zephyr/arch/arm/core/aarch32/thread.c
Andrew Boie b0c155f3ca kernel: overhaul stack specification
The core kernel computes the initial stack pointer
for a thread, properly aligning it and subtracting out
any random offsets or thread-local storage areas.
arch_new_thread() no longer needs to make any calculations,
an initial stack frame may be placed at the bounds of
the new 'stack_ptr' parameter passed in. This parameter
replaces 'stack_size'.

thread->stack_info is now set before arch_new_thread()
is invoked, z_new_thread_init() has been removed.
The values populated may need to be adjusted on arches
which carve-out MPU guard space from the actual stack
buffer.

thread->stack_info now has a new member 'delta' which
indicates any offset applied for TLS or random offset.
It's used so the calculations don't need to be repeated
if the thread later drops to user mode.

CONFIG_INIT_STACKS logic is now performed inside
z_setup_new_thread(), before arch_new_thread() is called.

thread->stack_info is now defined as the canonical
user-accessible area within the stack object, including
random offsets and TLS. It will never include any
carved-out memory for MPU guards and must be updated at
runtime if guards are removed.

Available stack space is now optimized. Some arches may
need to significantly round up the buffer size to account
for page-level granularity or MPU power-of-two requirements.
This space is now accounted for and used by virtue of
the Z_THREAD_STACK_SIZE_ADJUST() call in z_setup_new_thread.

Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
2020-07-30 21:11:14 -04:00

433 lines
14 KiB
C

/*
* Copyright (c) 2013-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief New thread creation for ARM Cortex-M and Cortex-R
*
* Core thread related primitives for the ARM Cortex-M and Cortex-R
* processor architecture.
*/
#include <kernel.h>
#include <ksched.h>
#include <wait_q.h>
#if (MPU_GUARD_ALIGN_AND_SIZE_FLOAT > MPU_GUARD_ALIGN_AND_SIZE)
#define FP_GUARD_EXTRA_SIZE (MPU_GUARD_ALIGN_AND_SIZE_FLOAT - \
MPU_GUARD_ALIGN_AND_SIZE)
#else
#define FP_GUARD_EXTRA_SIZE 0
#endif
/* An initial context, to be "restored" by z_arm_pendsv(), is put at the other
* end of the stack, and thus reusable by the stack when not needed anymore.
*
* The initial context is an exception stack frame (ESF) since exiting the
* PendSV exception will want to pop an ESF. Interestingly, even if the lsb of
* an instruction address to jump to must always be set since the CPU always
* runs in thumb mode, the ESF expects the real address of the instruction,
* with the lsb *not* set (instructions are always aligned on 16 bit
* halfwords). Since the compiler automatically sets the lsb of function
* addresses, we have to unset it manually before storing it in the 'pc' field
* of the ESF.
*/
void arch_new_thread(struct k_thread *thread, k_thread_stack_t *stack,
char *stack_ptr, k_thread_entry_t entry,
void *p1, void *p2, void *p3)
{
struct __basic_sf *iframe;
#ifdef CONFIG_MPU_STACK_GUARD
#if CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT
/* Guard area is carved-out of the buffer, instead of reserved,
* in this configuration, due to buffer alignment constraints
*/
thread->stack_info.start += MPU_GUARD_ALIGN_AND_SIZE;
thread->stack_info.size -= MPU_GUARD_ALIGN_AND_SIZE;
#endif /* CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT */
#if FP_GUARD_EXTRA_SIZE > 0
if ((thread->base.user_options & K_FP_REGS) != 0) {
/* Larger guard needed due to lazy stacking of FP regs may
* overshoot the guard area without writing anything. We
* carve it out of the stack buffer as-needed instead of
* unconditionally reserving it.
*/
thread->stack_info.start += FP_GUARD_EXTRA_SIZE;
thread->stack_info.size -= FP_GUARD_EXTRA_SIZE;
}
#endif /* FP_GUARD_EXTRA_SIZE */
#endif /* CONFIG_MPU_STACK_GUARD */
iframe = Z_STACK_PTR_TO_FRAME(struct __basic_sf, stack_ptr);
#if defined(CONFIG_USERSPACE)
if ((thread->base.user_options & K_USER) != 0) {
iframe->pc = (uint32_t)arch_user_mode_enter;
} else {
iframe->pc = (uint32_t)z_thread_entry;
}
#else
iframe->pc = (uint32_t)z_thread_entry;
#endif
#if defined(CONFIG_CPU_CORTEX_M)
/* force ARM mode by clearing LSB of address */
iframe->pc &= 0xfffffffe;
#endif
iframe->a1 = (uint32_t)entry;
iframe->a2 = (uint32_t)p1;
iframe->a3 = (uint32_t)p2;
iframe->a4 = (uint32_t)p3;
#if defined(CONFIG_CPU_CORTEX_M)
iframe->xpsr =
0x01000000UL; /* clear all, thumb bit is 1, even if RO */
#else
iframe->xpsr = A_BIT | MODE_SYS;
#if defined(CONFIG_COMPILER_ISA_THUMB2)
iframe->xpsr |= T_BIT;
#endif /* CONFIG_COMPILER_ISA_THUMB2 */
#endif /* CONFIG_CPU_CORTEX_M */
thread->callee_saved.psp = (uint32_t)iframe;
thread->arch.basepri = 0;
#if defined(CONFIG_USERSPACE) || defined(CONFIG_FPU_SHARING)
thread->arch.mode = 0;
#if defined(CONFIG_USERSPACE)
thread->arch.priv_stack_start = 0;
#endif
#endif
/*
* initial values in all other registers/thread entries are
* irrelevant.
*/
}
#ifdef CONFIG_USERSPACE
FUNC_NORETURN void arch_user_mode_enter(k_thread_entry_t user_entry,
void *p1, void *p2, void *p3)
{
/* Set up privileged stack before entering user mode */
_current->arch.priv_stack_start =
(uint32_t)z_priv_stack_find(_current->stack_obj);
#if defined(CONFIG_MPU_STACK_GUARD)
#if defined(CONFIG_THREAD_STACK_INFO)
/* We're dropping to user mode which means the guard area is no
* longer used here, it instead is moved to the privilege stack
* to catch stack overflows there. Un-do the calculations done
* which accounted for memory borrowed from the thread stack.
*/
#if FP_GUARD_EXTRA_SIZE > 0
if ((_current->base.user_options & K_FP_REGS) != 0) {
_current->stack_info.start -= FP_GUARD_EXTRA_SIZE;
_current->stack_info.size += FP_GUARD_EXTRA_SIZE;
}
#endif /* FP_GUARD_EXTRA_SIZE */
#ifdef CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT
_current->stack_info.start -= MPU_GUARD_ALIGN_AND_SIZE;
_current->stack_info.size += MPU_GUARD_ALIGN_AND_SIZE;
#endif /* CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT */
#endif /* CONFIG_THREAD_STACK_INFO */
/* Stack guard area reserved at the bottom of the thread's
* privileged stack. Adjust the available (writable) stack
* buffer area accordingly.
*/
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
_current->arch.priv_stack_start +=
(_current->base.user_options & K_FP_REGS) ?
MPU_GUARD_ALIGN_AND_SIZE_FLOAT : MPU_GUARD_ALIGN_AND_SIZE;
#else
_current->arch.priv_stack_start += MPU_GUARD_ALIGN_AND_SIZE;
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
#endif /* CONFIG_MPU_STACK_GUARD */
z_arm_userspace_enter(user_entry, p1, p2, p3,
(uint32_t)_current->stack_info.start,
_current->stack_info.size -
_current->stack_info.delta);
CODE_UNREACHABLE;
}
#endif
#if defined(CONFIG_BUILTIN_STACK_GUARD)
/*
* @brief Configure ARM built-in stack guard
*
* This function configures per thread stack guards by reprogramming
* the built-in Process Stack Pointer Limit Register (PSPLIM).
* The functionality is meant to be used during context switch.
*
* @param thread thread info data structure.
*/
void configure_builtin_stack_guard(struct k_thread *thread)
{
#if defined(CONFIG_USERSPACE)
if ((thread->arch.mode & CONTROL_nPRIV_Msk) != 0) {
/* Only configure stack limit for threads in privileged mode
* (i.e supervisor threads or user threads doing system call).
* User threads executing in user mode do not require a stack
* limit protection.
*/
__set_PSPLIM(0);
return;
}
/* Only configure PSPLIM to guard the privileged stack area, if
* the thread is currently using it, otherwise guard the default
* thread stack. Note that the conditional check relies on the
* thread privileged stack being allocated in higher memory area
* than the default thread stack (ensured by design).
*/
uint32_t guard_start =
((thread->arch.priv_stack_start) &&
(__get_PSP() >= thread->arch.priv_stack_start)) ?
(uint32_t)thread->arch.priv_stack_start :
(uint32_t)thread->stack_obj;
__ASSERT(thread->stack_info.start == ((uint32_t)thread->stack_obj),
"stack_info.start does not point to the start of the"
"thread allocated area.");
#else
uint32_t guard_start = thread->stack_info.start;
#endif
#if defined(CONFIG_CPU_CORTEX_M_HAS_SPLIM)
__set_PSPLIM(guard_start);
#else
#error "Built-in PSP limit checks not supported by HW"
#endif
}
#endif /* CONFIG_BUILTIN_STACK_GUARD */
#if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE)
#define IS_MPU_GUARD_VIOLATION(guard_start, guard_len, fault_addr, stack_ptr) \
((fault_addr != -EINVAL) ? \
((fault_addr >= guard_start) && \
(fault_addr < (guard_start + guard_len)) && \
(stack_ptr < (guard_start + guard_len))) \
: \
(stack_ptr < (guard_start + guard_len)))
/**
* @brief Assess occurrence of current thread's stack corruption
*
* This function performs an assessment whether a memory fault (on a
* given memory address) is the result of stack memory corruption of
* the current thread.
*
* Thread stack corruption for supervisor threads or user threads in
* privilege mode (when User Space is supported) is reported upon an
* attempt to access the stack guard area (if MPU Stack Guard feature
* is supported). Additionally the current PSP (process stack pointer)
* must be pointing inside or below the guard area.
*
* Thread stack corruption for user threads in user mode is reported,
* if the current PSP is pointing below the start of the current
* thread's stack.
*
* Notes:
* - we assume a fully descending stack,
* - we assume a stacking error has occurred,
* - the function shall be called when handling MemManage and Bus fault,
* and only if a Stacking error has been reported.
*
* If stack corruption is detected, the function returns the lowest
* allowed address where the Stack Pointer can safely point to, to
* prevent from errors when un-stacking the corrupted stack frame
* upon exception return.
*
* @param fault_addr memory address on which memory access violation
* has been reported. It can be invalid (-EINVAL),
* if only Stacking error has been reported.
* @param psp current address the PSP points to
*
* @return The lowest allowed stack frame pointer, if error is a
* thread stack corruption, otherwise return 0.
*/
uint32_t z_check_thread_stack_fail(const uint32_t fault_addr, const uint32_t psp)
{
const struct k_thread *thread = _current;
if (!thread) {
return 0;
}
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
uint32_t guard_len = (thread->base.user_options & K_FP_REGS) ?
MPU_GUARD_ALIGN_AND_SIZE_FLOAT : MPU_GUARD_ALIGN_AND_SIZE;
#else
uint32_t guard_len = MPU_GUARD_ALIGN_AND_SIZE;
