zephyr/drivers/ethernet/eth_mcux.c
Jukka Rissanen 92481765a2 drivers: ethernet: Set the context iface ptr to main interface
If the Ethernet driver has VLAN enabled (only native_posix, mcux
or gmac has VLAN supported), then the iface pointer in ethernet
context should contain the main network interface. This is needed
so that the interface will get link address set to it properly.

Signed-off-by: Jukka Rissanen <jukka.rissanen@linux.intel.com>
2020-01-30 09:42:07 +02:00

1220 lines
31 KiB
C

/* MCUX Ethernet Driver
*
* Copyright (c) 2016-2017 ARM Ltd
* Copyright (c) 2016 Linaro Ltd
* Copyright (c) 2018 Intel Coporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/* Driver Limitations:
*
* There is no statistics collection for either normal operation or
* error behaviour.
*/
#define LOG_MODULE_NAME eth_mcux
#define LOG_LEVEL CONFIG_ETHERNET_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#include <device.h>
#include <sys/util.h>
#include <kernel.h>
#include <net/net_pkt.h>
#include <net/net_if.h>
#include <net/ethernet.h>
#include <ethernet/eth_stats.h>
#if defined(CONFIG_PTP_CLOCK_MCUX)
#include <ptp_clock.h>
#include <net/gptp.h>
#endif
#include "fsl_enet.h"
#include "fsl_phy.h"
#define FREESCALE_OUI_B0 0x00
#define FREESCALE_OUI_B1 0x04
#define FREESCALE_OUI_B2 0x9f
enum eth_mcux_phy_state {
eth_mcux_phy_state_initial,
eth_mcux_phy_state_reset,
eth_mcux_phy_state_autoneg,
eth_mcux_phy_state_restart,
eth_mcux_phy_state_read_status,
eth_mcux_phy_state_read_duplex,
eth_mcux_phy_state_wait,
eth_mcux_phy_state_closing
};
static const char *
phy_state_name(enum eth_mcux_phy_state state) __attribute__((unused));
static const char *phy_state_name(enum eth_mcux_phy_state state)
{
static const char * const name[] = {
"initial",
"reset",
"autoneg",
"restart",
"read-status",
"read-duplex",
"wait",
"closing"
};
return name[state];
}
struct eth_context {
/* If VLAN is enabled, there can be multiple VLAN interfaces related to
* this physical device. In that case, this pointer value is not really
* used for anything.
*/
struct net_if *iface;
enet_handle_t enet_handle;
#if defined(CONFIG_PTP_CLOCK_MCUX)
struct device *ptp_clock;
enet_ptp_config_t ptp_config;
float clk_ratio;
#endif
struct k_sem tx_buf_sem;
enum eth_mcux_phy_state phy_state;
bool enabled;
bool link_up;
phy_duplex_t phy_duplex;
phy_speed_t phy_speed;
u8_t mac_addr[6];
struct k_work phy_work;
struct k_delayed_work delayed_phy_work;
/* TODO: FIXME. This Ethernet frame sized buffer is used for
* interfacing with MCUX. How it works is that hardware uses
* DMA scatter buffers to receive a frame, and then public
* MCUX call gathers them into this buffer (there's no other
* public interface). All this happens only for this driver
* to scatter this buffer again into Zephyr fragment buffers.
* This is not efficient, but proper resolution of this issue
* depends on introduction of zero-copy networking support
* in Zephyr, and adding needed interface to MCUX (or
* bypassing it and writing a more complex driver working
* directly with hardware).
*
* Note that we do not copy FCS into this buffer thus the
* size is 1514 bytes.
