr, &conn->br.dst);
cp->pin_len = len;
strncpy((char *)cp->pin_code, pin, sizeof(cp->pin_code));
return bt_hci_cmd_send_sync(BT_HCI_OP_PIN_CODE_REPLY, buf, NULL);
}
int bt_conn_auth_pincode_entry(struct bt_conn *conn, const char *pin)
{
size_t len;
if (!bt_auth) {
return -EINVAL;
}
if (conn->type != BT_CONN_TYPE_BR) {
return -EINVAL;
}
len = strlen(pin);
if (len > 16) {
return -EINVAL;
}
if (conn->required_sec_level == BT_SECURITY_L3 && len < 16) {
BT_WARN("PIN code for %s is not 16 bytes wide",
bt_addr_str(&conn->br.dst));
return -EPERM;
}
/* Allow user send entered PIN to remote, then reset user state. */
if (!atomic_test_and_clear_bit(conn->flags, BT_CONN_USER)) {
return -EPERM;
}
if (len == 16) {
atomic_set_bit(conn->flags, BT_CONN_BR_LEGACY_SECURE);
}
return pin_code_reply(conn, pin, len);
}
void bt_conn_pin_code_req(struct bt_conn *conn)
{
if (bt_auth && bt_auth->pincode_entry) {
bool secure = false;
if (conn->required_sec_level == BT_SECURITY_L3) {
secure = true;
}
atomic_set_bit(conn->flags, BT_CONN_USER);
atomic_set_bit(conn->flags, BT_CONN_BR_PAIRING);
bt_auth->pincode_entry(conn, secure);
} else {
pin_code_neg_reply(&conn->br.dst);
}
}
u8_t bt_conn_get_io_capa(void)
{
if (!bt_auth) {
return BT_IO_NO_INPUT_OUTPUT;
}
if (bt_auth->passkey_confirm && bt_auth->passkey_display) {
return BT_IO_DISPLAY_YESNO;
}
if (bt_auth->passkey_entry) {
return BT_IO_KEYBOARD_ONLY;
}
if (bt_auth->passkey_display) {
return BT_IO_DISPLAY_ONLY;
}
return BT_IO_NO_INPUT_OUTPUT;
}
static u8_t ssp_pair_method(const struct bt_conn *conn)
{
return ssp_method[conn->br.remote_io_capa][bt_conn_get_io_capa()];
}
u8_t bt_conn_ssp_get_auth(const struct bt_conn *conn)
{
/* Validate no bond auth request, and if valid use it. */
if ((conn->br.remote_auth == BT_HCI_NO_BONDING) ||
((conn->br.remote_auth == BT_HCI_NO_BONDING_MITM) &&
(ssp_pair_method(conn) > JUST_WORKS))) {
return conn->br.remote_auth;
}
/* Local & remote have enough IO capabilities to get MITM protection. */
if (ssp_pair_method(conn) > JUST_WORKS) {
return conn->br.remote_auth | BT_MITM;
}
/* No MITM protection possible so ignore remote MITM requirement. */
return (conn->br.remote_auth & ~BT_MITM);
}
static int ssp_confirm_reply(struct bt_conn *conn)
{
struct bt_hci_cp_user_confirm_reply *cp;
struct net_buf *buf;
BT_DBG("");
buf = bt_hci_cmd_create(BT_HCI_OP_USER_CONFIRM_REPLY, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
bt_addr_copy(&cp->bdaddr, &conn->br.dst);
return bt_hci_cmd_send_sync(BT_HCI_OP_USER_CONFIRM_REPLY, buf, NULL);
}
static int ssp_confirm_neg_reply(struct bt_conn *conn)
{
struct bt_hci_cp_user_confirm_reply *cp;
struct net_buf *buf;
BT_DBG("");
buf = bt_hci_cmd_create(BT_HCI_OP_USER_CONFIRM_NEG_REPLY, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
bt_addr_copy(&cp->bdaddr, &conn->br.dst);
return bt_hci_cmd_send_sync(BT_HCI_OP_USER_CONFIRM_NEG_REPLY, buf,
NULL);
}
void bt_conn_ssp_auth_complete(struct bt_conn *conn, u8_t status)
{
if (!status) {
bool bond = !atomic_test_bit(conn->flags, BT_CONN_BR_NOBOND);
if (bt_auth && bt_auth->pairing_complete) {
bt_auth->pairing_complete(conn, bond);
}
} else {
if (bt_auth && bt_auth->pairing_failed) {
bt_auth->pairing_failed(conn, status);
}
}
}
void bt_conn_ssp_auth(struct bt_conn *conn, u32_t passkey)
{
conn->br.pairing_method = ssp_pair_method(conn);
/*
* If local required security is HIGH then MITM is mandatory.
* MITM protection is no achievable when SSP 'justworks' is applied.
*/
if (conn->required_sec_level > BT_SECURITY_L2 &&
conn->br.pairing_method == JUST_WORKS) {
BT_DBG("MITM protection infeasible for required security");
ssp_confirm_neg_reply(conn);
return;
}
switch (conn->br.pairing_method) {
case PASSKEY_CONFIRM:
atomic_set_bit(conn->flags, BT_CONN_USER);
bt_auth->passkey_confirm(conn, passkey);
break;
case PASSKEY_DISPLAY:
atomic_set_bit(conn->flags, BT_CONN_USER);
bt_auth->passkey_display(conn, passkey);
break;
case PASSKEY_INPUT:
atomic_set_bit(conn->flags, BT_CONN_USER);
bt_auth->passkey_entry(conn);
break;
case JUST_WORKS:
/*
* When local host works as pairing acceptor and 'justworks'
* model is applied then notify user about such pairing request.
