zephyr/drivers/ethernet/eth_sam_gmac.c
Tomasz Gorochowik 805e2f2c79 net: eth: mgmt: Merge 802.1Qav related mgmt requests
There are too many individual requests for Qav related parameters. There
are more Qav parameters that need to be supported (and will be supported
soon - both on the GET and SET side). Handling it the way it was handled
so far would render the eth mgmt API dominated by Qav parameters. That
would make the file hard to read and understand.

Instead of that - use a single GET and SET requests for all Qav
parameters. This works by adding a separate enum with Qav request type
to the ethernet_qav_param struct.

Additionally this approach makes it much easier to document it all since
we now have just a single request and documentation comments in the
ethernet_qav_param struct.

Signed-off-by: Tomasz Gorochowik <tgorochowik@antmicro.com>
2018-08-01 15:58:05 +03:00

1929 lines
49 KiB
C

/*
* Copyright (c) 2016 Piotr Mienkowski
* Copyringt (c) 2018 Antmicro Ltd
*
* SPDX-License-Identifier: Apache-2.0
*/
/** @file
* @brief Atmel SAM MCU family Ethernet MAC (GMAC) driver.
*
* This is a zero-copy networking implementation of an Ethernet driver. To
* prepare for the incoming frames the driver will permanently reserve a defined
* amount of RX data net buffers when the interface is brought up and thus
* reduce the total amount of RX data net buffers available to the application.
*
* Limitations:
* - one shot PHY setup, no support for PHY disconnect/reconnect
* - no statistics collection
* - no support for devices with DCache enabled due to missing non-cacheable
* RAM regions in Zephyr.
*/
#define SYS_LOG_DOMAIN "dev/eth_sam"
#define SYS_LOG_LEVEL CONFIG_SYS_LOG_ETHERNET_LEVEL
#include <logging/sys_log.h>
#include <kernel.h>
#include <device.h>
#include <misc/__assert.h>
#include <misc/util.h>
#include <errno.h>
#include <stdbool.h>
#include <net/net_pkt.h>
#include <net/net_if.h>
#include <net/ethernet.h>
#include <i2c.h>
#include <soc.h>
#include "phy_sam_gmac.h"
#include "eth_sam_gmac_priv.h"
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
#include <ptp_clock.h>
#include <net/gptp.h>
#endif
/*
* Verify Kconfig configuration
*/
/* No need to verify things for unit tests */
#if !defined(CONFIG_NET_TEST)
#if CONFIG_NET_BUF_DATA_SIZE * CONFIG_ETH_SAM_GMAC_BUF_RX_COUNT \
< GMAC_FRAME_SIZE_MAX
#error CONFIG_NET_BUF_DATA_SIZE * CONFIG_ETH_SAM_GMAC_BUF_RX_COUNT is \
not large enough to hold a full frame
#endif
#if CONFIG_NET_BUF_DATA_SIZE * (CONFIG_NET_BUF_RX_COUNT - \
CONFIG_ETH_SAM_GMAC_BUF_RX_COUNT) < GMAC_FRAME_SIZE_MAX
#error Remaining free RX data buffers (CONFIG_NET_BUF_RX_COUNT -
CONFIG_ETH_SAM_GMAC_BUF_RX_COUNT) * CONFIG_NET_BUF_DATA_SIZE
are not large enough to hold a full frame
#endif
#if CONFIG_NET_BUF_DATA_SIZE * CONFIG_NET_BUF_TX_COUNT \
< GMAC_FRAME_SIZE_MAX
#pragma message "Maximum frame size GMAC driver is able to transmit " \
"CONFIG_NET_BUF_DATA_SIZE * CONFIG_NET_BUF_TX_COUNT is smaller" \
"than a full Ethernet frame"
#endif
#if CONFIG_NET_BUF_DATA_SIZE & 0x3F
#pragma message "CONFIG_NET_BUF_DATA_SIZE should be a multiple of 64 bytes " \
"due to the granularity of RX DMA"
#endif
#endif /* !CONFIG_NET_TEST */
#if (CONFIG_ETH_SAM_GMAC_BUF_RX_COUNT + 1) * CONFIG_ETH_SAM_GMAC_QUEUES \
> CONFIG_NET_BUF_RX_COUNT
#error Not enough RX buffers to allocate descriptors for each HW queue
#endif
/* RX descriptors list */
static struct gmac_desc rx_desc_que0[MAIN_QUEUE_RX_DESC_COUNT]
__aligned(GMAC_DESC_ALIGNMENT);
static struct gmac_desc rx_desc_que1[PRIORITY_QUEUE1_RX_DESC_COUNT]
__aligned(GMAC_DESC_ALIGNMENT);
static struct gmac_desc rx_desc_que2[PRIORITY_QUEUE2_RX_DESC_COUNT]
__aligned(GMAC_DESC_ALIGNMENT);
/* TX descriptors list */
static struct gmac_desc tx_desc_que0[MAIN_QUEUE_TX_DESC_COUNT]
__aligned(GMAC_DESC_ALIGNMENT);
static struct gmac_desc tx_desc_que1[PRIORITY_QUEUE1_TX_DESC_COUNT]
__aligned(GMAC_DESC_ALIGNMENT);
static struct gmac_desc tx_desc_que2[PRIORITY_QUEUE2_TX_DESC_COUNT]
__aligned(GMAC_DESC_ALIGNMENT);
/* RX buffer accounting list */
static struct net_buf *rx_frag_list_que0[MAIN_QUEUE_RX_DESC_COUNT];
#if GMAC_PRIORITY_QUEUE_NO >= 1
static struct net_buf *rx_frag_list_que1[PRIORITY_QUEUE1_RX_DESC_COUNT];
#endif
#if GMAC_PRIORITY_QUEUE_NO == 2
static struct net_buf *rx_frag_list_que2[PRIORITY_QUEUE2_RX_DESC_COUNT];
#endif
/* TX frames accounting list */
static struct net_pkt *tx_frame_list_que0[CONFIG_NET_PKT_TX_COUNT + 1];
#if GMAC_PRIORITY_QUEUE_NO >= 1
static struct net_pkt *tx_frame_list_que1[CONFIG_NET_PKT_TX_COUNT + 1];
#endif
#if GMAC_PRIORITY_QUEUE_NO == 2
static struct net_pkt *tx_frame_list_que2[CONFIG_NET_PKT_TX_COUNT + 1];
#endif
#define MODULO_INC(val, max) {val = (++val < max) ? val : 0; }
/*
* Cache helpers
*/
static bool dcache_enabled;
static inline void dcache_invalidate(u32_t addr, u32_t size)
{
if (!dcache_enabled) {
return;
}
/* Make sure it is aligned to 32B */
u32_t start_addr = addr & (u32_t)~(GMAC_DCACHE_ALIGNMENT - 1);
u32_t size_full = size + addr - start_addr;
SCB_InvalidateDCache_by_Addr((uint32_t *)start_addr, size_full);
}
static inline void dcache_clean(u32_t addr, u32_t size)
{
if (!dcache_enabled) {
return;
}
/* Make sure it is aligned to 32B */
u32_t start_addr = addr & (u32_t)~(GMAC_DCACHE_ALIGNMENT - 1);
u32_t size_full = size + addr - start_addr;
SCB_CleanDCache_by_Addr((uint32_t *)start_addr, size_full);
}
/* gmac descriptiors helpers */
/* Get operations */
static inline u32_t gmac_desc_get_w0(struct gmac_desc *desc)
{
dcache_invalidate((u32_t)desc, sizeof(struct gmac_desc));
return desc->w0;
}
static inline u32_t gmac_desc_get_w1(struct gmac_desc *desc)
{
dcache_invalidate((u32_t)desc, sizeof(struct gmac_desc));
return desc->w1;
}
/* Set operations */
static inline void gmac_desc_set_w0(struct gmac_desc *desc, u32_t value)
{
desc->w0 = value;
dcache_clean((u32_t)desc, sizeof(struct gmac_desc));
}
static inline void gmac_desc_set_w1(struct gmac_desc *desc, u32_t value)
{
desc->w1 = value;