*/
u8_t frame_buf[NET_ETH_MAX_FRAME_SIZE]; /* Max MTU + ethernet header */
};
static void eth_0_config_func(void);
#ifdef CONFIG_HAS_MCUX_CACHE
static __nocache enet_rx_bd_struct_t __aligned(ENET_BUFF_ALIGNMENT)
rx_buffer_desc[CONFIG_ETH_MCUX_RX_BUFFERS];
static __nocache enet_tx_bd_struct_t __aligned(ENET_BUFF_ALIGNMENT)
tx_buffer_desc[CONFIG_ETH_MCUX_TX_BUFFERS];
#else
static enet_rx_bd_struct_t __aligned(ENET_BUFF_ALIGNMENT)
rx_buffer_desc[CONFIG_ETH_MCUX_RX_BUFFERS];
static enet_tx_bd_struct_t __aligned(ENET_BUFF_ALIGNMENT)
tx_buffer_desc[CONFIG_ETH_MCUX_TX_BUFFERS];
#endif
#if defined(CONFIG_PTP_CLOCK_MCUX)
/* Packets to be timestamped. */
static struct net_pkt *ts_tx_pkt[CONFIG_ETH_MCUX_TX_BUFFERS];
static int ts_tx_rd, ts_tx_wr;
#endif
/* Use ENET_FRAME_MAX_VALNFRAMELEN for VLAN frame size
* Use ENET_FRAME_MAX_FRAMELEN for ethernet frame size
*/
#if defined(CONFIG_NET_VLAN)
#if !defined(ENET_FRAME_MAX_VALNFRAMELEN)
#define ENET_FRAME_MAX_VALNFRAMELEN (ENET_FRAME_MAX_FRAMELEN + 4)
#endif
#define ETH_MCUX_BUFFER_SIZE \
ROUND_UP(ENET_FRAME_MAX_VALNFRAMELEN, ENET_BUFF_ALIGNMENT)
#else
#define ETH_MCUX_BUFFER_SIZE \
ROUND_UP(ENET_FRAME_MAX_FRAMELEN, ENET_BUFF_ALIGNMENT)
#endif /* CONFIG_NET_VLAN */
static u8_t __aligned(ENET_BUFF_ALIGNMENT)
rx_buffer[CONFIG_ETH_MCUX_RX_BUFFERS][ETH_MCUX_BUFFER_SIZE];
static u8_t __aligned(ENET_BUFF_ALIGNMENT)
tx_buffer[CONFIG_ETH_MCUX_TX_BUFFERS][ETH_MCUX_BUFFER_SIZE];
static void eth_mcux_decode_duplex_and_speed(u32_t status,
phy_duplex_t *p_phy_duplex,
phy_speed_t *p_phy_speed)
{
switch (status & PHY_CTL1_SPEEDUPLX_MASK) {
case PHY_CTL1_10FULLDUPLEX_MASK:
*p_phy_duplex = kPHY_FullDuplex;
*p_phy_speed = kPHY_Speed10M;
break;
case PHY_CTL1_100FULLDUPLEX_MASK:
*p_phy_duplex = kPHY_FullDuplex;
*p_phy_speed = kPHY_Speed100M;
break;
case PHY_CTL1_100HALFDUPLEX_MASK:
*p_phy_duplex = kPHY_HalfDuplex;
*p_phy_speed = kPHY_Speed100M;
break;
case PHY_CTL1_10HALFDUPLEX_MASK:
*p_phy_duplex = kPHY_HalfDuplex;
*p_phy_speed = kPHY_Speed10M;
break;
}
}
static inline struct net_if *get_iface(struct eth_context *ctx, u16_t vlan_tag)
{
#if defined(CONFIG_NET_VLAN)
struct net_if *iface;
iface = net_eth_get_vlan_iface(ctx->iface, vlan_tag);
if (!iface) {
return ctx->iface;
}
return iface;
#else
ARG_UNUSED(vlan_tag);
return ctx->iface;
#endif
}
static void eth_mcux_phy_enter_reset(struct eth_context *context)
{
const u32_t phy_addr = 0U;
/* Reset the PHY. */
ENET_StartSMIWrite(ENET, phy_addr, PHY_BASICCONTROL_REG,
kENET_MiiWriteValidFrame,
PHY_BCTL_RESET_MASK);
context->phy_state = eth_mcux_phy_state_reset;
}
static void eth_mcux_phy_start(struct eth_context *context)
{
const u32_t phy_addr = 0U;
#ifdef CONFIG_ETH_MCUX_PHY_EXTRA_DEBUG
LOG_DBG("phy_state=%s", phy_state_name(context->phy_state));
#endif
context->enabled = true;
switch (context->phy_state) {
case eth_mcux_phy_state_initial:
ENET_ActiveRead(ENET);
/* Reset the PHY. */
ENET_StartSMIWrite(ENET, phy_addr, PHY_BASICCONTROL_REG,
kENET_MiiWriteValidFrame,
PHY_BCTL_RESET_MASK);
#ifdef CONFIG_SOC_SERIES_IMX_RT
context->phy_state = eth_mcux_phy_state_initial;
#else
context->phy_state = eth_mcux_phy_state_reset;
#endif
break;
case eth_mcux_phy_state_reset:
eth_mcux_phy_enter_reset(context);
break;
case eth_mcux_phy_state_autoneg:
case eth_mcux_phy_state_restart:
case eth_mcux_phy_state_read_status:
case eth_mcux_phy_state_read_duplex:
case eth_mcux_phy_state_wait:
case eth_mcux_phy_state_closing:
break;
}
}
void eth_mcux_phy_stop(struct eth_context *context)
{
#ifdef CONFIG_ETH_MCUX_PHY_EXTRA_DEBUG
LOG_DBG("phy_state=%s", phy_state_name(context->phy_state));
#endif
context->enabled = false;
switch (context->phy_state) {
case eth_mcux_phy_state_initial:
case eth_mcux_phy_state_reset:
case eth_mcux_phy_state_autoneg:
case eth_mcux_phy_state_restart:
case eth_mcux_phy_state_read_status:
case eth_mcux_phy_state_read_duplex:
/* Do nothing, let the current communication complete
* then deal with shutdown.