* [BT Core 4.2 table 5.7, Vol 3, Part C, 5.2.2.6]
*/
if (bt_auth && bt_auth->pairing_confirm &&
!atomic_test_bit(conn->flags,
BT_CONN_BR_PAIRING_INITIATOR)) {
atomic_set_bit(conn->flags, BT_CONN_USER);
bt_auth->pairing_confirm(conn);
break;
}
ssp_confirm_reply(conn);
break;
default:
break;
}
}
static int ssp_passkey_reply(struct bt_conn *conn, unsigned int passkey)
{
struct bt_hci_cp_user_passkey_reply *cp;
struct net_buf *buf;
BT_DBG("");
buf = bt_hci_cmd_create(BT_HCI_OP_USER_PASSKEY_REPLY, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
bt_addr_copy(&cp->bdaddr, &conn->br.dst);
cp->passkey = sys_cpu_to_le32(passkey);
return bt_hci_cmd_send_sync(BT_HCI_OP_USER_PASSKEY_REPLY, buf, NULL);
}
static int ssp_passkey_neg_reply(struct bt_conn *conn)
{
struct bt_hci_cp_user_passkey_neg_reply *cp;
struct net_buf *buf;
BT_DBG("");
buf = bt_hci_cmd_create(BT_HCI_OP_USER_PASSKEY_NEG_REPLY, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
bt_addr_copy(&cp->bdaddr, &conn->br.dst);
return bt_hci_cmd_send_sync(BT_HCI_OP_USER_PASSKEY_NEG_REPLY, buf,
NULL);
}
static int bt_hci_connect_br_cancel(struct bt_conn *conn)
{
struct bt_hci_cp_connect_cancel *cp;
struct bt_hci_rp_connect_cancel *rp;
struct net_buf *buf, *rsp;
int err;
buf = bt_hci_cmd_create(BT_HCI_OP_CONNECT_CANCEL, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
memcpy(&cp->bdaddr, &conn->br.dst, sizeof(cp->bdaddr));
err = bt_hci_cmd_send_sync(BT_HCI_OP_CONNECT_CANCEL, buf, &rsp);
if (err) {
return err;
}
rp = (void *)rsp->data;
err = rp->status ? -EIO : 0;
net_buf_unref(rsp);
return err;
}
static int conn_auth(struct bt_conn *conn)
{
struct bt_hci_cp_auth_requested *auth;
struct net_buf *buf;
BT_DBG("");
buf = bt_hci_cmd_create(BT_HCI_OP_AUTH_REQUESTED, sizeof(*auth));
if (!buf) {
return -ENOBUFS;
}
auth = net_buf_add(buf, sizeof(*auth));
auth->handle = sys_cpu_to_le16(conn->handle);
atomic_set_bit(conn->flags, BT_CONN_BR_PAIRING_INITIATOR);
return bt_hci_cmd_send_sync(BT_HCI_OP_AUTH_REQUESTED, buf, NULL);
}
#endif /* CONFIG_BT_BREDR */
#if defined(CONFIG_BT_SMP)
void bt_conn_identity_resolved(struct bt_conn *conn)
{
const bt_addr_le_t *rpa;
struct bt_conn_cb *cb;
if (conn->role == BT_HCI_ROLE_MASTER) {
rpa = &conn->le.resp_addr;
} else {
rpa = &conn->le.init_addr;
}
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->identity_resolved) {
cb->identity_resolved(conn, rpa, &conn->le.dst);
}
}
}
int bt_conn_le_start_encryption(struct bt_conn *conn, u8_t rand[8],
u8_t ediv[2], const u8_t *ltk, size_t len)
{
struct bt_hci_cp_le_start_encryption *cp;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_START_ENCRYPTION, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
memcpy(&cp->rand, rand, sizeof(cp->rand));
memcpy(&cp->ediv, ediv, sizeof(cp->ediv));
memcpy(cp->ltk, ltk, len);
if (len < sizeof(cp->ltk)) {
(void)memset(cp->ltk + len, 0, sizeof(cp->ltk) - len);
}
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_START_ENCRYPTION, buf, NULL);
}
#endif /* CONFIG_BT_SMP */
#if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_BREDR)
u8_t bt_conn_enc_key_size(struct bt_conn *conn)
{
if (!conn->encrypt) {
return 0;
}
if (IS_ENABLED(CONFIG_BT_BREDR) &&
conn->type == BT_CONN_TYPE_BR) {
struct bt_hci_cp_read_encryption_key_size *cp;
struct bt_hci_rp_read_encryption_key_size *rp;
struct net_buf *buf;
struct net_buf *rsp;
u8_t key_size;
buf = bt_hci_cmd_create(BT_HCI_OP_READ_ENCRYPTION_KEY_SIZE,
sizeof(*cp));
if (!buf) {
return 0;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
if (bt_hci_cmd_send_sync(BT_HCI_OP_READ_ENCRYPTION_KEY_SIZE,
buf, &rsp)) {
return 0;
}
rp = (void *)rsp->data;
key_size = rp->status ? 0 : rp->key_size;
net_buf_unref(rsp);
return key_size;
}
if (IS_ENABLED(CONFIG_BT_SMP)) {
return conn->le.keys ? conn->le.keys->enc_size : 0;
}
return 0;
}
void bt_conn_security_changed(struct bt_conn *conn, enum bt_security_err err)
{
struct bt_conn_cb *cb;
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->security_changed) {
cb->security_changed(conn, conn->sec_level, err);
}
}
#if IS_ENABLED(CONFIG_BT_KEYS_OVERWRITE_OLDEST)
if (!err && conn->sec_level >= BT_SECURITY_L2) {
bt_keys_update_usage(conn->id, bt_conn_get_dst(conn));
}
#endif
}
static int start_security(struct bt_conn *conn)
{
#if defined(CONFIG_BT_BREDR)
if (conn->type == BT_CONN_TYPE_BR) {
if (atomic_test_bit(conn->flags, BT_CONN_BR_PAIRING)) {
return -EBUSY;
}
if (conn->required_sec_level > BT_SECURITY_L3) {
return -ENOTSUP;
}
if (bt_conn_get_io_capa() == BT_IO_NO_INPUT_OUTPUT &&
conn->required_sec_level > BT_SECURITY_L2) {
return -EINVAL;
}
return conn_auth(conn);
}
#endif /* CONFIG_BT_BREDR */
if (IS_ENABLED(CONFIG_BT_SMP)) {
return bt_smp_start_security(conn);
}
return -EINVAL;
}
int bt_conn_set_security(struct bt_conn *conn, bt_security_t sec)
{
int err;
if (conn->state != BT_CONN_CONNECTED) {
return -ENOTCONN;
}
if (IS_ENABLED(CONFIG_BT_SMP_SC_ONLY) &&
sec < BT_SECURITY_L4) {
return -EOPNOTSUPP;
}
/* nothing to do */
if (conn->sec_level >= sec || conn->required_sec_level >= sec) {
return 0;
}
atomic_set_bit_to(conn->flags, BT_CONN_FORCE_PAIR,
sec & BT_SECURITY_FORCE_PAIR);
conn->required_sec_level = sec & ~BT_SECURITY_FORCE_PAIR;
err = start_security(conn);
/* reset required security level in case of error */
if (err) {
