sysapic.h is needed for x86_64 if CONFIG_LOAPIC is defined. Signed-off-by: Zide Chen <zide.chen@intel.com>
430 lines
12 KiB
C
430 lines
12 KiB
C
/*
|
|
* Copyright (c) 2010-2014 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief IA-32 specific kernel interface header
|
|
* This header contains the IA-32 specific kernel interface. It is included
|
|
* by the generic kernel interface header (include/arch/cpu.h)
|
|
*/
|
|
|
|
#ifndef ZEPHYR_INCLUDE_ARCH_X86_IA32_ARCH_H_
|
|
#define ZEPHYR_INCLUDE_ARCH_X86_IA32_ARCH_H_
|
|
|
|
#include "sys_io.h"
|
|
#include <stdbool.h>
|
|
#include <kernel_structs.h>
|
|
#include <arch/common/ffs.h>
|
|
#include <sys/util.h>
|
|
#include <arch/x86/ia32/thread.h>
|
|
#include <arch/x86/ia32/syscall.h>
|
|
|
|
#ifndef _ASMLANGUAGE
|
|
#include <stddef.h> /* for size_t */
|
|
|
|
#include <arch/common/addr_types.h>
|
|
#include <arch/x86/ia32/segmentation.h>
|
|
|
|
#endif /* _ASMLANGUAGE */
|
|
|
|
/* GDT layout */
|
|
#define CODE_SEG 0x08
|
|
#define DATA_SEG 0x10
|
|
#define MAIN_TSS 0x18
|
|
#define DF_TSS 0x20
|
|
|
|
/**
|
|
* Macro used internally by NANO_CPU_INT_REGISTER and NANO_CPU_INT_REGISTER_ASM.
|
|
* Not meant to be used explicitly by platform, driver or application code.
|
|
*/
|
|
#define MK_ISR_NAME(x) __isr__##x
|
|
|
|
#define Z_DYN_STUB_SIZE 4
|
|
#define Z_DYN_STUB_OFFSET 0
|
|
#define Z_DYN_STUB_LONG_JMP_EXTRA_SIZE 3
|
|
#define Z_DYN_STUB_PER_BLOCK 32
|
|
|
|
|
|
#ifndef _ASMLANGUAGE
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/* interrupt/exception/error related definitions */
|
|
|
|
typedef struct s_isrList {
|
|
/** Address of ISR/stub */
|
|
void *fnc;
|
|
/** IRQ associated with the ISR/stub, or -1 if this is not
|
|
* associated with a real interrupt; in this case vec must
|
|
* not be -1
|
|
*/
|
|
unsigned int irq;
|
|
/** Priority associated with the IRQ. Ignored if vec is not -1 */
|
|
unsigned int priority;
|
|
/** Vector number associated with ISR/stub, or -1 to assign based
|
|
* on priority
|
|
*/
|
|
unsigned int vec;
|
|
/** Privilege level associated with ISR/stub */
|
|
unsigned int dpl;
|
|
|
|
/** If nonzero, specifies a TSS segment selector. Will configure
|
|
* a task gate instead of an interrupt gate. fnc parameter will be
|
|
* ignored
|
|
*/
|
|
unsigned int tss;
|
|
} ISR_LIST;
|
|
|
|
|
|
/**
|
|
* @brief Connect a routine to an interrupt vector
|
|
*
|
|
* This macro "connects" the specified routine, @a r, to the specified interrupt
|
|
* vector, @a v using the descriptor privilege level @a d. On the IA-32
|
|
* architecture, an interrupt vector is a value from 0 to 255. This macro
|
|
* populates the special intList section with the address of the routine, the
|
|
* vector number and the descriptor privilege level. The genIdt tool then picks
|
|
* up this information and generates an actual IDT entry with this information
|
|
* properly encoded.
|
|
*
|
|
* The @a d argument specifies the privilege level for the interrupt-gate
|
|
* descriptor; (hardware) interrupts and exceptions should specify a level of 0,
|
|
* whereas handlers for user-mode software generated interrupts should specify 3.
|
|
* @param r Routine to be connected
|
|
* @param n IRQ number
|
|
* @param p IRQ priority
|
|
* @param v Interrupt Vector
|
|
* @param d Descriptor Privilege Level
|
|
*
|
|
* @return N/A
|
|
*
|
|
*/
|
|
|
|
#define NANO_CPU_INT_REGISTER(r, n, p, v, d) \
|
|
static ISR_LIST __attribute__((section(".intList"))) \
|
|
__attribute__((used)) MK_ISR_NAME(r) = \
|
|
{ \
|
|
.fnc = &(r), \
|
|
.irq = (n), \
|
|
.priority = (p), \
|
|
.vec = (v), \
|
|
.dpl = (d), \
|
|
.tss = 0 \
|
|
}
|
|
|
|
/**
|
|
* @brief Connect an IA hardware task to an interrupt vector
|
|
*
|
|
* This is very similar to NANO_CPU_INT_REGISTER but instead of connecting
|
|
* a handler function, the interrupt will induce an IA hardware task
|
|
* switch to another hardware task instead.