*/
context->phy_state = eth_mcux_phy_state_closing;
break;
case eth_mcux_phy_state_wait:
k_delayed_work_cancel(&context->delayed_phy_work);
/* @todo, actually power downt he PHY ? */
context->phy_state = eth_mcux_phy_state_initial;
break;
case eth_mcux_phy_state_closing:
/* We are already going down. */
break;
}
}
static void eth_mcux_phy_event(struct eth_context *context)
{
u32_t status;
bool link_up;
phy_duplex_t phy_duplex = kPHY_FullDuplex;
phy_speed_t phy_speed = kPHY_Speed100M;
const u32_t phy_addr = 0U;
#ifdef CONFIG_ETH_MCUX_PHY_EXTRA_DEBUG
LOG_DBG("phy_state=%s", phy_state_name(context->phy_state));
#endif
switch (context->phy_state) {
case eth_mcux_phy_state_initial:
#ifdef CONFIG_SOC_SERIES_IMX_RT
ENET_StartSMIRead(ENET, phy_addr, PHY_CONTROL2_REG,
kENET_MiiReadValidFrame);
ENET_StartSMIWrite(ENET, phy_addr, PHY_CONTROL2_REG,
kENET_MiiWriteValidFrame, PHY_CTL2_REFCLK_SELECT_MASK);
context->phy_state = eth_mcux_phy_state_reset;
#endif
break;
case eth_mcux_phy_state_closing:
if (context->enabled) {
eth_mcux_phy_enter_reset(context);
} else {
/* @todo, actually power down the PHY ? */
context->phy_state = eth_mcux_phy_state_initial;
}
break;
case eth_mcux_phy_state_reset:
/* Setup PHY autonegotiation. */
ENET_StartSMIWrite(ENET, phy_addr, PHY_AUTONEG_ADVERTISE_REG,
kENET_MiiWriteValidFrame,
(PHY_100BASETX_FULLDUPLEX_MASK |
PHY_100BASETX_HALFDUPLEX_MASK |
PHY_10BASETX_FULLDUPLEX_MASK |
PHY_10BASETX_HALFDUPLEX_MASK | 0x1U));
context->phy_state = eth_mcux_phy_state_autoneg;
break;
case eth_mcux_phy_state_autoneg:
/* Setup PHY autonegotiation. */
ENET_StartSMIWrite(ENET, phy_addr, PHY_BASICCONTROL_REG,
kENET_MiiWriteValidFrame,
(PHY_BCTL_AUTONEG_MASK |
PHY_BCTL_RESTART_AUTONEG_MASK));
context->phy_state = eth_mcux_phy_state_restart;
break;
case eth_mcux_phy_state_wait:
case eth_mcux_phy_state_restart:
/* Start reading the PHY basic status. */
ENET_StartSMIRead(ENET, phy_addr, PHY_BASICSTATUS_REG,
kENET_MiiReadValidFrame);
context->phy_state = eth_mcux_phy_state_read_status;
break;
case eth_mcux_phy_state_read_status:
/* PHY Basic status is available. */
status = ENET_ReadSMIData(ENET);
link_up = status & PHY_BSTATUS_LINKSTATUS_MASK;
if (link_up && !context->link_up) {
/* Start reading the PHY control register. */
ENET_StartSMIRead(ENET, phy_addr, PHY_CONTROL1_REG,
kENET_MiiReadValidFrame);
context->link_up = link_up;
context->phy_state = eth_mcux_phy_state_read_duplex;
/* Network interface might be NULL at this point */
if (context->iface) {
net_eth_carrier_on(context->iface);
k_sleep(USEC_PER_MSEC);
}
} else if (!link_up && context->link_up) {
LOG_INF("Link down");
context->link_up = link_up;
k_delayed_work_submit(&context->delayed_phy_work,
CONFIG_ETH_MCUX_PHY_TICK_MS);
context->phy_state = eth_mcux_phy_state_wait;
net_eth_carrier_off(context->iface);
} else {
k_delayed_work_submit(&context->delayed_phy_work,
CONFIG_ETH_MCUX_PHY_TICK_MS);
context->phy_state = eth_mcux_phy_state_wait;
}
break;
case eth_mcux_phy_state_read_duplex:
/* PHY control register is available. */
status = ENET_ReadSMIData(ENET);
eth_mcux_decode_duplex_and_speed(status,
&phy_duplex,
&phy_speed);
if (phy_speed != context->phy_speed ||
phy_duplex != context->phy_duplex) {
context->phy_speed = phy_speed;
context->phy_duplex = phy_duplex;
ENET_SetMII(ENET,
(enet_mii_speed_t) phy_speed,
(enet_mii_duplex_t) phy_duplex);
}
LOG_INF("Enabled %sM %s-duplex mode.",
(phy_speed ? "100" : "10"),
(phy_duplex ? "full" : "half"));
k_delayed_work_submit(&context->delayed_phy_work,