conn->required_sec_level = conn->sec_level;
}
return err;
}
bt_security_t bt_conn_get_security(struct bt_conn *conn)
{
return conn->sec_level;
}
#else
bt_security_t bt_conn_get_security(struct bt_conn *conn)
{
return BT_SECURITY_L1;
}
#endif /* CONFIG_BT_SMP */
void bt_conn_cb_register(struct bt_conn_cb *cb)
{
cb->_next = callback_list;
callback_list = cb;
}
static void bt_conn_reset_rx_state(struct bt_conn *conn)
{
if (!conn->rx_len) {
return;
}
net_buf_unref(conn->rx);
conn->rx = NULL;
conn->rx_len = 0U;
}
void bt_conn_recv(struct bt_conn *conn, struct net_buf *buf, u8_t flags)
{
struct bt_l2cap_hdr *hdr;
u16_t len;
BT_DBG("handle %u len %u flags %02x", conn->handle, buf->len, flags);
/* Check packet boundary flags */
switch (flags) {
case BT_ACL_START:
hdr = (void *)buf->data;
len = sys_le16_to_cpu(hdr->len);
BT_DBG("First, len %u final %u", buf->len, len);
if (conn->rx_len) {
BT_ERR("Unexpected first L2CAP frame");
bt_conn_reset_rx_state(conn);
}
conn->rx_len = (sizeof(*hdr) + len) - buf->len;
BT_DBG("rx_len %u", conn->rx_len);
if (conn->rx_len) {
conn->rx = buf;
return;
}
break;
case BT_ACL_CONT:
if (!conn->rx_len) {
BT_ERR("Unexpected L2CAP continuation");
bt_conn_reset_rx_state(conn);
net_buf_unref(buf);
return;
}
if (buf->len > conn->rx_len) {
BT_ERR("L2CAP data overflow");
bt_conn_reset_rx_state(conn);
net_buf_unref(buf);
return;
}
BT_DBG("Cont, len %u rx_len %u", buf->len, conn->rx_len);
if (buf->len > net_buf_tailroom(conn->rx)) {
BT_ERR("Not enough buffer space for L2CAP data");
bt_conn_reset_rx_state(conn);
net_buf_unref(buf);
return;
}
net_buf_add_mem(conn->rx, buf->data, buf->len);
conn->rx_len -= buf->len;
net_buf_unref(buf);
if (conn->rx_len) {
return;
}
buf = conn->rx;
conn->rx = NULL;
conn->rx_len = 0U;
break;
default:
BT_ERR("Unexpected ACL flags (0x%02x)", flags);
bt_conn_reset_rx_state(conn);
net_buf_unref(buf);
return;
}
hdr = (void *)buf->data;
len = sys_le16_to_cpu(hdr->len);
if (sizeof(*hdr) + len != buf->len) {
BT_ERR("ACL len mismatch (%u != %u)", len, buf->len);
net_buf_unref(buf);
return;
}
BT_DBG("Successfully parsed %u byte L2CAP packet", buf->len);
bt_l2cap_recv(conn, buf);
}
int bt_conn_send_cb(struct bt_conn *conn, struct net_buf *buf,
bt_conn_tx_cb_t cb, void *user_data)
{
BT_DBG("conn handle %u buf len %u cb %p user_data %p", conn->handle,
buf->len, cb, user_data);
if (conn->state != BT_CONN_CONNECTED) {
BT_ERR("not connected!");
net_buf_unref(buf);
return -ENOTCONN;
}
conn_tx(buf)->cb = cb;
conn_tx(buf)->user_data = user_data;
net_buf_put(&conn->tx_queue, buf);
return 0;
}
static bool conn_tx_internal(bt_conn_tx_cb_t cb)
{
if (cb == att_pdu_sent || cb == att_cfm_sent || cb == att_rsp_sent ||
#if defined(CONFIG_BT_SMP)
#if defined(CONFIG_BT_PRIVACY)
cb == smp_id_sent ||
#endif /* CONFIG_BT_PRIVACY */
#if defined(CONFIG_BT_SIGNING)
cb == smp_sign_info_sent ||
#endif /* CONFIG_BT_SIGNING */
#if !defined(CONFIG_BT_SMP_SC_PAIR_ONLY)
cb == smp_ident_sent ||
#endif /* CONFIG_BT_SMP_SC_PAIR_ONLY */
#endif /* CONFIG_BT_SMP */
#if defined(CONFIG_BT_L2CAP_DYNAMIC_CHANNEL)
cb == l2cap_chan_sdu_sent ||
#endif /* CONFIG_BT_L2CAP_DYNAMIC_CHANNEL */
cb == att_req_sent) {
return true;
}
return false;
}
void bt_conn_notify_tx(struct bt_conn *conn)
{
struct bt_conn_tx *tx;
BT_DBG("conn %p", conn);
while ((tx = k_fifo_get(&conn->tx_notify, K_NO_WAIT))) {
BT_DBG("cb %p user_data %p", tx->data.cb, tx->data.user_data);
/* Only submit if there is a callback set */
if (tx->data.cb) {
/* Submit using RX thread if internal callback */
if (conn_tx_internal(tx->data.cb)) {
tx_notify_cb(&tx->work);
} else {
k_work_submit(&tx->work);
}
} else {
tx_free(tx);
}
}
}
static void notify_tx(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
if (!atomic_get(&conns[i].ref)) {
continue;
}
if (conns[i].state == BT_CONN_CONNECTED ||
conns[i].state == BT_CONN_DISCONNECT) {
bt_conn_notify_tx(&conns[i]);
}
}
}
static struct bt_conn_tx *add_pending_tx(struct bt_conn *conn,
bt_conn_tx_cb_t cb, void *user_data)
{
struct bt_conn_tx *tx;
unsigned int key;
BT_DBG("conn %p cb %p user_data %p", conn, cb, user_data);
if (IS_ENABLED(CONFIG_BT_DEBUG_CONN)) {
tx = k_fifo_get(&free_tx, K_NO_WAIT);
if (!tx) {
BT_WARN("Unable to get a free conn_tx, yielding...");
tx = k_fifo_get(&free_tx, K_FOREVER);
}
} else {
tx = k_fifo_get(&free_tx, K_FOREVER);
}
tx->conn = bt_conn_ref(conn);
k_work_init(&tx->work, tx_notify_cb);
tx->data.cb = cb;
tx->data.user_data = user_data;
key = irq_lock();
sys_slist_append(&conn->tx_pending, &tx->node);
irq_unlock(key);
return tx;
}
static void remove_pending_tx(struct bt_conn *conn, struct bt_conn_tx *tx)
{
unsigned int key;
key = irq_lock();
sys_slist_find_and_remove(&conn->tx_pending, &tx->node);
irq_unlock(key);
tx_free(tx);
}
static bool send_frag(struct bt_conn *conn, struct net_buf *buf, u8_t flags,
bool always_consume)
{
struct bt_hci_acl_hdr *hdr;
struct bt_conn_tx *tx;
int err;
BT_DBG("conn %p buf %p len %u flags 0x%02x", conn, buf, buf->len,
flags);
/* Wait until the controller can accept ACL packets */
k_sem_take(bt_conn_get_pkts(conn), K_FOREVER);
/* Make sure we notify and free up any pending tx contexts */
notify_tx();
/* Check for disconnection while waiting for pkts_sem */
if (conn->state != BT_CONN_CONNECTED) {
goto fail;
}