dcache_clean((u32_t)desc, sizeof(struct gmac_desc));
}
/* Set with 'or' operations */
static inline void gmac_desc_append_w0(struct gmac_desc *desc, u32_t value)
{
u32_t old_value = gmac_desc_get_w0(desc);
gmac_desc_set_w0(desc, old_value | value);
}
static inline void gmac_desc_append_w1(struct gmac_desc *desc, u32_t value)
{
u32_t old_value = gmac_desc_get_w1(desc);
gmac_desc_set_w1(desc, old_value | value);
}
/*
* Reset ring buffer
*/
static void ring_buf_reset(struct ring_buf *rb)
{
rb->head = 0;
rb->tail = 0;
}
/*
* Get one 32 bit item from the ring buffer
*/
static u32_t ring_buf_get(struct ring_buf *rb)
{
u32_t val;
__ASSERT(rb->tail != rb->head,
"retrieving data from empty ring buffer");
val = rb->buf[rb->tail];
MODULO_INC(rb->tail, rb->len);
return val;
}
/*
* Put one 32 bit item into the ring buffer
*/
static void ring_buf_put(struct ring_buf *rb, u32_t val)
{
rb->buf[rb->head] = val;
MODULO_INC(rb->head, rb->len);
__ASSERT(rb->tail != rb->head,
"ring buffer overflow");
}
/*
* Free pre-reserved RX buffers
*/
static void free_rx_bufs(struct ring_buf *rx_frag_list)
{
struct net_buf *buf;
for (int i = 0; i < rx_frag_list->len; i++) {
buf = (struct net_buf *)rx_frag_list->buf;
if (buf) {
net_buf_unref(buf);
}
}
}
/*
* Set MAC Address for frame filtering logic
*/
static void mac_addr_set(Gmac *gmac, u8_t index,
u8_t mac_addr[6])
{
__ASSERT(index < 4, "index has to be in the range 0..3");
gmac->GMAC_SA[index].GMAC_SAB = (mac_addr[3] << 24)
| (mac_addr[2] << 16)
| (mac_addr[1] << 8)
| (mac_addr[0]);
gmac->GMAC_SA[index].GMAC_SAT = (mac_addr[5] << 8)
| (mac_addr[4]);
}
/*
* Initialize RX descriptor list
*/
static int rx_descriptors_init(Gmac *gmac, struct gmac_queue *queue)
{
struct gmac_desc_list *rx_desc_list = &queue->rx_desc_list;
struct ring_buf *rx_frag_list = &queue->rx_frag_list;
struct net_buf *rx_buf;
u8_t *rx_buf_addr;
__ASSERT_NO_MSG(rx_frag_list->buf);
rx_desc_list->tail = 0;
rx_frag_list->tail = 0;
for (int i = 0; i < rx_desc_list->len; i++) {
rx_buf = net_pkt_get_reserve_rx_data(0, K_NO_WAIT);
if (rx_buf == NULL) {
free_rx_bufs(rx_frag_list);
SYS_LOG_ERR("Failed to reserve data net buffers");
return -ENOBUFS;
}
rx_frag_list->buf[i] = (u32_t)rx_buf;
rx_buf_addr = rx_buf->data;
__ASSERT(!((u32_t)rx_buf_addr & ~GMAC_RXW0_ADDR),
"Misaligned RX buffer address");
__ASSERT(rx_buf->size == CONFIG_NET_BUF_DATA_SIZE,
"Incorrect length of RX data buffer");
/* Give ownership to GMAC and remove the wrap bit */
gmac_desc_set_w0(&rx_desc_list->buf[i],
(u32_t)rx_buf_addr & GMAC_RXW0_ADDR);
gmac_desc_set_w1(&rx_desc_list->buf[i], 0);
}
/* Set the wrap bit on the last descriptor */
gmac_desc_append_w0(&rx_desc_list->buf[rx_desc_list->len - 1],
GMAC_RXW0_WRAP);
return 0;
}
/*
* Initialize TX descriptor list
*/
static void tx_descriptors_init(Gmac *gmac, struct gmac_queue *queue)
{
struct gmac_desc_list *tx_desc_list = &queue->tx_desc_list;
tx_desc_list->head = 0;
tx_desc_list->tail = 0;
for (int i = 0; i < tx_desc_list->len; i++) {
gmac_desc_set_w0(&tx_desc_list->buf[i], 0);
gmac_desc_set_w1(&tx_desc_list->buf[i], GMAC_TXW1_USED);
}
/* Set the wrap bit on the last descriptor */
gmac_desc_append_w1(&tx_desc_list->buf[tx_desc_list->len - 1],
GMAC_TXW1_WRAP);
/* Reset TX frame list */
ring_buf_reset(&queue->tx_frames);
}
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
static struct gptp_hdr *check_gptp_msg(struct net_if *iface,
struct net_pkt *pkt)
{
struct ethernet_context *eth_ctx;
struct gptp_hdr *gptp_hdr;
u8_t *msg_start;
if (net_pkt_ll_reserve(pkt)) {
msg_start = net_pkt_ll(pkt);
} else {
msg_start = net_pkt_ip_data(pkt);
}
#if defined(CONFIG_NET_VLAN)
eth_ctx = net_if_l2_data(iface);
if (net_eth_is_vlan_enabled(eth_ctx, iface)) {
struct net_eth_vlan_hdr *hdr_vlan;
hdr_vlan = (struct net_eth_vlan_hdr *)msg_start;
if (ntohs(hdr_vlan->type) != NET_ETH_PTYPE_PTP) {
return NULL;
}
gptp_hdr = (struct gptp_hdr *)(msg_start +
sizeof(struct net_eth_vlan_hdr));
} else
#else
ARG_UNUSED(eth_ctx);
#endif
{
struct net_eth_hdr *hdr;
hdr = (struct net_eth_hdr *)msg_start;
if (ntohs(hdr->type) != NET_ETH_PTYPE_PTP) {
return NULL;
}
gptp_hdr = (struct gptp_hdr *)(msg_start +
sizeof(struct net_eth_hdr));
}
return gptp_hdr;
}
static bool need_timestamping(struct gptp_hdr *hdr)
{
switch (hdr->message_type) {
case GPTP_SYNC_MESSAGE:
case GPTP_PATH_DELAY_RESP_MESSAGE:
return true;
default:
return false;
}
}
static void update_pkt_priority(struct gptp_hdr *hdr, struct net_pkt *pkt)
{
if (GPTP_IS_EVENT_MSG(hdr->message_type)) {
net_pkt_set_priority(pkt, NET_PRIORITY_CA);
} else {
net_pkt_set_priority(pkt, NET_PRIORITY_IC);
}
}
static inline struct net_ptp_time get_ptp_event_rx_ts(Gmac *gmac)
{
struct net_ptp_time ts;
ts.second = ((u64_t)(gmac->GMAC_EFRSH & 0xffff) << 32)
| gmac->GMAC_EFRSL;
ts.nanosecond = gmac->GMAC_EFRN;
return ts;
}
static inline struct net_ptp_time get_ptp_peer_event_rx_ts(Gmac *gmac)
{
struct net_ptp_time ts;
ts.second = ((u64_t)(gmac->GMAC_PEFRSH & 0xffff) << 32)
| gmac->GMAC_PEFRSL;
ts.nanosecond = gmac->GMAC_PEFRN;
return ts;
}
static inline struct net_ptp_time get_ptp_event_tx_ts(Gmac *gmac)
{
struct net_ptp_time ts;
ts.second = ((u64_t)(gmac->GMAC_EFTSH & 0xffff) << 32)
| gmac->GMAC_EFTSL;
ts.nanosecond = gmac->GMAC_EFTN;
return ts;
}
static inline struct net_ptp_time get_ptp_peer_event_tx_ts(Gmac *gmac)
{
struct net_ptp_time ts;
ts.second = ((u64_t)(gmac->GMAC_PEFTSH & 0xffff) << 32)
| gmac->GMAC_PEFTSL;
ts.nanosecond = gmac->GMAC_PEFTN;
return ts;
}
static inline struct net_ptp_time get_current_ts(Gmac *gmac)
{
struct net_ptp_time ts;
ts.second = ((u64_t)(gmac->GMAC_TSH & 0xffff) << 32) | gmac->GMAC_TSL;
ts.nanosecond = gmac->GMAC_TN;
return ts;
}
static inline void timestamp_tx_pkt(Gmac *gmac, struct gptp_hdr *hdr,
struct net_pkt *pkt)
{
struct net_ptp_time timestamp;
if (hdr) {
switch (hdr->message_type) {
case GPTP_SYNC_MESSAGE:
timestamp = get_ptp_event_tx_ts(gmac);
break;
default:
timestamp = get_ptp_peer_event_tx_ts(gmac);
}
} else {