CONFIG_ETH_MCUX_PHY_TICK_MS);
context->phy_state = eth_mcux_phy_state_wait;
break;
}
}
static void eth_mcux_phy_work(struct k_work *item)
{
struct eth_context *context =
CONTAINER_OF(item, struct eth_context, phy_work);
eth_mcux_phy_event(context);
}
static void eth_mcux_delayed_phy_work(struct k_work *item)
{
struct eth_context *context =
CONTAINER_OF(item, struct eth_context, delayed_phy_work);
eth_mcux_phy_event(context);
}
static void eth_mcux_phy_setup(void)
{
#ifdef CONFIG_SOC_SERIES_IMX_RT
const u32_t phy_addr = 0U;
u32_t status;
/* Prevent PHY entering NAND Tree mode override*/
ENET_StartSMIRead(ENET, phy_addr, PHY_OMS_STATUS_REG,
kENET_MiiReadValidFrame);
status = ENET_ReadSMIData(ENET);
if (status & PHY_OMS_NANDTREE_MASK) {
status &= ~PHY_OMS_NANDTREE_MASK;
ENET_StartSMIWrite(ENET, phy_addr, PHY_OMS_OVERRIDE_REG,
kENET_MiiWriteValidFrame, status);
}
#endif
}
#if defined(CONFIG_PTP_CLOCK_MCUX)
static enet_ptp_time_data_t ptp_rx_buffer[CONFIG_ETH_MCUX_PTP_RX_BUFFERS];
static enet_ptp_time_data_t ptp_tx_buffer[CONFIG_ETH_MCUX_PTP_TX_BUFFERS];
static bool eth_get_ptp_data(struct net_if *iface, struct net_pkt *pkt,
enet_ptp_time_data_t *ptpTsData, bool is_tx)
{
int eth_hlen;
#if defined(CONFIG_NET_VLAN)
struct net_eth_vlan_hdr *hdr_vlan;
struct ethernet_context *eth_ctx;
bool vlan_enabled = false;
eth_ctx = net_if_l2_data(iface);
if (net_eth_is_vlan_enabled(eth_ctx, iface)) {
hdr_vlan = (struct net_eth_vlan_hdr *)NET_ETH_HDR(pkt);
vlan_enabled = true;
if (ntohs(hdr_vlan->type) != NET_ETH_PTYPE_PTP) {
return false;
}
eth_hlen = sizeof(struct net_eth_vlan_hdr);
} else
#endif
{
if (ntohs(NET_ETH_HDR(pkt)->type) != NET_ETH_PTYPE_PTP) {
return false;
}
eth_hlen = sizeof(struct net_eth_hdr);
}
net_pkt_set_priority(pkt, NET_PRIORITY_CA);
if (ptpTsData) {
/* Cannot use GPTP_HDR as net_pkt fields are not all filled */
struct gptp_hdr *hdr;
/* In TX, the first net_buf contains the Ethernet header
* and the actual gPTP header is in the second net_buf.
* In RX, the Ethernet header + other headers are in the
* first net_buf.
*/
if (is_tx) {
if (pkt->frags->frags == NULL) {
return false;
}
hdr = (struct gptp_hdr *)pkt->frags->frags->data;
} else {
hdr = (struct gptp_hdr *)(pkt->frags->data +
eth_hlen);
}
ptpTsData->version = hdr->ptp_version;
memcpy(ptpTsData->sourcePortId, &hdr->port_id,
kENET_PtpSrcPortIdLen);
ptpTsData->messageType = hdr->message_type;
ptpTsData->sequenceId = ntohs(hdr->sequence_id);
#ifdef CONFIG_ETH_MCUX_PHY_EXTRA_DEBUG
LOG_DBG("PTP packet: ver %d type %d len %d seq %d",
ptpTsData->version,
ptpTsData->messageType,
ntohs(hdr->message_length),
ptpTsData->sequenceId);
LOG_DBG(" clk %02x%02x%02x%02x%02x%02x%02x%02x port %d",
hdr->port_id.clk_id[0],
hdr->port_id.clk_id[1],
hdr->port_id.clk_id[2],
hdr->port_id.clk_id[3],
hdr->port_id.clk_id[4],
hdr->port_id.clk_id[5],
hdr->port_id.clk_id[6],
hdr->port_id.clk_id[7],
ntohs(hdr->port_id.port_number));
#endif
}
return true;
}
#endif /* CONFIG_PTP_CLOCK_MCUX */
static int eth_tx(struct device *dev, struct net_pkt *pkt)
{
struct eth_context *context = dev->driver_data;
u16_t total_len = net_pkt_get_len(pkt);
status_t status;
unsigned int imask;
#if defined(CONFIG_PTP_CLOCK_MCUX)
bool timestamped_frame;
#endif
/* As context->frame_buf is shared resource used by both eth_tx
* and eth_rx, we need to protect it with irq_lock.
*/
imask = irq_lock();
if (net_pkt_read(pkt, context->frame_buf, total_len)) {
irq_unlock(imask);
return -EIO;
}
/* FIXME: Dirty workaround.