hdr = net_buf_push(buf, sizeof(*hdr));
hdr->handle = sys_cpu_to_le16(bt_acl_handle_pack(conn->handle, flags));
hdr->len = sys_cpu_to_le16(buf->len - sizeof(*hdr));
/* Add to pending, it must be done before bt_buf_set_type */
tx = add_pending_tx(conn, conn_tx(buf)->cb, conn_tx(buf)->user_data);
bt_buf_set_type(buf, BT_BUF_ACL_OUT);
err = bt_send(buf);
if (err) {
BT_ERR("Unable to send to driver (err %d)", err);
remove_pending_tx(conn, tx);
goto fail;
}
return true;
fail:
k_sem_give(bt_conn_get_pkts(conn));
if (always_consume) {
net_buf_unref(buf);
}
return false;
}
static inline u16_t conn_mtu(struct bt_conn *conn)
{
#if defined(CONFIG_BT_BREDR)
if (conn->type == BT_CONN_TYPE_BR || !bt_dev.le.mtu) {
return bt_dev.br.mtu;
}
#endif /* CONFIG_BT_BREDR */
return bt_dev.le.mtu;
}
static struct net_buf *create_frag(struct bt_conn *conn, struct net_buf *buf)
{
struct net_buf *frag;
u16_t frag_len;
#if CONFIG_BT_L2CAP_TX_FRAG_COUNT > 0
frag = bt_conn_create_pdu(&frag_pool, 0);
#else
frag = bt_conn_create_pdu(NULL, 0);
#endif
if (conn->state != BT_CONN_CONNECTED) {
net_buf_unref(frag);
return NULL;
}
/* Fragments never have a TX completion callback */
conn_tx(frag)->cb = NULL;
conn_tx(frag)->user_data = NULL;
frag_len = MIN(conn_mtu(conn), net_buf_tailroom(frag));
net_buf_add_mem(frag, buf->data, frag_len);
net_buf_pull(buf, frag_len);
return frag;
}
static bool send_buf(struct bt_conn *conn, struct net_buf *buf)
{
struct net_buf *frag;
BT_DBG("conn %p buf %p len %u", conn, buf, buf->len);
/* Send directly if the packet fits the ACL MTU */
if (buf->len <= conn_mtu(conn)) {
return send_frag(conn, buf, BT_ACL_START_NO_FLUSH, false);
}
/* Create & enqueue first fragment */
frag = create_frag(conn, buf);
if (!frag) {
return false;
}
if (!send_frag(conn, frag, BT_ACL_START_NO_FLUSH, true)) {
return false;
}
/*
* Send the fragments. For the last one simply use the original
* buffer (which works since we've used net_buf_pull on it.
*/
while (buf->len > conn_mtu(conn)) {
frag = create_frag(conn, buf);
if (!frag) {
return false;
}
if (!send_frag(conn, frag, BT_ACL_CONT, true)) {
return false;
}
}
return send_frag(conn, buf, BT_ACL_CONT, false);
}
static struct k_poll_signal conn_change =
K_POLL_SIGNAL_INITIALIZER(conn_change);
static void conn_cleanup(struct bt_conn *conn)
{
struct net_buf *buf;
/* Give back any allocated buffers */
while ((buf = net_buf_get(&conn->tx_queue, K_NO_WAIT))) {
net_buf_unref(buf);
}
__ASSERT(sys_slist_is_empty(&conn->tx_pending), "Pending TX packets");
bt_conn_notify_tx(conn);
bt_conn_reset_rx_state(conn);
k_delayed_work_submit(&conn->update_work, K_NO_WAIT);
}
int bt_conn_prepare_events(struct k_poll_event events[])
{
int i, ev_count = 0;
BT_DBG("");
conn_change.signaled = 0U;
k_poll_event_init(&events[ev_count++], K_POLL_TYPE_SIGNAL,
K_POLL_MODE_NOTIFY_ONLY, &conn_change);
for (i = 0; i < ARRAY_SIZE(conns); i++) {
struct bt_conn *conn = &conns[i];
if (!atomic_get(&conn->ref)) {
continue;
}
if (conn->state == BT_CONN_DISCONNECTED &&
atomic_test_and_clear_bit(conn->flags, BT_CONN_CLEANUP)) {
conn_cleanup(conn);
continue;
}
if (conn->state != BT_CONN_CONNECTED) {
continue;
}
BT_DBG("Adding conn %p to poll list", conn);
k_poll_event_init(&events[ev_count],
K_POLL_TYPE_FIFO_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&conn->tx_notify);
events[ev_count++].tag = BT_EVENT_CONN_TX_NOTIFY;
k_poll_event_init(&events[ev_count],
K_POLL_TYPE_FIFO_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&conn->tx_queue);
events[ev_count++].tag = BT_EVENT_CONN_TX_QUEUE;
}
return ev_count;
}
void bt_conn_process_tx(struct bt_conn *conn)
{
struct net_buf *buf;
BT_DBG("conn %p", conn);
if (conn->state == BT_CONN_DISCONNECTED &&
atomic_test_and_clear_bit(conn->flags, BT_CONN_CLEANUP)) {
BT_DBG("handle %u disconnected - cleaning up", conn->handle);
conn_cleanup(conn);
return;
}
/* Get next ACL packet for connection */
buf = net_buf_get(&conn->tx_queue, K_NO_WAIT);
BT_ASSERT(buf);
if (!send_buf(conn, buf)) {
net_buf_unref(buf);
}
}
struct bt_conn *bt_conn_add_le(u8_t id, const bt_addr_le_t *peer)
{
struct bt_conn *conn = conn_new();
if (!conn) {
return NULL;
}
conn->id = id;
bt_addr_le_copy(&conn->le.dst, peer);
#if defined(CONFIG_BT_SMP)
conn->sec_level = BT_SECURITY_L1;
conn->required_sec_level = BT_SECURITY_L1;
#endif /* CONFIG_BT_SMP */
conn->type = BT_CONN_TYPE_LE;
conn->le.interval_min = BT_GAP_INIT_CONN_INT_MIN;
conn->le.interval_max = BT_GAP_INIT_CONN_INT_MAX;
return conn;
}
static void process_unack_tx(struct bt_conn *conn)
{
/* Return any unacknowledged packets */
while (1) {
sys_snode_t *node;
unsigned int key;
key = irq_lock();
node = sys_slist_get(&conn->tx_pending);
irq_unlock(key);
if (!node) {
break;
}
tx_free(CONTAINER_OF(node, struct bt_conn_tx, node));
k_sem_give(bt_conn_get_pkts(conn));
}
}
void bt_conn_set_state(struct bt_conn *conn, bt_conn_state_t state)
{
bt_conn_state_t old_state;
BT_DBG("%s -> %s", state2str(conn->state), state2str(state));
if (conn->state == state) {
BT_WARN("no transition");
return;
}
old_state = conn->state;
conn->state = state;
/* Actions needed for exiting the old state */
switch (old_state) {
case BT_CONN_DISCONNECTED:
/* Take a reference for the first state transition after
* bt_conn_add_le() and keep it until reaching DISCONNECTED
* again.