|
|
*
|
|
* @param tss_p GDT/LDT segment selector for the TSS representing the task
|
|
* @param irq_p IRQ number
|
|
* @param priority_p IRQ priority
|
|
* @param vec_p Interrupt vector
|
|
* @param dpl_p Descriptor privilege level
|
|
*/
|
|
#define _X86_IDT_TSS_REGISTER(tss_p, irq_p, priority_p, vec_p, dpl_p) \
|
|
static ISR_LIST __attribute__((section(".intList"))) \
|
|
__attribute__((used)) MK_ISR_NAME(r) = \
|
|
{ \
|
|
.fnc = NULL, \
|
|
.irq = (irq_p), \
|
|
.priority = (priority_p), \
|
|
.vec = (vec_p), \
|
|
.dpl = (dpl_p), \
|
|
.tss = (tss_p) \
|
|
}
|
|
|
|
/**
|
|
* Code snippets for populating the vector ID and priority into the intList
|
|
*
|
|
* The 'magic' of static interrupts is accomplished by building up an array
|
|
* 'intList' at compile time, and the gen_idt tool uses this to create the
|
|
* actual IDT data structure.
|
|
*
|
|
* For controllers like APIC, the vectors in the IDT are not normally assigned
|
|
* at build time; instead the sentinel value -1 is saved, and gen_idt figures
|
|
* out the right vector to use based on our priority scheme. Groups of 16
|
|
* vectors starting at 32 correspond to each priority level.
|
|
*
|
|
* These macros are only intended to be used by IRQ_CONNECT() macro.
|
|
*/
|
|
#define _VECTOR_ARG(irq_p) (-1)
|
|
|
|
/* Internally this function does a few things:
|
|
*
|
|
* 1. There is a declaration of the interrupt parameters in the .intList
|
|
* section, used by gen_idt to create the IDT. This does the same thing
|
|
* as the NANO_CPU_INT_REGISTER() macro, but is done in assembly as we
|
|
* need to populate the .fnc member with the address of the assembly
|
|
* IRQ stub that we generate immediately afterwards.
|
|
*
|
|
* 2. The IRQ stub itself is declared. The code will go in its own named
|
|
* section .text.irqstubs section (which eventually gets linked into 'text')
|
|
* and the stub shall be named (isr_name)_irq(irq_line)_stub
|
|
*
|
|
* 3. The IRQ stub pushes the ISR routine and its argument onto the stack
|
|
* and then jumps to the common interrupt handling code in _interrupt_enter().
|
|
*
|
|
* 4. z_irq_controller_irq_config() is called at runtime to set the mapping
|
|
* between the vector and the IRQ line as well as triggering flags
|
|
*/
|
|
#define ARCH_IRQ_CONNECT(irq_p, priority_p, isr_p, isr_param_p, flags_p) \
|
|
({ \
|
|
__asm__ __volatile__( \
|
|
".pushsection .intList\n\t" \
|
|
".long %c[isr]_irq%c[irq]_stub\n\t" /* ISR_LIST.fnc */ \
|
|
".long %c[irq]\n\t" /* ISR_LIST.irq */ \
|
|
".long %c[priority]\n\t" /* ISR_LIST.priority */ \
|
|
".long %c[vector]\n\t" /* ISR_LIST.vec */ \
|
|
".long 0\n\t" /* ISR_LIST.dpl */ \
|
|
".long 0\n\t" /* ISR_LIST.tss */ \
|
|
".popsection\n\t" \
|
|
".pushsection .text.irqstubs\n\t" \
|
|
".global %c[isr]_irq%c[irq]_stub\n\t" \
|
|
"%c[isr]_irq%c[irq]_stub:\n\t" \
|
|
"pushl %[isr_param]\n\t" \
|
|
"pushl %[isr]\n\t" \
|
|
"jmp _interrupt_enter\n\t" \
|
|
".popsection\n\t" \
|
|
: \
|
|
: [isr] "i" (isr_p), \
|
|
[isr_param] "i" (isr_param_p), \
|
|
[priority] "i" (priority_p), \
|
|
[vector] "i" _VECTOR_ARG(irq_p), \
|
|
[irq] "i" (irq_p)); \
|
|
z_irq_controller_irq_config(Z_IRQ_TO_INTERRUPT_VECTOR(irq_p), (irq_p), \
|
|
(flags_p)); \
|
|