* With current implementation of ENET_StoreTxFrameTime in the MCUX
* library, a frame may not be timestamped when a non-timestamped frame
* is sent.
*/
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
context->enet_handle.txBdDirtyTime[0] =
context->enet_handle.txBdCurrent[0];
#endif
status = ENET_SendFrame(ENET, &context->enet_handle, context->frame_buf,
total_len);
#if defined(CONFIG_PTP_CLOCK_MCUX)
timestamped_frame = eth_get_ptp_data(net_pkt_iface(pkt), pkt, NULL,
true);
if (timestamped_frame) {
if (!status) {
ts_tx_pkt[ts_tx_wr] = net_pkt_ref(pkt);
} else {
ts_tx_pkt[ts_tx_wr] = NULL;
}
ts_tx_wr++;
if (ts_tx_wr >= CONFIG_ETH_MCUX_TX_BUFFERS) {
ts_tx_wr = 0;
}
}
#endif
irq_unlock(imask);
if (status) {
LOG_ERR("ENET_SendFrame error: %d", (int)status);
return -1;
}
k_sem_take(&context->tx_buf_sem, K_FOREVER);
return 0;
}
static void eth_rx(struct device *iface)
{
struct eth_context *context = iface->driver_data;
u16_t vlan_tag = NET_VLAN_TAG_UNSPEC;
u32_t frame_length = 0U;
struct net_pkt *pkt;
status_t status;
unsigned int imask;
#if defined(CONFIG_PTP_CLOCK_MCUX)
enet_ptp_time_data_t ptpTimeData;
#endif
status = ENET_GetRxFrameSize(&context->enet_handle,
(uint32_t *)&frame_length);
if (status) {
enet_data_error_stats_t error_stats;
LOG_ERR("ENET_GetRxFrameSize return: %d", (int)status);
ENET_GetRxErrBeforeReadFrame(&context->enet_handle,
&error_stats);
goto flush;
}
if (sizeof(context->frame_buf) < frame_length) {
LOG_ERR("frame too large (%d)", frame_length);
goto flush;
}
/* Using root iface. It will be updated in net_recv_data() */
pkt = net_pkt_rx_alloc_with_buffer(context->iface, frame_length,
AF_UNSPEC, 0, K_NO_WAIT);
if (!pkt) {
goto flush;
}
/* As context->frame_buf is shared resource used by both eth_tx
* and eth_rx, we need to protect it with irq_lock.
*/
imask = irq_lock();
status = ENET_ReadFrame(ENET, &context->enet_handle,
context->frame_buf, frame_length);
if (status) {
irq_unlock(imask);
LOG_ERR("ENET_ReadFrame failed: %d", (int)status);
net_pkt_unref(pkt);
goto error;
}
if (net_pkt_write(pkt, context->frame_buf, frame_length)) {
irq_unlock(imask);
LOG_ERR("Unable to write frame into the pkt");
net_pkt_unref(pkt);
goto error;
}
#if defined(CONFIG_NET_VLAN)
{
struct net_eth_hdr *hdr = NET_ETH_HDR(pkt);
if (ntohs(hdr->type) == NET_ETH_PTYPE_VLAN) {
struct net_eth_vlan_hdr *hdr_vlan =
(struct net_eth_vlan_hdr *)NET_ETH_HDR(pkt);
net_pkt_set_vlan_tci(pkt, ntohs(hdr_vlan->vlan.tci));
vlan_tag = net_pkt_vlan_tag(pkt);
#if CONFIG_NET_TC_RX_COUNT > 1
{
enum net_priority prio;
prio = net_vlan2priority(
net_pkt_vlan_priority(pkt));
net_pkt_set_priority(pkt, prio);
}
#endif
}
}
#endif
#if defined(CONFIG_PTP_CLOCK_MCUX)
if (eth_get_ptp_data(get_iface(context, vlan_tag), pkt,
&ptpTimeData, false) &&
(ENET_GetRxFrameTime(&context->enet_handle,
&ptpTimeData) == kStatus_Success)) {
pkt->timestamp.nanosecond = ptpTimeData.timeStamp.nanosecond;
pkt->timestamp.second = ptpTimeData.timeStamp.second;
} else {
/* Invalid value. */
pkt->timestamp.nanosecond = UINT32_MAX;
pkt->timestamp.second = UINT64_MAX;
}
#endif /* CONFIG_PTP_CLOCK_MCUX */
irq_unlock(imask);
if (net_recv_data(get_iface(context, vlan_tag), pkt) < 0) {
net_pkt_unref(pkt);
goto error;
}
return;
flush:
/* Flush the current read buffer. This operation can
* only report failure if there is no frame to flush,
* which cannot happen in this context.