*/
bt_conn_ref(conn);
break;
case BT_CONN_CONNECT:
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
conn->type == BT_CONN_TYPE_LE) {
k_delayed_work_cancel(&conn->update_work);
}
break;
default:
break;
}
/* Actions needed for entering the new state */
switch (conn->state) {
case BT_CONN_CONNECTED:
if (conn->type == BT_CONN_TYPE_SCO) {
/* TODO: Notify sco connected */
break;
}
k_fifo_init(&conn->tx_queue);
k_fifo_init(&conn->tx_notify);
k_poll_signal_raise(&conn_change, 0);
sys_slist_init(&conn->channels);
bt_l2cap_connected(conn);
notify_connected(conn);
break;
case BT_CONN_DISCONNECTED:
if (conn->type == BT_CONN_TYPE_SCO) {
/* TODO: Notify sco disconnected */
bt_conn_unref(conn);
break;
}
/* Notify disconnection and queue a dummy buffer to wake
* up and stop the tx thread for states where it was
* running.
*/
if (old_state == BT_CONN_CONNECTED ||
old_state == BT_CONN_DISCONNECT) {
process_unack_tx(conn);
/* Cancel Connection Update if it is pending */
if (conn->type == BT_CONN_TYPE_LE) {
k_delayed_work_cancel(&conn->update_work);
}
atomic_set_bit(conn->flags, BT_CONN_CLEANUP);
k_poll_signal_raise(&conn_change, 0);
/* The last ref will be dropped during cleanup */
} else if (old_state == BT_CONN_CONNECT) {
/* conn->err will be set in this case */
notify_connected(conn);
bt_conn_unref(conn);
} else if (old_state == BT_CONN_CONNECT_SCAN) {
/* this indicate LE Create Connection failed */
if (conn->err) {
notify_connected(conn);
}
bt_conn_unref(conn);
} else if (old_state == BT_CONN_CONNECT_DIR_ADV) {
/* this indicate Directed advertising stopped */
if (conn->err) {
notify_connected(conn);
}
bt_conn_unref(conn);
}
break;
case BT_CONN_CONNECT_SCAN:
break;
case BT_CONN_CONNECT_DIR_ADV:
break;
case BT_CONN_CONNECT:
if (conn->type == BT_CONN_TYPE_SCO) {
break;
}
/*
* Timer is needed only for LE. For other link types controller
* will handle connection timeout.
*/
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
conn->type == BT_CONN_TYPE_LE) {
k_delayed_work_submit(&conn->update_work, CONN_TIMEOUT);
}
break;
case BT_CONN_DISCONNECT:
break;
default:
BT_WARN("no valid (%u) state was set", state);
break;
}
}
struct bt_conn *bt_conn_lookup_handle(u16_t handle)
{
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
if (!atomic_get(&conns[i].ref)) {
continue;
}
/* We only care about connections with a valid handle */
if (conns[i].state != BT_CONN_CONNECTED &&
conns[i].state != BT_CONN_DISCONNECT) {
continue;
}
if (conns[i].handle == handle) {
return bt_conn_ref(&conns[i]);
}
}
#if defined(CONFIG_BT_BREDR)
for (i = 0; i < ARRAY_SIZE(sco_conns); i++) {
if (!atomic_get(&sco_conns[i].ref)) {
continue;
}
/* We only care about connections with a valid handle */
if (sco_conns[i].state != BT_CONN_CONNECTED &&
sco_conns[i].state != BT_CONN_DISCONNECT) {
continue;
}
if (sco_conns[i].handle == handle) {
return bt_conn_ref(&sco_conns[i]);
}
}
#endif
return NULL;
}
int bt_conn_addr_le_cmp(const struct bt_conn *conn, const bt_addr_le_t *peer)
{
/* Check against conn dst address as it may be the identity address */
if (!bt_addr_le_cmp(peer, &conn->le.dst)) {
return 0;
}
/* Check against initial connection address */
if (conn->role == BT_HCI_ROLE_MASTER) {
return bt_addr_le_cmp(peer, &conn->le.resp_addr);
}
return bt_addr_le_cmp(peer, &conn->le.init_addr);
}
struct bt_conn *bt_conn_lookup_addr_le(u8_t id, const bt_addr_le_t *peer)
{
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
if (!atomic_get(&conns[i].ref)) {
continue;
}
if (conns[i].type != BT_CONN_TYPE_LE) {
continue;
}
if (conns[i].id == id &&
!bt_conn_addr_le_cmp(&conns[i], peer)) {
return bt_conn_ref(&conns[i]);
}
}
return NULL;
}
struct bt_conn *bt_conn_lookup_state_le(const bt_addr_le_t *peer,
const bt_conn_state_t state)
{
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
if (!atomic_get(&conns[i].ref)) {
continue;
}
if (conns[i].type != BT_CONN_TYPE_LE) {
continue;
}
if (peer && bt_conn_addr_le_cmp(&conns[i], peer)) {
continue;
}
if (conns[i].state == state) {
return bt_conn_ref(&conns[i]);
}
}
return NULL;
}
void bt_conn_foreach(int type, void (*func)(struct bt_conn *conn, void *data),
void *data)
{
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
if (!atomic_get(&conns[i].ref)) {
continue;
}
if (!(conns[i].type & type)) {
continue;
}
func(&conns[i], data);
}
#if defined(CONFIG_BT_BREDR)
if (type & BT_CONN_TYPE_SCO) {
for (i = 0; i < ARRAY_SIZE(sco_conns); i++) {
if (!atomic_get(&sco_conns[i].ref)) {
continue;
}
func(&sco_conns[i], data);
}
}
#endif /* defined(CONFIG_BT_BREDR) */
}
static void disconnect_all(struct bt_conn *conn, void *data)
{
u8_t *id = (u8_t *)data;
if (conn->id == *id && conn->state == BT_CONN_CONNECTED) {
bt_conn_disconnect(conn, BT_HCI_ERR_REMOTE_USER_TERM_CONN);
}
}
void bt_conn_disconnect_all(u8_t id)
{
bt_conn_foreach(BT_CONN_TYPE_ALL, disconnect_all, &id);
}
struct bt_conn *bt_conn_ref(struct bt_conn *conn)
{
atomic_inc(&conn->ref);
BT_DBG("handle %u ref %u", conn->handle, atomic_get(&conn->ref));
return conn;
}
void bt_conn_unref(struct bt_conn *conn)
{
atomic_dec(&conn->ref);
BT_DBG("handle %u ref %u", conn->handle, atomic_get(&conn->ref));
}
const bt_addr_le_t *bt_conn_get_dst(const struct bt_conn *conn)
{
return &conn->le.dst;
}