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
#if defined(CONFIG_USERSPACE)
if (thread->arch.priv_stack_start) {
/* User thread */
if ((__get_CONTROL() & CONTROL_nPRIV_Msk) == 0) {
/* User thread in privilege mode */
if (IS_MPU_GUARD_VIOLATION(
thread->arch.priv_stack_start - guard_len,
guard_len,
fault_addr, psp)) {
/* Thread's privilege stack corruption */
return thread->arch.priv_stack_start;
}
} else {
if (psp < (uint32_t)thread->stack_obj) {
/* Thread's user stack corruption */
return (uint32_t)thread->stack_obj;
}
}
} else {
/* Supervisor thread */
if (IS_MPU_GUARD_VIOLATION(thread->stack_info.start -
guard_len,
guard_len,
fault_addr, psp)) {
/* Supervisor thread stack corruption */
return thread->stack_info.start;
}
}
#else /* CONFIG_USERSPACE */
if (IS_MPU_GUARD_VIOLATION(thread->stack_info.start - guard_len,
guard_len,
fault_addr, psp)) {
/* Thread stack corruption */
return thread->stack_info.start;
}
#endif /* CONFIG_USERSPACE */
return 0;
}
#endif /* CONFIG_MPU_STACK_GUARD || CONFIG_USERSPACE */
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
int arch_float_disable(struct k_thread *thread)
{
if (thread != _current) {
return -EINVAL;
}
if (arch_is_in_isr()) {
return -EINVAL;
}
/* Disable all floating point capabilities for the thread */
/* K_FP_REG flag is used in SWAP and stack check fail. Locking
* interrupts here prevents a possible context-switch or MPU
* fault to take an outdated thread user_options flag into
* account.
*/
int key = arch_irq_lock();
thread->base.user_options &= ~K_FP_REGS;
__set_CONTROL(__get_CONTROL() & (~CONTROL_FPCA_Msk));
/* No need to add an ISB barrier after setting the CONTROL
* register; arch_irq_unlock() already adds one.
*/
arch_irq_unlock(key);
return 0;
}
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
void arch_switch_to_main_thread(struct k_thread *main_thread,
k_thread_stack_t *main_stack,
size_t main_stack_size,
k_thread_entry_t _main)
{
#if defined(CONFIG_FPU)
/* Initialize the Floating Point Status and Control Register when in
* Unshared FP Registers mode (In Shared FP Registers mode, FPSCR is
* initialized at thread creation for threads that make use of the FP).
*/
__set_FPSCR(0);
#if defined(CONFIG_FPU_SHARING)
/* In Sharing mode clearing FPSCR may set the CONTROL.FPCA flag. */
__set_CONTROL(__get_CONTROL() & (~(CONTROL_FPCA_Msk)));
__ISB();
#endif /* CONFIG_FPU_SHARING */
#endif /* CONFIG_FPU */
#ifdef CONFIG_ARM_MPU
/* Configure static memory map. This will program MPU regions,
* to set up access permissions for fixed memory sections, such
* as Application Memory or No-Cacheable SRAM area.
*
* This function is invoked once, upon system initialization.
*/
z_arm_configure_static_mpu_regions();
#endif
/* get high address of the stack, i.e. its start (stack grows down) */
char *start_of_main_stack;
start_of_main_stack =
Z_THREAD_STACK_BUFFER(main_stack) + main_stack_size;
start_of_main_stack = (char *)Z_STACK_PTR_ALIGN(start_of_main_stack);
_current = main_thread;
#ifdef CONFIG_TRACING
sys_trace_thread_switched_in();
#endif
/* the ready queue cache already contains the main thread */
#if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE)
/*
* If stack protection is enabled, make sure to set it
* before jumping to thread entry function
*/
z_arm_configure_dynamic_mpu_regions(main_thread);
#endif
#if defined(CONFIG_BUILTIN_STACK_GUARD)
/* Set PSPLIM register for built-in stack guarding of main thread. */
#if defined(CONFIG_CPU_CORTEX_M_HAS_SPLIM)
__set_PSPLIM((uint32_t)main_stack);
#else
#error "Built-in PSP limit checks not supported by HW"
#endif
#endif /* CONFIG_BUILTIN_STACK_GUARD */
/*
* Set PSP to the highest address of the main stack
* before enabling interrupts and jumping to main.
*/
__asm__ volatile (
"mov r0, %0\n\t" /* Store _main in R0 */
#if defined(CONFIG_CPU_CORTEX_M)
"msr PSP, %1\n\t" /* __set_PSP(start_of_main_stack) */
#endif
"movs r1, #0\n\t"
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE) \
|| defined(CONFIG_ARMV7_R)
"cpsie i\n\t" /* __enable_irq() */
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
"cpsie if\n\t" /* __enable_irq(); __enable_fault_irq() */
"msr BASEPRI, r1\n\t" /* __set_BASEPRI(0) */
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
"isb\n\t"
"movs r2, #0\n\t"
"movs r3, #0\n\t"
"bl z_thread_entry\n\t" /* z_thread_entry(_main, 0, 0, 0); */
:
: "r" (_main), "r" (start_of_main_stack)
: "r0" /* not to be overwritten by msr PSP, %1 */
);
CODE_UNREACHABLE;
}