*/
status = ENET_ReadFrame(ENET, &context->enet_handle, NULL, 0);
assert(status == kStatus_Success);
error:
eth_stats_update_errors_rx(get_iface(context, vlan_tag));
}
#if defined(CONFIG_PTP_CLOCK_MCUX)
static inline void ts_register_tx_event(struct eth_context *context)
{
struct net_pkt *pkt;
enet_ptp_time_data_t timeData;
pkt = ts_tx_pkt[ts_tx_rd];
if (pkt && atomic_get(&pkt->atomic_ref) > 0) {
if (eth_get_ptp_data(net_pkt_iface(pkt), pkt, &timeData,
true)) {
int status;
status = ENET_GetTxFrameTime(&context->enet_handle,
&timeData);
if (status == kStatus_Success) {
pkt->timestamp.nanosecond =
timeData.timeStamp.nanosecond;
pkt->timestamp.second =
timeData.timeStamp.second;
net_if_add_tx_timestamp(pkt);
}
}
net_pkt_unref(pkt);
} else {
if (IS_ENABLED(CONFIG_ETH_MCUX_PHY_EXTRA_DEBUG) && pkt) {
LOG_ERR("pkt %p already freed", pkt);
}
}
ts_tx_pkt[ts_tx_rd++] = NULL;
if (ts_tx_rd >= CONFIG_ETH_MCUX_TX_BUFFERS) {
ts_tx_rd = 0;
}
}
#endif
static void eth_callback(ENET_Type *base, enet_handle_t *handle,
enet_event_t event, void *param)
{
struct device *iface = param;
struct eth_context *context = iface->driver_data;
switch (event) {
case kENET_RxEvent:
eth_rx(iface);
break;
case kENET_TxEvent:
#if defined(CONFIG_PTP_CLOCK_MCUX)
/* Register event */
ts_register_tx_event(context);
#endif /* CONFIG_PTP_CLOCK_MCUX */
/* Free the TX buffer. */
k_sem_give(&context->tx_buf_sem);
break;
case kENET_ErrEvent:
/* Error event: BABR/BABT/EBERR/LC/RL/UN/PLR. */
break;
case kENET_WakeUpEvent:
/* Wake up from sleep mode event. */
break;
case kENET_TimeStampEvent:
/* Time stamp event. */
/* Reset periodic timer to default value. */
ENET->ATPER = NSEC_PER_SEC;
break;
case kENET_TimeStampAvailEvent:
/* Time stamp available event. */
break;
}
}
#if defined(CONFIG_ETH_MCUX_0_RANDOM_MAC)
static void generate_mac(u8_t *mac_addr)
{
u32_t entropy;
entropy = sys_rand32_get();
mac_addr[0] |= 0x02; /* force LAA bit */
mac_addr[3] = entropy >> 8;
mac_addr[4] = entropy >> 16;
mac_addr[5] = entropy >> 0;
}
#elif defined(CONFIG_ETH_MCUX_0_UNIQUE_MAC)
static void generate_mac(u8_t *mac_addr)
{
/* Trivially "hash" up to 128 bits of MCU unique identifier */
#ifdef CONFIG_SOC_SERIES_IMX_RT
u32_t id = OCOTP->CFG1 ^ OCOTP->CFG2;
#endif
#ifdef CONFIG_SOC_SERIES_KINETIS_K6X
u32_t id = SIM->UIDH ^ SIM->UIDMH ^ SIM->UIDML ^ SIM->UIDL;
#endif
mac_addr[0] |= 0x02; /* force LAA bit */
mac_addr[3] = id >> 8;
mac_addr[4] = id >> 16;
mac_addr[5] = id >> 0;
}
#endif
static int eth_0_init(struct device *dev)
{
struct eth_context *context = dev->driver_data;
enet_config_t enet_config;
u32_t sys_clock;
enet_buffer_config_t buffer_config = {
.rxBdNumber = CONFIG_ETH_MCUX_RX_BUFFERS,
.txBdNumber = CONFIG_ETH_MCUX_TX_BUFFERS,
.rxBuffSizeAlign = ETH_MCUX_BUFFER_SIZE,
.txBuffSizeAlign = ETH_MCUX_BUFFER_SIZE,
.rxBdStartAddrAlign = rx_buffer_desc,
.txBdStartAddrAlign = tx_buffer_desc,
.rxBufferAlign = rx_buffer[0],
.txBufferAlign = tx_buffer[0],
};
#if defined(CONFIG_PTP_CLOCK_MCUX)
u8_t ptp_multicast[6] = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x0E };
#endif
#if defined(CONFIG_MDNS_RESPONDER) || defined(CONFIG_MDNS_RESOLVER)
/* standard multicast MAC address */
u8_t mdns_multicast[6] = { 0x01, 0x00, 0x5E, 0x00, 0x00, 0xFB };
#endif
#if defined(CONFIG_PTP_CLOCK_MCUX)
ts_tx_rd = 0;
ts_tx_wr = 0;
(void)memset(ts_tx_pkt, 0, sizeof(ts_tx_pkt));
#endif
k_sem_init(&context->tx_buf_sem,
0, CONFIG_ETH_MCUX_TX_BUFFERS);
k_work_init(&context->phy_work, eth_mcux_phy_work);
k_delayed_work_init(&context->delayed_phy_work,
eth_mcux_delayed_phy_work);
eth_mcux_phy_setup();
sys_clock = CLOCK_GetFreq(kCLOCK_CoreSysClk);
ENET_GetDefaultConfig(&enet_config);
enet_config.interrupt |= kENET_RxFrameInterrupt;
enet_config.interrupt |= kENET_TxFrameInterrupt;
enet_config.interrupt |= kENET_MiiInterrupt;
#ifdef CONFIG_ETH_MCUX_PROMISCUOUS_MODE
enet_config.macSpecialConfig |= kENET_ControlPromiscuousEnable;
#endif
/* Initialize/override OUI which may not be correct in
* devicetree.