timestamp = get_current_ts(gmac);
}
net_pkt_set_timestamp(pkt, &timestamp);
}
static inline void timestamp_rx_pkt(Gmac *gmac, struct gptp_hdr *hdr,
struct net_pkt *pkt)
{
struct net_ptp_time timestamp;
if (hdr) {
switch (hdr->message_type) {
case GPTP_SYNC_MESSAGE:
timestamp = get_ptp_event_rx_ts(gmac);
break;
default:
timestamp = get_ptp_peer_event_rx_ts(gmac);
}
} else {
timestamp = get_current_ts(gmac);
}
net_pkt_set_timestamp(pkt, &timestamp);
}
#endif
static inline struct net_if *get_iface(struct eth_sam_dev_data *ctx,
u16_t vlan_tag)
{
#if defined(CONFIG_NET_VLAN)
struct net_if *iface;
iface = net_eth_get_vlan_iface(ctx->iface, vlan_tag);
if (!iface) {
return ctx->iface;
}
return iface;
#else
ARG_UNUSED(vlan_tag);
return ctx->iface;
#endif
}
/*
* Process successfully sent packets
*/
static void tx_completed(Gmac *gmac, struct gmac_queue *queue)
{
struct gmac_desc_list *tx_desc_list = &queue->tx_desc_list;
struct gmac_desc *tx_desc;
struct net_pkt *pkt;
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
u16_t vlan_tag = NET_VLAN_TAG_UNSPEC;
struct gptp_hdr *hdr;
struct eth_sam_dev_data *dev_data =
CONTAINER_OF(queue, struct eth_sam_dev_data,
queue_list[queue->que_idx]);
#endif
__ASSERT(gmac_desc_get_w1(&tx_desc_list->buf[tx_desc_list->tail])
& GMAC_TXW1_USED,
"first buffer of a frame is not marked as own by GMAC");
while (tx_desc_list->tail != tx_desc_list->head) {
tx_desc = &tx_desc_list->buf[tx_desc_list->tail];
MODULO_INC(tx_desc_list->tail, tx_desc_list->len);
k_sem_give(&queue->tx_desc_sem);
if (gmac_desc_get_w1(tx_desc) & GMAC_TXW1_LASTBUFFER) {
/* Release net buffer to the buffer pool */
pkt = UINT_TO_POINTER(ring_buf_get(&queue->tx_frames));
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
#if defined(CONFIG_NET_VLAN)
struct net_eth_hdr *eth_hdr = NET_ETH_HDR(pkt);
if (ntohs(eth_hdr->type) == NET_ETH_PTYPE_VLAN) {
vlan_tag = net_pkt_vlan_tag(pkt);
}
#endif
hdr = check_gptp_msg(get_iface(dev_data, vlan_tag),
pkt);
timestamp_tx_pkt(gmac, hdr, pkt);
if (hdr && need_timestamping(hdr)) {
net_if_add_tx_timestamp(pkt);
}
#endif
net_pkt_unref(pkt);
SYS_LOG_DBG("Dropping pkt %p", pkt);
break;
}
}
}
/*
* Reset TX queue when errors are detected
*/
static void tx_error_handler(Gmac *gmac, struct gmac_queue *queue)
{
struct net_pkt *pkt;
struct ring_buf *tx_frames = &queue->tx_frames;
queue->err_tx_flushed_count++;
/* Stop transmission, clean transmit pipeline and control registers */
gmac->GMAC_NCR &= ~GMAC_NCR_TXEN;
/* Free all pkt resources in the TX path */
while (tx_frames->tail != tx_frames->head) {
/* Release net buffer to the buffer pool */
pkt = UINT_TO_POINTER(tx_frames->buf[tx_frames->tail]);
net_pkt_unref(pkt);
SYS_LOG_DBG("Dropping pkt %p", pkt);
MODULO_INC(tx_frames->tail, tx_frames->len);
}
/* Reinitialize TX descriptor list */
k_sem_reset(&queue->tx_desc_sem);
tx_descriptors_init(gmac, queue);
for (int i = 0; i < queue->tx_desc_list.len - 1; i++) {
k_sem_give(&queue->tx_desc_sem);
}
/* Restart transmission */
gmac->GMAC_NCR |= GMAC_NCR_TXEN;
}
/*
* Clean RX queue, any received data still stored in the buffers is abandoned.
*/
static void rx_error_handler(Gmac *gmac, struct gmac_queue *queue)
{
queue->err_rx_flushed_count++;
/* Stop reception */
gmac->GMAC_NCR &= ~GMAC_NCR_RXEN;
queue->rx_desc_list.tail = 0;
queue->rx_frag_list.tail = 0;
for (int i = 0; i < queue->rx_desc_list.len; i++) {
gmac_desc_set_w1(&queue->rx_desc_list.buf[i], 0);
gmac_desc_set_w0(&queue->rx_desc_list.buf[i],
gmac_desc_get_w0(&queue->rx_desc_list.buf[i])
& ~GMAC_RXW0_OWNERSHIP);
}
/* Set Receive Buffer Queue Pointer Register */
if (queue->que_idx == 0) {
gmac->GMAC_RBQB = (u32_t)queue->rx_desc_list.buf;
} else {
gmac->GMAC_RBQBAPQ[queue->que_idx - 1] =
(u32_t)queue->rx_desc_list.buf;
}
/* Restart reception */
gmac->GMAC_NCR |= GMAC_NCR_RXEN;
}
/*
* Set MCK to MDC clock divisor.
*
* According to 802.3 MDC should be less then 2.5 MHz.
*/
static int get_mck_clock_divisor(u32_t mck)
{
u32_t mck_divisor;
if (mck <= 20000000) {
mck_divisor = GMAC_NCFGR_CLK_MCK_8;
} else if (mck <= 40000000) {
mck_divisor = GMAC_NCFGR_CLK_MCK_16;
} else if (mck <= 80000000) {
mck_divisor = GMAC_NCFGR_CLK_MCK_32;
} else if (mck <= 120000000) {
mck_divisor = GMAC_NCFGR_CLK_MCK_48;
} else if (mck <= 160000000) {
mck_divisor = GMAC_NCFGR_CLK_MCK_64;
} else if (mck <= 240000000) {
mck_divisor = GMAC_NCFGR_CLK_MCK_96;
} else {
SYS_LOG_ERR("No valid MDC clock");
mck_divisor = -ENOTSUP;
}
return mck_divisor;
}
static int eth_sam_gmac_setup_qav(Gmac *gmac, int queue_id, bool enable)
{
/* Verify queue id */
if (queue_id < 1 || queue_id > GMAC_PRIORITY_QUEUE_NO) {
return -EINVAL;
}
if (queue_id == 1) {
if (enable) {
gmac->GMAC_CBSCR |= GMAC_CBSCR_QAE;
} else {
gmac->GMAC_CBSCR &= ~GMAC_CBSCR_QAE;
}
} else {
if (enable) {
gmac->GMAC_CBSCR |= GMAC_CBSCR_QBE;
} else {
gmac->GMAC_CBSCR &= ~GMAC_CBSCR_QBE;
}
}
return 0;
}
static int eth_sam_gmac_get_qav_status(Gmac *gmac, int queue_id, bool *enabled)
{
/* Verify queue id */
if (queue_id < 1 || queue_id > GMAC_PRIORITY_QUEUE_NO) {
return -EINVAL;
}
if (queue_id == 1) {
*enabled = gmac->GMAC_CBSCR & GMAC_CBSCR_QAE;
} else {
*enabled = gmac->GMAC_CBSCR & GMAC_CBSCR_QBE;
}
return 0;
}
static int eth_sam_gmac_setup_qav_idle_slope(Gmac *gmac, int queue_id,
int idle_slope)
{
/* Verify queue id */
if (queue_id < 1 || queue_id > GMAC_PRIORITY_QUEUE_NO) {
return -EINVAL;
}
if (queue_id == 1) {
gmac->GMAC_CBSCR &= ~GMAC_CBSCR_QAE;
gmac->GMAC_CBSISQA = idle_slope;
gmac->GMAC_CBSCR |= GMAC_CBSCR_QAE;
} else {
gmac->GMAC_CBSCR &= ~GMAC_CBSCR_QBE;
gmac->GMAC_CBSISQB = idle_slope;
gmac->GMAC_CBSCR |= GMAC_CBSCR_QBE;
}
return 0;
}
static int eth_sam_gmac_setup_qav_delta_bandwidth(Gmac *gmac, int queue_id,
int queue_share)
{
u32_t bandwidth;
u32_t idle_slope;
/* See if we operate in 10Mbps or 100Mbps mode,
* Note: according to the manual, portTransmitRate is 0x07735940 for
* 1Gbps - therefore we cannot use the KB/MB macros - we have to
* multiply it by a round 1000 to get it right.