int bt_conn_get_info(const struct bt_conn *conn, struct bt_conn_info *info)
{
info->type = conn->type;
info->role = conn->role;
info->id = conn->id;
switch (conn->type) {
case BT_CONN_TYPE_LE:
info->le.dst = &conn->le.dst;
info->le.src = &bt_dev.id_addr[conn->id];
if (conn->role == BT_HCI_ROLE_MASTER) {
info->le.local = &conn->le.init_addr;
info->le.remote = &conn->le.resp_addr;
} else {
info->le.local = &conn->le.resp_addr;
info->le.remote = &conn->le.init_addr;
}
info->le.interval = conn->le.interval;
info->le.latency = conn->le.latency;
info->le.timeout = conn->le.timeout;
return 0;
#if defined(CONFIG_BT_BREDR)
case BT_CONN_TYPE_BR:
info->br.dst = &conn->br.dst;
return 0;
#endif
}
return -EINVAL;
}
static int bt_hci_disconnect(struct bt_conn *conn, u8_t reason)
{
struct net_buf *buf;
struct bt_hci_cp_disconnect *disconn;
int err;
buf = bt_hci_cmd_create(BT_HCI_OP_DISCONNECT, sizeof(*disconn));
if (!buf) {
return -ENOBUFS;
}
disconn = net_buf_add(buf, sizeof(*disconn));
disconn->handle = sys_cpu_to_le16(conn->handle);
disconn->reason = reason;
err = bt_hci_cmd_send(BT_HCI_OP_DISCONNECT, buf);
if (err) {
return err;
}
bt_conn_set_state(conn, BT_CONN_DISCONNECT);
return 0;
}
int bt_conn_le_param_update(struct bt_conn *conn,
const struct bt_le_conn_param *param)
{
BT_DBG("conn %p features 0x%02x params (%d-%d %d %d)", conn,
conn->le.features[0], param->interval_min,
param->interval_max, param->latency, param->timeout);
/* Check if there's a need to update conn params */
if (conn->le.interval >= param->interval_min &&
conn->le.interval <= param->interval_max &&
conn->le.latency == param->latency &&
conn->le.timeout == param->timeout) {
atomic_clear_bit(conn->flags, BT_CONN_SLAVE_PARAM_SET);
return -EALREADY;
}
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
conn->role == BT_CONN_ROLE_MASTER) {
return send_conn_le_param_update(conn, param);
}
if (IS_ENABLED(CONFIG_BT_PERIPHERAL)) {
/* if slave conn param update timer expired just send request */
if (atomic_test_bit(conn->flags, BT_CONN_SLAVE_PARAM_UPDATE)) {
return send_conn_le_param_update(conn, param);
}
/* store new conn params to be used by update timer */
conn->le.interval_min = param->interval_min;
conn->le.interval_max = param->interval_max;
conn->le.pending_latency = param->latency;
conn->le.pending_timeout = param->timeout;
atomic_set_bit(conn->flags, BT_CONN_SLAVE_PARAM_SET);
}
return 0;
}
int bt_conn_disconnect(struct bt_conn *conn, u8_t reason)
{
/* Disconnection is initiated by us, so auto connection shall
* be disabled. Otherwise the passive scan would be enabled
* and we could send LE Create Connection as soon as the remote
* starts advertising.
*/
#if !defined(CONFIG_BT_WHITELIST)
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
conn->type == BT_CONN_TYPE_LE) {
bt_le_set_auto_conn(&conn->le.dst, NULL);
}
#endif /* !defined(CONFIG_BT_WHITELIST) */
switch (conn->state) {
case BT_CONN_CONNECT_SCAN:
conn->err = reason;
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
if (IS_ENABLED(CONFIG_BT_CENTRAL)) {
bt_le_scan_update(false);
}
return 0;
case BT_CONN_CONNECT_DIR_ADV:
conn->err = reason;
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
if (IS_ENABLED(CONFIG_BT_PERIPHERAL)) {
/* User should unref connection object when receiving
* error in connection callback.
*/
return bt_le_adv_stop();
}
return 0;
case BT_CONN_CONNECT:
#if defined(CONFIG_BT_BREDR)
if (conn->type == BT_CONN_TYPE_BR) {
return bt_hci_connect_br_cancel(conn);
}
#endif /* CONFIG_BT_BREDR */
if (IS_ENABLED(CONFIG_BT_CENTRAL)) {
k_delayed_work_cancel(&conn->update_work);
return bt_hci_cmd_send(BT_HCI_OP_LE_CREATE_CONN_CANCEL,
NULL);
}
return 0;
case BT_CONN_CONNECTED:
return bt_hci_disconnect(conn, reason);
case BT_CONN_DISCONNECT:
return 0;
case BT_CONN_DISCONNECTED:
default:
return -ENOTCONN;
}
}
#if defined(CONFIG_BT_CENTRAL)
static void bt_conn_set_param_le(struct bt_conn *conn,
const struct bt_le_conn_param *param)
{
conn->le.interval_min = param->interval_min;
conn->le.interval_max = param->interval_max;
conn->le.latency = param->latency;
conn->le.timeout = param->timeout;
}
#if defined(CONFIG_BT_WHITELIST)
int bt_conn_create_auto_le(const struct bt_le_conn_param *param)
{
struct bt_conn *conn;
int err;
if (!atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
return -EINVAL;
}
if (!bt_le_conn_params_valid(param)) {
return -EINVAL;
}
if (atomic_test_bit(bt_dev.flags, BT_DEV_EXPLICIT_SCAN)) {
return -EINVAL;
}
if (atomic_test_bit(bt_dev.flags, BT_DEV_AUTO_CONN)) {
return -EALREADY;
}
if (!bt_dev.le.wl_entries) {
return -EINVAL;
}
/* Don't start initiator if we have general discovery procedure. */
conn = bt_conn_lookup_state_le(NULL, BT_CONN_CONNECT_SCAN);
if (conn) {
bt_conn_unref(conn);
return -EINVAL;
}
/* Don't start initiator if we have direct discovery procedure. */
conn = bt_conn_lookup_state_le(NULL, BT_CONN_CONNECT);
if (conn) {
bt_conn_unref(conn);
return -EINVAL;
}
err = bt_le_auto_conn(param);
if (err) {
BT_ERR("Failed to start whitelist scan");
return err;
}
atomic_set_bit(bt_dev.flags, BT_DEV_AUTO_CONN);
return 0;
}
int bt_conn_create_auto_stop(void)
{
if (!atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
return -EINVAL;
}
if (!atomic_test_bit(bt_dev.flags, BT_DEV_AUTO_CONN)) {