*/
context->mac_addr[0] = FREESCALE_OUI_B0;
context->mac_addr[1] = FREESCALE_OUI_B1;
context->mac_addr[2] = FREESCALE_OUI_B2;
#if defined(CONFIG_ETH_MCUX_0_UNIQUE_MAC) || \
defined(CONFIG_ETH_MCUX_0_RANDOM_MAC)
generate_mac(context->mac_addr);
#endif
#if defined(CONFIG_NET_VLAN)
enet_config.macSpecialConfig |= kENET_ControlVLANTagEnable;
#endif
#if defined(CONFIG_ETH_MCUX_HW_ACCELERATION)
enet_config.txAccelerConfig |=
kENET_TxAccelIpCheckEnabled | kENET_TxAccelProtoCheckEnabled;
enet_config.rxAccelerConfig |=
kENET_RxAccelIpCheckEnabled | kENET_RxAccelProtoCheckEnabled;
#endif
ENET_Init(ENET,
&context->enet_handle,
&enet_config,
&buffer_config,
context->mac_addr,
sys_clock);
#if defined(CONFIG_PTP_CLOCK_MCUX)
ENET_AddMulticastGroup(ENET, ptp_multicast);
context->ptp_config.ptpTsRxBuffNum = CONFIG_ETH_MCUX_PTP_RX_BUFFERS;
context->ptp_config.ptpTsTxBuffNum = CONFIG_ETH_MCUX_PTP_TX_BUFFERS;
context->ptp_config.rxPtpTsData = ptp_rx_buffer;
context->ptp_config.txPtpTsData = ptp_tx_buffer;
context->ptp_config.channel = kENET_PtpTimerChannel1;
context->ptp_config.ptp1588ClockSrc_Hz =
CONFIG_ETH_MCUX_PTP_CLOCK_SRC_HZ;
context->clk_ratio = 1.0;
ENET_Ptp1588Configure(ENET, &context->enet_handle,
&context->ptp_config);
#endif
#if defined(CONFIG_MDNS_RESPONDER) || defined(CONFIG_MDNS_RESOLVER)
ENET_AddMulticastGroup(ENET, mdns_multicast);
#endif
ENET_SetSMI(ENET, sys_clock, false);
LOG_DBG("MAC %02x:%02x:%02x:%02x:%02x:%02x",
context->mac_addr[0], context->mac_addr[1],
context->mac_addr[2], context->mac_addr[3],
context->mac_addr[4], context->mac_addr[5]);
ENET_SetCallback(&context->enet_handle, eth_callback, dev);
eth_mcux_phy_start(context);
return 0;
}
#if defined(CONFIG_NET_IPV6)
static void net_if_mcast_cb(struct net_if *iface,
const struct in6_addr *addr,
bool is_joined)
{
struct net_eth_addr mac_addr;
net_eth_ipv6_mcast_to_mac_addr(addr, &mac_addr);
if (is_joined) {
ENET_AddMulticastGroup(ENET, mac_addr.addr);
} else {
ENET_LeaveMulticastGroup(ENET, mac_addr.addr);
}
}
#endif /* CONFIG_NET_IPV6 */
static void eth_iface_init(struct net_if *iface)
{
struct device *dev = net_if_get_device(iface);
struct eth_context *context = dev->driver_data;
#if defined(CONFIG_NET_IPV6)
static struct net_if_mcast_monitor mon;
net_if_mcast_mon_register(&mon, iface, net_if_mcast_cb);
#endif /* CONFIG_NET_IPV6 */
net_if_set_link_addr(iface, context->mac_addr,
sizeof(context->mac_addr),
NET_LINK_ETHERNET);
/* For VLAN, this value is only used to get the correct L2 driver.
* The iface pointer in context should contain the main interface
* if the VLANs are enabled.