*/
if (gmac->GMAC_NCFGR & GMAC_NCFGR_SPD) {
/* 100Mbps */
bandwidth = (100 * 1000 * 1000) / 8;
} else {
/* 10Mbps */
bandwidth = (10 * 1000 * 1000) / 8;
}
idle_slope = (bandwidth * queue_share) / 100;
return eth_sam_gmac_setup_qav_idle_slope(gmac, queue_id, idle_slope);
}
static int gmac_init(Gmac *gmac, u32_t gmac_ncfgr_val)
{
int mck_divisor;
mck_divisor = get_mck_clock_divisor(SOC_ATMEL_SAM_MCK_FREQ_HZ);
if (mck_divisor < 0) {
return mck_divisor;
}
/* Set Network Control Register to its default value, clear stats. */
gmac->GMAC_NCR = GMAC_NCR_CLRSTAT;
/* Disable all interrupts */
gmac->GMAC_IDR = UINT32_MAX;
gmac->GMAC_IDRPQ[GMAC_QUE_1 - 1] = UINT32_MAX;
gmac->GMAC_IDRPQ[GMAC_QUE_2 - 1] = UINT32_MAX;
/* Clear all interrupts */
(void)gmac->GMAC_ISR;
(void)gmac->GMAC_ISRPQ[GMAC_QUE_1 - 1];
(void)gmac->GMAC_ISRPQ[GMAC_QUE_2 - 1];
/* Setup Hash Registers - enable reception of all multicast frames when
* GMAC_NCFGR_MTIHEN is set.
*/
gmac->GMAC_HRB = UINT32_MAX;
gmac->GMAC_HRT = UINT32_MAX;
/* Setup Network Configuration Register */
gmac->GMAC_NCFGR = gmac_ncfgr_val | mck_divisor;
#ifdef CONFIG_ETH_SAM_GMAC_MII
/* Setup MII Interface to the Physical Layer, RMII is the default */
gmac->GMAC_UR = GMAC_UR_RMII; /* setting RMII to 1 selects MII mode */
#endif
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
/* Initialize PTP Clock Registers */
gmac->GMAC_TI = GMAC_TI_CNS(1);
gmac->GMAC_TISUBN = 0;
gmac->GMAC_TN = 0;
gmac->GMAC_TSH = 0;
gmac->GMAC_TSL = 0;
#endif
/* Enable Qav if priority queues are used, and setup the default delta
* bandwidth according to IEEE802.1Qav (34.3.1)
*/
#if GMAC_PRIORITY_QUEUE_NO == 1
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 1, 75);
#elif GMAC_PRIORITY_QUEUE_NO == 2
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 1, 0);
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 2, 75);
#endif
return 0;
}
static void link_configure(Gmac *gmac, u32_t flags)
{
u32_t val;
gmac->GMAC_NCR &= ~(GMAC_NCR_RXEN | GMAC_NCR_TXEN);
val = gmac->GMAC_NCFGR;
val &= ~(GMAC_NCFGR_FD | GMAC_NCFGR_SPD);
val |= flags & (GMAC_NCFGR_FD | GMAC_NCFGR_SPD);
gmac->GMAC_NCFGR = val;
gmac->GMAC_UR = 0; /* Select RMII mode */
gmac->GMAC_NCR |= (GMAC_NCR_RXEN | GMAC_NCR_TXEN);
}
static void eth_tx_timeout_work(struct k_work *item)
{
struct gmac_queue *queue =
CONTAINER_OF(item, struct gmac_queue, tx_timeout_work);
struct eth_sam_dev_data *dev_data =
CONTAINER_OF(queue, struct eth_sam_dev_data,
queue_list[queue->que_idx]);
struct device *const dev = net_if_get_device(dev_data->iface);
const struct eth_sam_dev_cfg *const cfg = DEV_CFG(dev);
Gmac *gmac = cfg->regs;
/* Just treat it as an error and discard all packets in the queue */
tx_error_handler(gmac, queue);
}
static int nonpriority_queue_init(Gmac *gmac, struct gmac_queue *queue)
{
int result;
__ASSERT_NO_MSG(queue->rx_desc_list.len > 0);
__ASSERT_NO_MSG(queue->tx_desc_list.len > 0);
__ASSERT(!((u32_t)queue->rx_desc_list.buf & ~GMAC_RBQB_ADDR_Msk),
"RX descriptors have to be word aligned");
__ASSERT(!((u32_t)queue->tx_desc_list.buf & ~GMAC_TBQB_ADDR_Msk),
"TX descriptors have to be word aligned");
/* Setup descriptor lists */
result = rx_descriptors_init(gmac, queue);
if (result < 0) {
return result;
}
tx_descriptors_init(gmac, queue);
/* Initialize TX descriptors semaphore. The semaphore is required as the
* size of the TX descriptor list is limited while the number of TX data
* buffers is not.
*/
k_sem_init(&queue->tx_desc_sem, queue->tx_desc_list.len - 1,
queue->tx_desc_list.len - 1);
k_delayed_work_init(&queue->tx_timeout_work,
eth_tx_timeout_work);
/* Set Receive Buffer Queue Pointer Register */
gmac->GMAC_RBQB = (u32_t)queue->rx_desc_list.buf;
/* Set Transmit Buffer Queue Pointer Register */
gmac->GMAC_TBQB = (u32_t)queue->tx_desc_list.buf;
/* Configure GMAC DMA transfer */
gmac->GMAC_DCFGR =
/* Receive Buffer Size (defined in multiples of 64 bytes) */
GMAC_DCFGR_DRBS(CONFIG_NET_BUF_DATA_SIZE >> 6)
/* 4 kB Receiver Packet Buffer Memory Size */
| GMAC_DCFGR_RXBMS_FULL
/* 4 kB Transmitter Packet Buffer Memory Size */
| GMAC_DCFGR_TXPBMS
/* Transmitter Checksum Generation Offload Enable */
| GMAC_DCFGR_TXCOEN
/* Attempt to use INCR4 AHB bursts (Default) */
| GMAC_DCFGR_FBLDO_INCR4;
/* Setup RX/TX completion and error interrupts */
gmac->GMAC_IER = GMAC_INT_EN_FLAGS;
queue->err_rx_frames_dropped = 0;
queue->err_rx_flushed_count = 0;
queue->err_tx_flushed_count = 0;
SYS_LOG_INF("Queue %d activated", queue->que_idx);
return 0;
}
static int priority_queue_init(Gmac *gmac, struct gmac_queue *queue)
{
int result;
int queue_index;
__ASSERT_NO_MSG(queue->rx_desc_list.len > 0);
__ASSERT_NO_MSG(queue->tx_desc_list.len > 0);
__ASSERT(!((u32_t)queue->rx_desc_list.buf & ~GMAC_RBQB_ADDR_Msk),
"RX descriptors have to be word aligned");
__ASSERT(!((u32_t)queue->tx_desc_list.buf & ~GMAC_TBQB_ADDR_Msk),
"TX descriptors have to be word aligned");
/* Extract queue index for easier referencing */
queue_index = queue->que_idx - 1;
/* Setup descriptor lists */
result = rx_descriptors_init(gmac, queue);
if (result < 0) {
return result;
}
tx_descriptors_init(gmac, queue);
k_sem_init(&queue->tx_desc_sem, queue->tx_desc_list.len - 1,
queue->tx_desc_list.len - 1);
k_delayed_work_init(&queue->tx_timeout_work,
eth_tx_timeout_work);
/* Setup RX buffer size for DMA */
gmac->GMAC_RBSRPQ[queue_index] =
GMAC_RBSRPQ_RBS(CONFIG_NET_BUF_DATA_SIZE >> 6);
/* Set Receive Buffer Queue Pointer Register */
gmac->GMAC_RBQBAPQ[queue_index] = (u32_t)queue->rx_desc_list.buf;
/* Set Transmit Buffer Queue Pointer Register */
gmac->GMAC_TBQBAPQ[queue_index] = (u32_t)queue->tx_desc_list.buf;
/* Enable RX/TX completion and error interrupts */
gmac->GMAC_IERPQ[queue_index] = GMAC_INTPQ_EN_FLAGS;
queue->err_rx_frames_dropped = 0;
queue->err_rx_flushed_count = 0;
queue->err_tx_flushed_count = 0;
return 0;
}
static int priority_queue_init_as_idle(Gmac *gmac, struct gmac_queue *queue)
{
struct gmac_desc_list *rx_desc_list = &queue->rx_desc_list;
struct gmac_desc_list *tx_desc_list = &queue->tx_desc_list;
__ASSERT(!((u32_t)rx_desc_list->buf & ~GMAC_RBQB_ADDR_Msk),
"RX descriptors have to be word aligned");
__ASSERT(!((u32_t)tx_desc_list->buf & ~GMAC_TBQB_ADDR_Msk),
"TX descriptors have to be word aligned");
__ASSERT((rx_desc_list->len == 1) && (tx_desc_list->len == 1),
"Priority queues are currently not supported, descriptor "
"list has to have a single entry");
/* Setup RX descriptor lists */
/* Take ownership from GMAC and set the wrap bit */
gmac_desc_set_w0(&rx_desc_list->buf[0], GMAC_RXW0_WRAP);
gmac_desc_set_w1(&rx_desc_list->buf[0], 0);
/* Setup TX descriptor lists */
gmac_desc_set_w0(&tx_desc_list->buf[0], 0);
/* Take ownership from GMAC and set the wrap bit */
gmac_desc_set_w1(&tx_desc_list->buf[0],