Z_IRQ_TO_INTERRUPT_VECTOR(irq_p); \
|
|
})
|
|
|
|
#define ARCH_IRQ_DIRECT_CONNECT(irq_p, priority_p, isr_p, flags_p) \
|
|
({ \
|
|
NANO_CPU_INT_REGISTER(isr_p, irq_p, priority_p, -1, 0); \
|
|
z_irq_controller_irq_config(Z_IRQ_TO_INTERRUPT_VECTOR(irq_p), (irq_p), \
|
|
(flags_p)); \
|
|
Z_IRQ_TO_INTERRUPT_VECTOR(irq_p); \
|
|
})
|
|
|
|
#ifdef CONFIG_SYS_POWER_MANAGEMENT
|
|
/*
|
|
* FIXME: z_sys_power_save_idle_exit is defined in kernel.h, which cannot be
|
|
* included here due to circular dependency
|
|
*/
|
|
extern void z_sys_power_save_idle_exit(s32_t ticks);
|
|
|
|
static inline void arch_irq_direct_pm(void)
|
|
{
|
|
if (_kernel.idle) {
|
|
s32_t idle_val = _kernel.idle;
|
|
|
|
_kernel.idle = 0;
|
|
z_sys_power_save_idle_exit(idle_val);
|
|
}
|
|
}
|
|
|
|
#define ARCH_ISR_DIRECT_PM() arch_irq_direct_pm()
|
|
#else
|
|
#define ARCH_ISR_DIRECT_PM() do { } while (false)
|
|
#endif
|
|
|
|
#define ARCH_ISR_DIRECT_HEADER() arch_isr_direct_header()
|
|
#define ARCH_ISR_DIRECT_FOOTER(swap) arch_isr_direct_footer(swap)
|
|
|
|
/* FIXME:
|
|
* tracing/tracing.h cannot be included here due to circular dependency
|
|
*/
|
|
#if defined(CONFIG_TRACING)
|
|
extern void sys_trace_isr_enter(void);
|
|
extern void sys_trace_isr_exit(void);
|
|
#endif
|
|
|
|
static inline void arch_isr_direct_header(void)
|
|
{
|
|
#if defined(CONFIG_TRACING)
|
|
sys_trace_isr_enter();
|
|
#endif
|
|
|
|
/* We're not going to unlock IRQs, but we still need to increment this
|
|
* so that arch_is_in_isr() works
|
|
*/
|
|
++_kernel.nested;
|
|
}
|
|
|
|
/*
|
|
* FIXME: z_swap_irqlock is an inline function declared in a private header and
|
|
* cannot be referenced from a public header, so we move it to an
|
|
* external function.
|
|
*/
|
|
extern void arch_isr_direct_footer_swap(unsigned int key);
|
|
|
|
static inline void arch_isr_direct_footer(int swap)
|
|
{
|
|
z_irq_controller_eoi();
|
|
#if defined(CONFIG_TRACING)
|
|
sys_trace_isr_exit();
|
|
#endif
|
|
--_kernel.nested;
|
|
|
|
/* Call swap if all the following is true:
|
|
*
|
|
* 1) swap argument was enabled to this function
|
|
* 2) We are not in a nested interrupt
|
|
* 3) Next thread to run in the ready queue is not this thread
|
|
*/
|
|
if (swap != 0 && _kernel.nested == 0 &&
|
|
_kernel.ready_q.cache != _current) {
|
|
unsigned int flags;
|
|
|
|
/* Fetch EFLAGS argument to z_swap() */
|
|
__asm__ volatile (
|
|
"pushfl\n\t"
|
|
"popl %0\n\t"
|
|
: "=g" (flags)
|
|
:
|
|
: "memory"
|
|
);
|
|
|
|
arch_isr_direct_footer_swap(flags);
|
|
}
|
|
}
|
|
|
|
#define ARCH_ISR_DIRECT_DECLARE(name) \
|
|
static inline int name##_body(void); \
|
|
__attribute__ ((interrupt)) void name(void *stack_frame) \
|
|
{ \
|
|
ARG_UNUSED(stack_frame); \
|
|
int check_reschedule; \
|
|
ISR_DIRECT_HEADER(); \
|
|
check_reschedule = name##_body(); \
|
|
ISR_DIRECT_FOOTER(check_reschedule); \
|
|
} \
|
|
static inline int name##_body(void)
|
|
|
|
/**
|
|
* @brief Exception Stack Frame
|
|
*
|
|
* A pointer to an "exception stack frame" (ESF) is passed as an argument
|
|
* to exception handlers registered via nanoCpuExcConnect(). As the system
|
|
* always operates at ring 0, only the EIP, CS and EFLAGS registers are pushed
|
|
* onto the stack when an exception occurs.