return -EINVAL;
}
int err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_CREATE_CONN_CANCEL, NULL,
NULL);
atomic_clear_bit(bt_dev.flags, BT_DEV_AUTO_CONN);
if (err) {
BT_ERR("Failed to stop initiator");
return err;
}
return 0;
}
#endif /* defined(CONFIG_BT_WHITELIST) */
struct bt_conn *bt_conn_create_le(const bt_addr_le_t *peer,
const struct bt_le_conn_param *param)
{
struct bt_conn *conn;
bt_addr_le_t dst;
if (!atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
return NULL;
}
if (!bt_le_conn_params_valid(param)) {
return NULL;
}
if (atomic_test_bit(bt_dev.flags, BT_DEV_EXPLICIT_SCAN)) {
return NULL;
}
if (IS_ENABLED(CONFIG_BT_WHITELIST) &&
atomic_test_bit(bt_dev.flags, BT_DEV_AUTO_CONN)) {
return NULL;
}
conn = bt_conn_lookup_addr_le(BT_ID_DEFAULT, peer);
if (conn) {
switch (conn->state) {
case BT_CONN_CONNECT_SCAN:
bt_conn_set_param_le(conn, param);
return conn;
case BT_CONN_CONNECT:
case BT_CONN_CONNECTED:
return conn;
case BT_CONN_DISCONNECTED:
BT_WARN("Found valid but disconnected conn object");
goto start_scan;
default:
bt_conn_unref(conn);
return NULL;
}
}
if (peer->type == BT_ADDR_LE_PUBLIC_ID ||
peer->type == BT_ADDR_LE_RANDOM_ID) {
bt_addr_le_copy(&dst, peer);
dst.type -= BT_ADDR_LE_PUBLIC_ID;
} else {
bt_addr_le_copy(&dst, bt_lookup_id_addr(BT_ID_DEFAULT, peer));
}
/* Only default identity supported for now */
conn = bt_conn_add_le(BT_ID_DEFAULT, &dst);
if (!conn) {
return NULL;
}
start_scan:
bt_conn_set_param_le(conn, param);
bt_conn_set_state(conn, BT_CONN_CONNECT_SCAN);
bt_le_scan_update(true);
return conn;
}
#if !defined(CONFIG_BT_WHITELIST)
int bt_le_set_auto_conn(const bt_addr_le_t *addr,
const struct bt_le_conn_param *param)
{
struct bt_conn *conn;
if (param && !bt_le_conn_params_valid(param)) {
return -EINVAL;
}
/* Only default identity is supported */
conn = bt_conn_lookup_addr_le(BT_ID_DEFAULT, addr);
if (!conn) {
conn = bt_conn_add_le(BT_ID_DEFAULT, addr);
if (!conn) {
return -ENOMEM;
}
}
if (param) {
bt_conn_set_param_le(conn, param);
if (!atomic_test_and_set_bit(conn->flags,
BT_CONN_AUTO_CONNECT)) {
bt_conn_ref(conn);
}
} else {
if (atomic_test_and_clear_bit(conn->flags,
BT_CONN_AUTO_CONNECT)) {
bt_conn_unref(conn);
if (conn->state == BT_CONN_CONNECT_SCAN) {
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
}
}
}
if (conn->state == BT_CONN_DISCONNECTED &&
atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
if (param) {
bt_conn_set_state(conn, BT_CONN_CONNECT_SCAN);
}
bt_le_scan_update(false);
}
bt_conn_unref(conn);
return 0;
}
#endif /* !defined(CONFIG_BT_WHITELIST) */
#endif /* CONFIG_BT_CENTRAL */
#if defined(CONFIG_BT_PERIPHERAL)
struct bt_conn *bt_conn_create_slave_le(const bt_addr_le_t *peer,
const struct bt_le_adv_param *param)
{
int err;
struct bt_conn *conn;
struct bt_le_adv_param param_int;
memcpy(&param_int, param, sizeof(param_int));
param_int.options |= (BT_LE_ADV_OPT_CONNECTABLE |
BT_LE_ADV_OPT_ONE_TIME);
conn = bt_conn_lookup_addr_le(param->id, peer);
if (conn) {
switch (conn->state) {
case BT_CONN_CONNECT_DIR_ADV:
/* Handle the case when advertising is stopped with
* bt_le_adv_stop function
*/
err = bt_le_adv_start_internal(&param_int, NULL, 0,
NULL, 0, peer);
if (err && (err != -EALREADY)) {
BT_WARN("Directed advertising could not be"
" started: %d", err);
bt_conn_unref(conn);
return NULL;
}
case BT_CONN_CONNECT:
case BT_CONN_CONNECTED:
return conn;
case BT_CONN_DISCONNECTED:
BT_WARN("Found valid but disconnected conn object");
goto start_adv;
default:
bt_conn_unref(conn);
return NULL;
}
}
conn = bt_conn_add_le(param->id, peer);
if (!conn) {
return NULL;
}
start_adv:
bt_conn_set_state(conn, BT_CONN_CONNECT_DIR_ADV);
err = bt_le_adv_start_internal(&param_int, NULL, 0, NULL, 0, peer);
if (err) {
BT_WARN("Directed advertising could not be started: %d", err);
bt_conn_unref(conn);
return NULL;
}
return conn;
}
#endif /* CONFIG_BT_PERIPHERAL */
int bt_conn_le_conn_update(struct bt_conn *conn,
const struct bt_le_conn_param *param)
{
struct hci_cp_le_conn_update *conn_update;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_CONN_UPDATE,
sizeof(*conn_update));
if (!buf) {
return -ENOBUFS;
}
conn_update = net_buf_add(buf, sizeof(*conn_update));
(void)memset(conn_update, 0, sizeof(*conn_update));
conn_update->handle = sys_cpu_to_le16(conn->handle);
conn_update->conn_interval_min = sys_cpu_to_le16(param->interval_min);
conn_update->conn_interval_max = sys_cpu_to_le16(param->interval_max);
conn_update->conn_latency = sys_cpu_to_le16(param->latency);
conn_update->supervision_timeout = sys_cpu_to_le16(param->timeout);
return bt_hci_cmd_send(BT_HCI_OP_LE_CONN_UPDATE, buf);
}
struct net_buf *bt_conn_create_pdu_timeout(struct net_buf_pool *pool,
size_t reserve, s32_t timeout)
{
struct net_buf *buf;
/*
* PDU must not be allocated from ISR as we block with 'K_FOREVER'
* during the allocation
*/
__ASSERT_NO_MSG(!k_is_in_isr());
if (!pool) {
pool = &acl_tx_pool;
}
if (IS_ENABLED(CONFIG_BT_DEBUG_CONN) ||
(k_current_get() == &k_sys_work_q.thread && timeout == K_FOREVER)) {
buf = net_buf_alloc(pool, K_NO_WAIT);
if (!buf) {
BT_WARN("Unable to allocate buffer with K_NO_WAIT");
/* Cannot block with K_FOREVER on k_sys_work_q as that
* can cause a deadlock when trying to dispatch TX
* notification.