GMAC_TXW1_USED | GMAC_TXW1_WRAP);
/* Set Receive Buffer Queue Pointer Register */
gmac->GMAC_RBQBAPQ[queue->que_idx - 1] = (u32_t)rx_desc_list->buf;
/* Set Transmit Buffer Queue Pointer Register */
gmac->GMAC_TBQBAPQ[queue->que_idx - 1] = (u32_t)tx_desc_list->buf;
return 0;
}
static int queue_init(Gmac *gmac, struct gmac_queue *queue)
{
if (queue->que_idx == 0) {
return nonpriority_queue_init(gmac, queue);
} else if (queue->que_idx <= GMAC_PRIORITY_QUEUE_NO) {
return priority_queue_init(gmac, queue);
} else {
return priority_queue_init_as_idle(gmac, queue);
}
}
static struct net_pkt *frame_get(struct gmac_queue *queue)
{
struct gmac_desc_list *rx_desc_list = &queue->rx_desc_list;
struct gmac_desc *rx_desc;
struct ring_buf *rx_frag_list = &queue->rx_frag_list;
struct net_pkt *rx_frame;
bool frame_is_complete;
struct net_buf *frag;
struct net_buf *new_frag;
struct net_buf *last_frag = NULL;
u8_t *frag_data;
u32_t frag_len;
u32_t frame_len = 0;
u16_t tail;
u8_t wrap;
/* Check if there exists a complete frame in RX descriptor list */
tail = rx_desc_list->tail;
rx_desc = &rx_desc_list->buf[tail];
frame_is_complete = false;
while ((gmac_desc_get_w0(rx_desc) & GMAC_RXW0_OWNERSHIP)
&& !frame_is_complete) {
frame_is_complete = (bool)(gmac_desc_get_w1(rx_desc)
& GMAC_RXW1_EOF);
MODULO_INC(tail, rx_desc_list->len);
rx_desc = &rx_desc_list->buf[tail];
}
/* Frame which is not complete can be dropped by GMAC. Do not process
* it, even partially.
*/
if (!frame_is_complete) {
return NULL;
}
rx_frame = net_pkt_get_reserve_rx(0, K_NO_WAIT);
/* Process a frame */
tail = rx_desc_list->tail;
rx_desc = &rx_desc_list->buf[tail];
frame_is_complete = false;
/* TODO: Don't assume first RX fragment will have SOF (Start of frame)
* bit set. If SOF bit is missing recover gracefully by dropping
* invalid frame.
*/
__ASSERT(gmac_desc_get_w1(rx_desc) & GMAC_RXW1_SOF,
"First RX fragment is missing SOF bit");
/* TODO: We know already tail and head indexes of fragments containing
* complete frame. Loop over those indexes, don't search for them
* again.
*/
while ((gmac_desc_get_w0(rx_desc) & GMAC_RXW0_OWNERSHIP)
&& !frame_is_complete) {
frag = (struct net_buf *)rx_frag_list->buf[tail];
frag_data =
(u8_t *)(gmac_desc_get_w0(rx_desc) & GMAC_RXW0_ADDR);
__ASSERT(frag->data == frag_data,
"RX descriptor and buffer list desynchronized");
frame_is_complete =
(bool)(gmac_desc_get_w1(rx_desc) & GMAC_RXW1_EOF);
if (frame_is_complete) {
frag_len = (gmac_desc_get_w1(rx_desc) & GMAC_RXW1_LEN)
- frame_len;
} else {
frag_len = CONFIG_NET_BUF_DATA_SIZE;
}
frame_len += frag_len;
/* Link frame fragments only if RX net buffer is valid */
if (rx_frame != NULL) {
/* Assure cache coherency after DMA write operation */
dcache_invalidate((u32_t)frag_data, frag->size);
/* Get a new data net buffer from the buffer pool */
new_frag = net_pkt_get_frag(rx_frame, K_NO_WAIT);
if (new_frag == NULL) {
queue->err_rx_frames_dropped++;
net_pkt_unref(rx_frame);
rx_frame = NULL;
} else {
net_buf_add(frag, frag_len);
if (!last_frag) {
net_pkt_frag_insert(rx_frame, frag);
} else {
net_buf_frag_insert(last_frag, frag);
}
last_frag = frag;
frag = new_frag;
rx_frag_list->buf[tail] = (u32_t)frag;
dcache_clean((u32_t)&rx_frag_list->buf[tail],
sizeof(u32_t));
}
}
/* Update buffer descriptor status word */
gmac_desc_set_w1(rx_desc, 0);
/* Guarantee that status word is written before the address
* word to avoid race condition.
*/
__DMB(); /* data memory barrier */
/* Update buffer descriptor address word */
wrap = (tail == rx_desc_list->len-1 ? GMAC_RXW0_WRAP : 0);
gmac_desc_set_w0(rx_desc,
((u32_t)frag->data & GMAC_RXW0_ADDR) | wrap);
MODULO_INC(tail, rx_desc_list->len);
rx_desc = &rx_desc_list->buf[tail];
}
rx_desc_list->tail = tail;
SYS_LOG_DBG("Frame complete: rx=%p, tail=%d", rx_frame, tail);
__ASSERT_NO_MSG(frame_is_complete);
return rx_frame;
}
static void eth_rx(struct gmac_queue *queue)
{
struct eth_sam_dev_data *dev_data =
CONTAINER_OF(queue, struct eth_sam_dev_data,
queue_list[queue->que_idx]);
u16_t vlan_tag = NET_VLAN_TAG_UNSPEC;
struct net_pkt *rx_frame;
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
struct device *const dev = net_if_get_device(dev_data->iface);
const struct eth_sam_dev_cfg *const cfg = DEV_CFG(dev);
Gmac *gmac = cfg->regs;
struct gptp_hdr *hdr;
#endif
/* More than one frame could have been received by GMAC, get all
* complete frames stored in the GMAC RX descriptor list.
*/
rx_frame = frame_get(queue);
while (rx_frame) {
SYS_LOG_DBG("ETH rx");
#if defined(CONFIG_NET_VLAN)
/* FIXME: Instead of this, use the GMAC register to get
* the used VLAN tag.
*/
{
struct net_eth_hdr *hdr = NET_ETH_HDR(rx_frame);
if (ntohs(hdr->type) == NET_ETH_PTYPE_VLAN) {
struct net_eth_vlan_hdr *hdr_vlan =
(struct net_eth_vlan_hdr *)
NET_ETH_HDR(rx_frame);
net_pkt_set_vlan_tci(rx_frame,
ntohs(hdr_vlan->vlan.tci));
vlan_tag = net_pkt_vlan_tag(rx_frame);
#if CONFIG_NET_TC_RX_COUNT > 1
{
enum net_priority prio;
prio = net_vlan2priority(
net_pkt_vlan_priority(rx_frame));
net_pkt_set_priority(rx_frame, prio);
}
#endif
}
}
#endif
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
hdr = check_gptp_msg(get_iface(dev_data, vlan_tag), rx_frame);
timestamp_rx_pkt(gmac, hdr, rx_frame);
if (hdr) {
update_pkt_priority(hdr, rx_frame);
}
#endif /* CONFIG_PTP_CLOCK_SAM_GMAC */
if (net_recv_data(get_iface(dev_data, vlan_tag),
rx_frame) < 0) {
net_pkt_unref(rx_frame);
}
rx_frame = frame_get(queue);
}
}
static int priority2queue(enum net_priority priority)
{
u8_t queue_priority_map[] = {
#if CONFIG_ETH_SAM_GMAC_QUEUES == 1
0, 0, 0, 0, 0, 0, 0, 0
#endif
#if CONFIG_ETH_SAM_GMAC_QUEUES == 2
0, 0, 0, 0, 1, 1, 1, 1
#endif
#if CONFIG_ETH_SAM_GMAC_QUEUES == 3
0, 0, 0, 0, 1, 1, 2, 2
#endif
};
return queue_priority_map[priority];
}
static int eth_tx(struct net_if *iface, struct net_pkt *pkt)
{
struct device *const dev = net_if_get_device(iface);
const struct eth_sam_dev_cfg *const cfg = DEV_CFG(dev);
struct eth_sam_dev_data *const dev_data = DEV_DATA(dev);
Gmac *gmac = cfg->regs;
struct gmac_queue *queue;
struct gmac_desc_list *tx_desc_list;
struct gmac_desc *tx_desc;
struct net_buf *frag;
u8_t *frag_data, *frag_orig;
u16_t frag_len;
u32_t err_tx_flushed_count_at_entry;
unsigned int key;
__ASSERT(pkt, "buf pointer is NULL");
__ASSERT(pkt->frags, "Frame data missing");
SYS_LOG_DBG("ETH tx");
/* Decide which queue should be used */
queue = &dev_data->queue_list[priority2queue(net_pkt_priority(pkt))];
tx_desc_list = &queue->tx_desc_list;
err_tx_flushed_count_at_entry = queue->err_tx_flushed_count;
/* Store the original frag data pointer */
frag_orig = pkt->frags->data;
/* First fragment is special - it contains link layer (Ethernet
* in our case) header. Modify the data pointer to account for more data
* in the beginning of the buffer.