|
|
*
|
|
* The exception stack frame includes the volatile registers (EAX, ECX, and
|
|
* EDX) as well as the 5 non-volatile registers (EDI, ESI, EBX, EBP and ESP).
|
|
* Those registers are pushed onto the stack by _ExcEnt().
|
|
*/
|
|
|
|
typedef struct nanoEsf {
|
|
unsigned int esp;
|
|
unsigned int ebp;
|
|
unsigned int ebx;
|
|
unsigned int esi;
|
|
unsigned int edi;
|
|
unsigned int edx;
|
|
unsigned int eax;
|
|
unsigned int ecx;
|
|
unsigned int errorCode;
|
|
unsigned int eip;
|
|
unsigned int cs;
|
|
unsigned int eflags;
|
|
} z_arch_esf_t;
|
|
|
|
|
|
struct _x86_syscall_stack_frame {
|
|
u32_t eip;
|
|
u32_t cs;
|
|
u32_t eflags;
|
|
|
|
/* These are only present if cs = USER_CODE_SEG */
|
|
u32_t esp;
|
|
u32_t ss;
|
|
};
|
|
|
|
static ALWAYS_INLINE unsigned int arch_irq_lock(void)
|
|
{
|
|
unsigned int key;
|
|
|
|
__asm__ volatile ("pushfl; cli; popl %0" : "=g" (key) :: "memory");
|
|
|
|
return key;
|
|
}
|
|
|
|
|
|
/**
|
|
* The NANO_SOFT_IRQ macro must be used as the value for the @a irq parameter
|
|
* to NANO_CPU_INT_REGISTER when connecting to an interrupt that does not
|
|
* correspond to any IRQ line (such as spurious vector or SW IRQ)
|
|
*/
|
|
#define NANO_SOFT_IRQ ((unsigned int) (-1))
|
|
|
|
/**
|
|
* @defgroup float_apis Floating Point APIs
|
|
* @ingroup kernel_apis
|
|
* @{
|
|
*/
|
|
|
|
struct k_thread;
|
|
|
|
/**
|
|
* @brief Enable preservation of floating point context information.
|
|
*
|
|
* This routine informs the kernel that the specified thread (which may be
|
|
* the current thread) will be using the floating point registers.
|
|
* The @a options parameter indicates which floating point register sets
|
|
* will be used by the specified thread:
|
|
*
|
|
* - K_FP_REGS indicates x87 FPU and MMX registers only
|
|
* - K_SSE_REGS indicates SSE registers (and also x87 FPU and MMX registers)
|
|
*
|
|
* Invoking this routine initializes the thread's floating point context info
|
|
* to that of an FPU that has been reset. The next time the thread is scheduled
|
|
* by z_swap() it will either inherit an FPU that is guaranteed to be in a "sane"
|
|
* state (if the most recent user of the FPU was cooperatively swapped out)
|
|
* or the thread's own floating point context will be loaded (if the most
|
|
* recent user of the FPU was preempted, or if this thread is the first user
|
|
* of the FPU). Thereafter, the kernel will protect the thread's FP context
|
|
* so that it is not altered during a preemptive context switch.
|
|
*
|
|
* @warning
|
|
* This routine should only be used to enable floating point support for a
|
|
* thread that does not currently have such support enabled already.
|
|
*
|
|
* @param thread ID of thread.
|
|
* @param options Registers to be preserved (K_FP_REGS or K_SSE_REGS).
|
|
*
|
|
* @return N/A
|
|
*/
|
|
extern void k_float_enable(struct k_thread *thread, unsigned int options);
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#ifdef CONFIG_X86_ENABLE_TSS
|
|
extern struct task_state_segment _main_tss;
|
|
#endif
|
|
|
|
#define ARCH_EXCEPT(reason_p) do { \
|
|
__asm__ volatile( \
|
|
"push %[reason]\n\t" \
|
|
"int %[vector]\n\t" \
|
|
: \
|
|
: [vector] "i" (Z_X86_OOPS_VECTOR), \
|
|
[reason] "i" (reason_p)); \
|
|
CODE_UNREACHABLE; \
|
|
} while (false)
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* !_ASMLANGUAGE */
|
|
|
|
#endif /* ZEPHYR_INCLUDE_ARCH_X86_IA32_ARCH_H_ */
|