*/
if (k_current_get() == &k_sys_work_q.thread) {
BT_WARN("Unable to allocate buffer: timeout %d",
timeout);
return NULL;
}
buf = net_buf_alloc(pool, timeout);
}
} else {
buf = net_buf_alloc(pool, timeout);
}
if (!buf) {
BT_WARN("Unable to allocate buffer: timeout %d", timeout);
return NULL;
}
reserve += sizeof(struct bt_hci_acl_hdr) + BT_BUF_RESERVE;
net_buf_reserve(buf, reserve);
return buf;
}
#if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_BREDR)
int bt_conn_auth_cb_register(const struct bt_conn_auth_cb *cb)
{
if (!cb) {
bt_auth = NULL;
return 0;
}
if (bt_auth) {
return -EALREADY;
}
/* The cancel callback must always be provided if the app provides
* interactive callbacks.
*/
if (!cb->cancel &&
(cb->passkey_display || cb->passkey_entry || cb->passkey_confirm ||
#if defined(CONFIG_BT_BREDR)
cb->pincode_entry ||
#endif
cb->pairing_confirm)) {
return -EINVAL;
}
bt_auth = cb;
return 0;
}
int bt_conn_auth_passkey_entry(struct bt_conn *conn, unsigned int passkey)
{
if (!bt_auth) {
return -EINVAL;
}
if (IS_ENABLED(CONFIG_BT_SMP) && conn->type == BT_CONN_TYPE_LE) {
bt_smp_auth_passkey_entry(conn, passkey);
return 0;
}
#if defined(CONFIG_BT_BREDR)
if (conn->type == BT_CONN_TYPE_BR) {
/* User entered passkey, reset user state. */
if (!atomic_test_and_clear_bit(conn->flags, BT_CONN_USER)) {
return -EPERM;
}
if (conn->br.pairing_method == PASSKEY_INPUT) {
return ssp_passkey_reply(conn, passkey);
}
}
#endif /* CONFIG_BT_BREDR */
return -EINVAL;
}
int bt_conn_auth_passkey_confirm(struct bt_conn *conn)
{
if (!bt_auth) {
return -EINVAL;
}
if (IS_ENABLED(CONFIG_BT_SMP) &&
conn->type == BT_CONN_TYPE_LE) {
return bt_smp_auth_passkey_confirm(conn);
}
#if defined(CONFIG_BT_BREDR)
if (conn->type == BT_CONN_TYPE_BR) {
/* Allow user confirm passkey value, then reset user state. */
if (!atomic_test_and_clear_bit(conn->flags, BT_CONN_USER)) {
return -EPERM;
}
return ssp_confirm_reply(conn);
}
#endif /* CONFIG_BT_BREDR */
return -EINVAL;
}
int bt_conn_auth_cancel(struct bt_conn *conn)
{
if (!bt_auth) {
return -EINVAL;
}
if (IS_ENABLED(CONFIG_BT_SMP) && conn->type == BT_CONN_TYPE_LE) {
return bt_smp_auth_cancel(conn);
}
#if defined(CONFIG_BT_BREDR)
if (conn->type == BT_CONN_TYPE_BR) {
/* Allow user cancel authentication, then reset user state. */
if (!atomic_test_and_clear_bit(conn->flags, BT_CONN_USER)) {
return -EPERM;
}
switch (conn->br.pairing_method) {
case JUST_WORKS:
case PASSKEY_CONFIRM:
return ssp_confirm_neg_reply(conn);
case PASSKEY_INPUT:
return ssp_passkey_neg_reply(conn);
case PASSKEY_DISPLAY:
return bt_conn_disconnect(conn,
BT_HCI_ERR_AUTH_FAIL);
case LEGACY:
return pin_code_neg_reply(&conn->br.dst);
default:
break;
}
}
#endif /* CONFIG_BT_BREDR */
return -EINVAL;
}
int bt_conn_auth_pairing_confirm(struct bt_conn *conn)
{
if (!bt_auth) {
return -EINVAL;
}
switch (conn->type) {
#if defined(CONFIG_BT_SMP)
case BT_CONN_TYPE_LE:
return bt_smp_auth_pairing_confirm(conn);
#endif /* CONFIG_BT_SMP */
#if defined(CONFIG_BT_BREDR)
case BT_CONN_TYPE_BR:
return ssp_confirm_reply(conn);
#endif /* CONFIG_BT_BREDR */
default:
return -EINVAL;
}
}
#endif /* CONFIG_BT_SMP || CONFIG_BT_BREDR */
u8_t bt_conn_index(struct bt_conn *conn)
{
u8_t index = conn - conns;
__ASSERT(index < CONFIG_BT_MAX_CONN, "Invalid bt_conn pointer");
return index;
}
struct bt_conn *bt_conn_lookup_id(u8_t id)
{
struct bt_conn *conn;
if (id >= ARRAY_SIZE(conns)) {
return NULL;
}
conn = &conns[id];
if (!atomic_get(&conn->ref)) {
return NULL;
}
return bt_conn_ref(conn);
}
int bt_conn_init(void)
{
int err, i;
for (i = 0; i < ARRAY_SIZE(conn_tx); i++) {
k_fifo_put(&free_tx, &conn_tx[i]);
}
bt_att_init();
err = bt_smp_init();
if (err) {
return err;
}
bt_l2cap_init();
/* Initialize background scan */
if (IS_ENABLED(CONFIG_BT_CENTRAL)) {
for (i = 0; i < ARRAY_SIZE(conns); i++) {
struct bt_conn *conn = &conns[i];
if (!atomic_get(&conn->ref)) {
continue;
}
if (atomic_test_bit(conn->flags,
BT_CONN_AUTO_CONNECT)) {
/* Only the default identity is supported */
conn->id = BT_ID_DEFAULT;
bt_conn_set_state(conn, BT_CONN_CONNECT_SCAN);
}
}
}
return 0;
}