*/
net_buf_push(pkt->frags, net_pkt_ll_reserve(pkt));
frag = pkt->frags;
while (frag) {
frag_data = frag->data;
frag_len = frag->len;
/* Assure cache coherency before DMA read operation */
dcache_clean((u32_t)frag_data, frag->size);
k_sem_take(&queue->tx_desc_sem, K_FOREVER);
/* The following section becomes critical and requires IRQ lock
* / unlock protection only due to the possibility of executing
* tx_error_handler() function.
*/
key = irq_lock();
/* Check if tx_error_handler() function was executed */
if (queue->err_tx_flushed_count !=
err_tx_flushed_count_at_entry) {
irq_unlock(key);
return -EIO;
}
tx_desc = &tx_desc_list->buf[tx_desc_list->head];
/* Update buffer descriptor address word */
gmac_desc_set_w0(tx_desc, (u32_t)frag_data);
/* Guarantee that address word is written before the status
* word to avoid race condition.
*/
__DMB(); /* data memory barrier */
/* Update buffer descriptor status word (clear used bit) */
gmac_desc_set_w1(tx_desc,
(frag_len & GMAC_TXW1_LEN)
| (!frag->frags ? GMAC_TXW1_LASTBUFFER : 0)
| (tx_desc_list->head == tx_desc_list->len - 1
? GMAC_TXW1_WRAP : 0));
/* Update descriptor position */
MODULO_INC(tx_desc_list->head, tx_desc_list->len);
__ASSERT(tx_desc_list->head != tx_desc_list->tail,
"tx_desc_list overflow");
irq_unlock(key);
/* Continue with the rest of fragments (only data) */
frag = frag->frags;
}
/* Restore the original frag data pointer */
pkt->frags->data = frag_orig;
key = irq_lock();
/* Check if tx_error_handler() function was executed */
if (queue->err_tx_flushed_count != err_tx_flushed_count_at_entry) {
irq_unlock(key);
return -EIO;
}
/* Ensure the descriptor following the last one is marked as used */
tx_desc = &tx_desc_list->buf[tx_desc_list->head];
gmac_desc_append_w1(tx_desc, GMAC_TXW1_USED);
/* Account for a sent frame */
ring_buf_put(&queue->tx_frames, POINTER_TO_UINT(pkt));
irq_unlock(key);
/* Start transmission */
gmac->GMAC_NCR |= GMAC_NCR_TSTART;
/* Set timeout for queue */
if (k_delayed_work_remaining_get(&queue->tx_timeout_work) == 0) {
k_delayed_work_submit(&queue->tx_timeout_work,
CONFIG_ETH_SAM_GMAC_TX_TIMEOUT_MSEC);
}
return 0;
}
static void queue0_isr(void *arg)
{
struct device *const dev = (struct device *const)arg;
const struct eth_sam_dev_cfg *const cfg = DEV_CFG(dev);
struct eth_sam_dev_data *const dev_data = DEV_DATA(dev);
Gmac *gmac = cfg->regs;
struct gmac_queue *queue;
struct gmac_desc_list *rx_desc_list;
struct gmac_desc_list *tx_desc_list;
struct gmac_desc *tail_desc;
u32_t isr;
/* Interrupt Status Register is cleared on read */
isr = gmac->GMAC_ISR;
SYS_LOG_DBG("GMAC_ISR=0x%08x", isr);
queue = &dev_data->queue_list[0];
rx_desc_list = &queue->rx_desc_list;
tx_desc_list = &queue->tx_desc_list;
/* RX packet */
if (isr & GMAC_INT_RX_ERR_BITS) {
rx_error_handler(gmac, queue);
} else if (isr & GMAC_ISR_RCOMP) {
tail_desc = &rx_desc_list->buf[rx_desc_list->tail];
SYS_LOG_DBG("rx.w1=0x%08x, tail=%d",
gmac_desc_get_w1(tail_desc),
rx_desc_list->tail);
eth_rx(queue);
}
/* TX packet */
if (isr & GMAC_INT_TX_ERR_BITS) {
tx_error_handler(gmac, queue);
} else if (isr & GMAC_ISR_TCOMP) {
tail_desc = &tx_desc_list->buf[tx_desc_list->tail];
SYS_LOG_DBG("tx.w1=0x%08x, tail=%d",
gmac_desc_get_w1(tail_desc),
tx_desc_list->tail);
/* Check if it is not too late */
if (k_delayed_work_cancel(&queue->tx_timeout_work) == 0) {
tx_completed(gmac, queue);
}
}
if (isr & GMAC_IER_HRESP) {
SYS_LOG_DBG("IER HRESP");
}
}
#if GMAC_PRIORITY_QUEUE_NO >= 1
static inline void priority_queue_isr(void *arg, unsigned int queue_idx)
{
struct device *const dev = (struct device *const)arg;
const struct eth_sam_dev_cfg *const cfg = DEV_CFG(dev);
struct eth_sam_dev_data *const dev_data = DEV_DATA(dev);
Gmac *gmac = cfg->regs;
struct gmac_queue *queue;
struct gmac_desc_list *rx_desc_list;
struct gmac_desc_list *tx_desc_list;
struct gmac_desc *tail_desc;
u32_t isrpq;
isrpq = gmac->GMAC_ISRPQ[queue_idx - 1];
SYS_LOG_DBG("GMAC_ISRPQ%d=0x%08x", queue_idx - 1, isrpq);
queue = &dev_data->queue_list[queue_idx];
rx_desc_list = &queue->rx_desc_list;
tx_desc_list = &queue->tx_desc_list;
/* RX packet */
if (isrpq & GMAC_INTPQ_RX_ERR_BITS) {
rx_error_handler(gmac, queue);
} else if (isrpq & GMAC_ISRPQ_RCOMP) {
tail_desc = &rx_desc_list->buf[rx_desc_list->tail];
SYS_LOG_DBG("rx.w1=0x%08x, tail=%d",
gmac_desc_get_w1(tail_desc),
rx_desc_list->tail);
eth_rx(queue);
}
/* TX packet */
if (isrpq & GMAC_INTPQ_TX_ERR_BITS) {
tx_error_handler(gmac, queue);
} else if (isrpq & GMAC_ISRPQ_TCOMP) {
tail_desc = &tx_desc_list->buf[tx_desc_list->tail];
SYS_LOG_DBG("tx.w1=0x%08x, tail=%d",
gmac_desc_get_w1(tail_desc),
tx_desc_list->tail);
/* Check if it is not too late */
if (k_delayed_work_cancel(&queue->tx_timeout_work) == 0) {
tx_completed(gmac, queue);
}
}
if (isrpq & GMAC_IERPQ_HRESP) {
SYS_LOG_DBG("IERPQ%d HRESP", queue_idx - 1);
}
}
#endif
#if GMAC_PRIORITY_QUEUE_NO >= 1
static void queue1_isr(void *arg)
{
priority_queue_isr(arg, 1);
}
#endif
#if GMAC_PRIORITY_QUEUE_NO == 2
static void queue2_isr(void *arg)
{
priority_queue_isr(arg, 2);
}
#endif
static int eth_initialize(struct device *dev)
{
const struct eth_sam_dev_cfg *const cfg = DEV_CFG(dev);
cfg->config_func();
/* Enable GMAC module's clock */
soc_pmc_peripheral_enable(cfg->periph_id);
/* Connect pins to the peripheral */
soc_gpio_list_configure(cfg->pin_list, cfg->pin_list_size);
return 0;
}
#ifdef CONFIG_ETH_SAM_GMAC_MAC_I2C_EEPROM
void get_mac_addr_from_i2c_eeprom(u8_t mac_addr[6])
{
struct device *dev;
u32_t iaddr = CONFIG_ETH_SAM_GMAC_MAC_I2C_INT_ADDRESS;
dev = device_get_binding(CONFIG_ETH_SAM_GMAC_MAC_I2C_DEV_NAME);
if (!dev) {
SYS_LOG_ERR("I2C: Device not found");
return;
}
i2c_burst_read_addr(dev, CONFIG_ETH_SAM_GMAC_MAC_I2C_SLAVE_ADDRESS,
(u8_t *)&iaddr,
CONFIG_ETH_SAM_GMAC_MAC_I2C_INT_ADDRESS_SIZE,
mac_addr, 6);
}
#endif
static void eth0_iface_init(struct net_if *iface)
{
struct device *const dev = net_if_get_device(iface);
struct eth_sam_dev_data *const dev_data = DEV_DATA(dev);
const struct eth_sam_dev_cfg *const cfg = DEV_CFG(dev);
static bool init_done;
u32_t gmac_ncfgr_val;
u32_t link_status;
int result;
int i;
/* For VLAN, this value is only used to get the correct L2 driver */
dev_data->iface = iface;
ethernet_init(iface);
/* The rest of initialization should only be done once */
if (init_done) {
return;
}
/* Check the status of data caches */
dcache_enabled = (SCB->CCR & SCB_CCR_DC_Msk);
/* Initialize GMAC driver, maximum frame length is 1518 bytes */
gmac_ncfgr_val =
GMAC_NCFGR_MTIHEN /* Multicast Hash Enable */
| GMAC_NCFGR_LFERD /* Length Field Error Frame Discard */
| GMAC_NCFGR_RFCS /* Remove Frame Check Sequence */
| GMAC_NCFGR_RXCOEN; /* Receive Checksum Offload Enable */
result = gmac_init(cfg->regs, gmac_ncfgr_val);
if (result < 0) {
SYS_LOG_ERR("Unable to initialize ETH driver");
return;
}
#ifdef CONFIG_ETH_SAM_GMAC_MAC_I2C_EEPROM
/* Read MAC address from an external EEPROM */
get_mac_addr_from_i2c_eeprom(dev_data->mac_addr);
#endif
SYS_LOG_INF("MAC: %x:%x:%x:%x:%x:%x",
dev_data->mac_addr[0], dev_data->mac_addr[1],
dev_data->mac_addr[2], dev_data->mac_addr[3],
dev_data->mac_addr[4], dev_data->mac_addr[5]);
/* Set MAC Address for frame filtering logic */
mac_addr_set(cfg->regs, 0, dev_data->mac_addr);
/* Register Ethernet MAC Address with the upper layer */
net_if_set_link_addr(iface, dev_data->mac_addr,
sizeof(dev_data->mac_addr),
NET_LINK_ETHERNET);
/* Initialize GMAC queues */
for (i = 0; i < GMAC_QUEUE_NO; i++) {
result = queue_init(cfg->regs, &dev_data->queue_list[i]);
if (result < 0) {
SYS_LOG_ERR("Unable to initialize ETH queue%d", i);
return;
}
}
#if GMAC_PRIORITY_QUEUE_NO >= 1
/* If VLAN is enabled, route packets according to VLAN priority */
#if defined(CONFIG_NET_VLAN)
int j;
i = 0;
for (j = NET_PRIORITY_NC; j >= 0; --j) {
if (j > 7) {
/* No more screening registers available */
break;
}
if (priority2queue(j) == 0) {
/* No point to set rules for the regular queue */
continue;
}
cfg->regs->GMAC_ST2RPQ[i++] =
GMAC_ST2RPQ_QNB(priority2queue(j))
| GMAC_ST2RPQ_VLANP(j)
| GMAC_ST2RPQ_VLANE;
}
#endif
#endif
/* PHY initialize */
result = phy_sam_gmac_init(&cfg->phy);
if (result < 0) {
SYS_LOG_ERR("ETH PHY Initialization Error");
return;
}
/* PHY auto-negotiate link parameters */
result = phy_sam_gmac_auto_negotiate(&cfg->phy, &link_status);
if (result < 0) {
SYS_LOG_ERR("ETH PHY auto-negotiate sequence failed");
return;
}
/* Set up link parameters */
link_configure(cfg->regs, link_status);
init_done = true;
}
static enum ethernet_hw_caps eth_sam_gmac_get_capabilities(struct device *dev)
{
ARG_UNUSED(dev);
return ETHERNET_HW_VLAN | ETHERNET_LINK_10BASE_T |
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
ETHERNET_PTP |
#endif
ETHERNET_PRIORITY_QUEUES |
ETHERNET_QAV |
ETHERNET_LINK_100BASE_T;
}
static int eth_sam_gmac_set_qav_param(struct device *dev,
enum ethernet_config_type type,
const struct ethernet_config *config)
{
const struct eth_sam_dev_cfg *const cfg = DEV_CFG(dev);
Gmac *gmac = cfg->regs;
enum ethernet_qav_param_type qav_param_type;
unsigned int delta_bandwidth;
unsigned int idle_slope;
int queue_id;
bool enable;
/* Priority queue IDs start from 1 for SAM GMAC */
queue_id = config->qav_param.queue_id + 1;
qav_param_type = config->qav_param.type;
switch (qav_param_type) {
case ETHERNET_QAV_PARAM_TYPE_STATUS:
enable = config->qav_param.enabled;
return eth_sam_gmac_setup_qav(gmac, queue_id, enable);
case ETHERNET_QAV_PARAM_TYPE_DELTA_BANDWIDTH:
delta_bandwidth = config->qav_param.delta_bandwidth;
return eth_sam_gmac_setup_qav_delta_bandwidth(gmac, queue_id,
delta_bandwidth);
case ETHERNET_QAV_PARAM_TYPE_IDLE_SLOPE:
idle_slope = config->qav_param.idle_slope;
return eth_sam_gmac_setup_qav_idle_slope(gmac, queue_id,
idle_slope);
default:
break;
}
return -ENOTSUP;
}
static int eth_sam_gmac_set_config(struct device *dev,
enum ethernet_config_type type,
const struct ethernet_config *config)
{
switch (type) {
case ETHERNET_CONFIG_TYPE_QAV_PARAM:
return eth_sam_gmac_set_qav_param(dev, type, config);
default:
break;
}
return -ENOTSUP;
}
static int eth_sam_gmac_get_qav_param(struct device *dev,
enum ethernet_config_type type,
struct ethernet_config *config)
{
const struct eth_sam_dev_cfg *const cfg = DEV_CFG(dev);
Gmac *gmac = cfg->regs;
enum ethernet_qav_param_type qav_param_type;
int queue_id;
bool *enabled;
/* Priority queue IDs start from 1 for SAM GMAC */
queue_id = config->qav_param.queue_id + 1;
qav_param_type = config->qav_param.type;
switch (qav_param_type) {
case ETHERNET_QAV_PARAM_TYPE_STATUS:
enabled = &config->qav_param.enabled;
return eth_sam_gmac_get_qav_status(gmac, queue_id, enabled);
default:
break;
}
return -ENOTSUP;
}
static int eth_sam_gmac_get_config(struct device *dev,
enum ethernet_config_type type,
struct ethernet_config *config)
{
switch (type) {
case ETHERNET_CONFIG_TYPE_PRIORITY_QUEUES_NUM:
config->priority_queues_num = GMAC_PRIORITY_QUEUE_NO;
return 0;
case ETHERNET_CONFIG_TYPE_QAV_PARAM:
return eth_sam_gmac_get_qav_param(dev, type, config);
default:
break;
}
return -ENOTSUP;
}
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
static struct device *eth_sam_gmac_get_ptp_clock(struct device *dev)
{
struct eth_sam_dev_data *const dev_data = DEV_DATA(dev);
return dev_data->ptp_clock;
}
#endif
static const struct ethernet_api eth_api = {
.iface_api.init = eth0_iface_init,
.iface_api.send = eth_tx,
.get_capabilities = eth_sam_gmac_get_capabilities,
.set_config = eth_sam_gmac_set_config,
.get_config = eth_sam_gmac_get_config,
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
.get_ptp_clock = eth_sam_gmac_get_ptp_clock,
#endif
};
static struct device DEVICE_NAME_GET(eth0_sam_gmac);
static void eth0_irq_config(void)
{
IRQ_CONNECT(GMAC_IRQn, CONFIG_ETH_SAM_GMAC_IRQ_PRI, queue0_isr,
DEVICE_GET(eth0_sam_gmac), 0);
irq_enable(GMAC_IRQn);
#if GMAC_PRIORITY_QUEUE_NO >= 1
IRQ_CONNECT(GMACQ1_IRQn, CONFIG_ETH_SAM_GMAC_IRQ_PRI, queue1_isr,
DEVICE_GET(eth0_sam_gmac), 0);
irq_enable(GMACQ1_IRQn);
#endif
#if GMAC_PRIORITY_QUEUE_NO == 2
IRQ_CONNECT(GMACQ2_IRQn, CONFIG_ETH_SAM_GMAC_IRQ_PRI, queue2_isr,
DEVICE_GET(eth0_sam_gmac), 0);
irq_enable(GMACQ2_IRQn);
#endif
}
static const struct soc_gpio_pin pins_eth0[] = PINS_GMAC0;
static const struct eth_sam_dev_cfg eth0_config = {
.regs = GMAC,
.periph_id = ID_GMAC,
.pin_list = pins_eth0,
.pin_list_size = ARRAY_SIZE(pins_eth0),
.config_func = eth0_irq_config,
.phy = {GMAC, CONFIG_ETH_SAM_GMAC_PHY_ADDR},
};
static struct eth_sam_dev_data eth0_data = {
#ifdef CONFIG_ETH_SAM_GMAC_MAC_MANUAL
.mac_addr = {
CONFIG_ETH_SAM_GMAC_MAC0,
CONFIG_ETH_SAM_GMAC_MAC1,
CONFIG_ETH_SAM_GMAC_MAC2,
CONFIG_ETH_SAM_GMAC_MAC3,
CONFIG_ETH_SAM_GMAC_MAC4,
CONFIG_ETH_SAM_GMAC_MAC5,
},
#endif
.queue_list = {{
.que_idx = GMAC_QUE_0,
.rx_desc_list = {
.buf = rx_desc_que0,
.len = ARRAY_SIZE(rx_desc_que0),
},
.tx_desc_list = {
.buf = tx_desc_que0,
.len = ARRAY_SIZE(tx_desc_que0),
},
.rx_frag_list = {
.buf = (u32_t *)rx_frag_list_que0,
.len = ARRAY_SIZE(rx_frag_list_que0),
},
.tx_frames = {
.buf = (u32_t *)tx_frame_list_que0,
.len = ARRAY_SIZE(tx_frame_list_que0),
},
}, {
.que_idx = GMAC_QUE_1,
.rx_desc_list = {
.buf = rx_desc_que1,
.len = ARRAY_SIZE(rx_desc_que1),
},
.tx_desc_list = {
.buf = tx_desc_que1,
.len = ARRAY_SIZE(tx_desc_que1),
},
#if GMAC_PRIORITY_QUEUE_NO >= 1
.rx_frag_list = {
.buf = (u32_t *)rx_frag_list_que1,
.len = ARRAY_SIZE(rx_frag_list_que1),
},
.tx_frames = {
.buf = (u32_t *)tx_frame_list_que1,
.len = ARRAY_SIZE(tx_frame_list_que1),
}
#endif
}, {
.que_idx = GMAC_QUE_2,
.rx_desc_list = {
.buf = rx_desc_que2,
.len = ARRAY_SIZE(rx_desc_que2),
},
.tx_desc_list = {
.buf = tx_desc_que2,
.len = ARRAY_SIZE(tx_desc_que2),
},
#if GMAC_PRIORITY_QUEUE_NO == 2
.rx_frag_list = {
.buf = (u32_t *)rx_frag_list_que2,
.len = ARRAY_SIZE(rx_frag_list_que2),
},
.tx_frames = {
.buf = (u32_t *)tx_frame_list_que2,
.len = ARRAY_SIZE(tx_frame_list_que2),
}
#endif
}
},
};
ETH_NET_DEVICE_INIT(eth0_sam_gmac, CONFIG_ETH_SAM_GMAC_NAME, eth_initialize,
&eth0_data, &eth0_config, CONFIG_ETH_INIT_PRIORITY,
&eth_api, GMAC_MTU);
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
struct ptp_context {
struct device *eth_dev;
};
static struct ptp_context ptp_gmac_0_context;
static int ptp_clock_sam_gmac_set(struct device *dev,
struct net_ptp_time *tm)
{
struct ptp_context *ptp_context = dev->driver_data;
const struct eth_sam_dev_cfg *const cfg = DEV_CFG(ptp_context->eth_dev);
Gmac *gmac = cfg->regs;
gmac->GMAC_TSH = tm->_sec.high & 0xffff;
gmac->GMAC_TSL = tm->_sec.low & 0xffffffff;
gmac->GMAC_TN = tm->nanosecond & 0xffffffff;
return 0;
}
static int ptp_clock_sam_gmac_get(struct device *dev,
struct net_ptp_time *tm)
{
struct ptp_context *ptp_context = dev->driver_data;
const struct eth_sam_dev_cfg *const cfg = DEV_CFG(ptp_context->eth_dev);
Gmac *gmac = cfg->regs;
tm->second = ((u64_t)(gmac->GMAC_TSH & 0xffff) << 32) | gmac->GMAC_TSL;
tm->nanosecond = gmac->GMAC_TN;
return 0;
}
static int ptp_clock_sam_gmac_adjust(struct device *dev, int increment)
{
struct ptp_context *ptp_context = dev->driver_data;
const struct eth_sam_dev_cfg *const cfg = DEV_CFG(ptp_context->eth_dev);
Gmac *gmac = cfg->regs;
GMAC_TA_Type gmac_ta;
if ((increment <= -NSEC_PER_SEC) || (increment >= NSEC_PER_SEC)) {
return -EINVAL;
}
if (increment < 0) {
gmac_ta.bit.ADJ = 1;
gmac_ta.bit.ITDT = -increment;
} else {
gmac_ta.bit.ADJ = 0;
gmac_ta.bit.ITDT = increment;
}
gmac->GMAC_TA = gmac_ta.reg;
return 0;
}
static int ptp_clock_sam_gmac_rate_adjust(struct device *dev, float ratio)
{
struct ptp_context *ptp_context = dev->driver_data;
const struct eth_sam_dev_cfg *const cfg = DEV_CFG(ptp_context->eth_dev);
Gmac *gmac = cfg->regs;
u8_t nanos;
u16_t subnanos;
float increment;
/* No change needed. */
if (ratio == 1.0) {
return 0;
}
if (ratio < 0) {
return -EINVAL;
}
/* Do not allow drastic rate changes */
if (ratio < 0.5) {
ratio = 0.5;
} else if (ratio > 2.0) {
ratio = 2.0;
}
/* Get current increment values */
nanos = gmac->GMAC_TI & GMAC_TI_CNS_Msk;
subnanos = gmac->GMAC_TISUBN & GMAC_TISUBN_Msk;
/* Convert to a single float */
increment = (nanos + (subnanos / UINT16_MAX));
increment *= ratio;
/* Limit and calculate new increment values */
if (increment > 255) {
increment = 255;
}
nanos = (u8_t)increment;
subnanos = (u16_t)((increment - (u16_t)increment) * UINT16_MAX);
/* Validate, not validating subnanos, 1 nano is the least we accept */
if (nanos == 0) {
return -EINVAL;
}
/* Write the registers (clears ACNS and NIT fields on purpose) */
gmac->GMAC_TI = GMAC_TI_CNS(nanos);
gmac->GMAC_TISUBN = GMAC_TISUBN_LSBTIR(subnanos);
return 0;
}
static const struct ptp_clock_driver_api ptp_api = {
.set = ptp_clock_sam_gmac_set,
.get = ptp_clock_sam_gmac_get,
.adjust = ptp_clock_sam_gmac_adjust,
.rate_adjust = ptp_clock_sam_gmac_rate_adjust,
};
static int ptp_gmac_init(struct device *port)
{
struct device *eth_dev = DEVICE_GET(eth0_sam_gmac);
struct eth_sam_dev_data *dev_data = eth_dev->driver_data;
struct ptp_context *ptp_context = port->driver_data;
dev_data->ptp_clock = port;
ptp_context->eth_dev = eth_dev;
return 0;
}
DEVICE_AND_API_INIT(gmac_ptp_clock_0, PTP_CLOCK_NAME, ptp_gmac_init,
&ptp_gmac_0_context, NULL, POST_KERNEL,
CONFIG_APPLICATION_INIT_PRIORITY, &ptp_api);
#endif /* CONFIG_PTP_CLOCK_SAM_GMAC */