*/
if (context->iface == NULL) {
context->iface = iface;
}
ethernet_init(iface);
net_if_flag_set(iface, NET_IF_NO_AUTO_START);
eth_0_config_func();
}
static enum ethernet_hw_caps eth_mcux_get_capabilities(struct device *dev)
{
ARG_UNUSED(dev);
return ETHERNET_HW_VLAN | ETHERNET_LINK_10BASE_T |
#if defined(CONFIG_PTP_CLOCK_MCUX)
ETHERNET_PTP |
#endif
#if defined(CONFIG_ETH_MCUX_HW_ACCELERATION)
ETHERNET_HW_TX_CHKSUM_OFFLOAD |
ETHERNET_HW_RX_CHKSUM_OFFLOAD |
#endif
ETHERNET_AUTO_NEGOTIATION_SET |
ETHERNET_LINK_100BASE_T;
}
#if defined(CONFIG_PTP_CLOCK_MCUX)
static struct device *eth_mcux_get_ptp_clock(struct device *dev)
{
struct eth_context *context = dev->driver_data;
return context->ptp_clock;
}
#endif
static const struct ethernet_api api_funcs = {
.iface_api.init = eth_iface_init,
#if defined(CONFIG_PTP_CLOCK_MCUX)
.get_ptp_clock = eth_mcux_get_ptp_clock,
#endif
.get_capabilities = eth_mcux_get_capabilities,
.send = eth_tx,
};
#if defined(CONFIG_PTP_CLOCK_MCUX)
static void eth_mcux_ptp_isr(void *p)
{
struct device *dev = p;
struct eth_context *context = dev->driver_data;
ENET_Ptp1588TimerIRQHandler(ENET, &context->enet_handle);
}
#endif
#if defined(DT_IRQ_ETH_COMMON)
static void eth_mcux_dispacher_isr(void *p)
{
struct device *dev = p;
struct eth_context *context = dev->driver_data;
u32_t EIR = ENET_GetInterruptStatus(ENET);
int irq_lock_key = irq_lock();
if (EIR & (kENET_RxBufferInterrupt | kENET_RxFrameInterrupt)) {
ENET_ReceiveIRQHandler(ENET, &context->enet_handle);
} else if (EIR & (kENET_TxBufferInterrupt | kENET_TxFrameInterrupt)) {
ENET_TransmitIRQHandler(ENET, &context->enet_handle);
} else if (EIR & ENET_EIR_MII_MASK) {
k_work_submit(&context->phy_work);
ENET_ClearInterruptStatus(ENET, kENET_MiiInterrupt);
} else if (EIR) {
ENET_ClearInterruptStatus(ENET, 0xFFFFFFFF);
}
irq_unlock(irq_lock_key);
}
#endif
#if defined(DT_IRQ_ETH_RX)
static void eth_mcux_rx_isr(void *p)
{
struct device *dev = p;
struct eth_context *context = dev->driver_data;
ENET_ReceiveIRQHandler(ENET, &context->enet_handle);
}
#endif
#if defined(DT_IRQ_ETH_TX)
static void eth_mcux_tx_isr(void *p)
{
struct device *dev = p;
struct eth_context *context = dev->driver_data;
ENET_TransmitIRQHandler(ENET, &context->enet_handle);
}
#endif
#if defined(DT_IRQ_ETH_ERR_MISC)
static void eth_mcux_error_isr(void *p)
{
struct device *dev = p;
struct eth_context *context = dev->driver_data;
u32_t pending = ENET_GetInterruptStatus(ENET);
if (pending & ENET_EIR_MII_MASK) {
k_work_submit(&context->phy_work);
ENET_ClearInterruptStatus(ENET, kENET_MiiInterrupt);
}
}
#endif
static struct eth_context eth_0_context = {
.phy_duplex = kPHY_FullDuplex,
.phy_speed = kPHY_Speed100M,
#if defined(CONFIG_ETH_MCUX_0_MANUAL_MAC)
.mac_addr = DT_ETH_MCUX_0_MAC,
#endif
};
ETH_NET_DEVICE_INIT(eth_mcux_0, DT_ETH_MCUX_0_NAME, eth_0_init,
&eth_0_context, NULL, CONFIG_ETH_INIT_PRIORITY,
&api_funcs, NET_ETH_MTU);
static void eth_0_config_func(void)
{
#if defined(DT_IRQ_ETH_RX)
IRQ_CONNECT(DT_IRQ_ETH_RX, DT_ETH_MCUX_0_IRQ_PRI,
eth_mcux_rx_isr, DEVICE_GET(eth_mcux_0), 0);
irq_enable(DT_IRQ_ETH_RX);
#endif
#if defined(DT_IRQ_ETH_TX)
IRQ_CONNECT(DT_IRQ_ETH_TX, DT_ETH_MCUX_0_IRQ_PRI,
eth_mcux_tx_isr, DEVICE_GET(eth_mcux_0), 0);
irq_enable(DT_IRQ_ETH_TX);
#endif
#if defined(DT_IRQ_ETH_ERR_MISC)
IRQ_CONNECT(DT_IRQ_ETH_ERR_MISC, DT_ETH_MCUX_0_IRQ_PRI,
eth_mcux_error_isr, DEVICE_GET(eth_mcux_0), 0);
irq_enable(DT_IRQ_ETH_ERR_MISC);
#endif
#if defined(DT_IRQ_ETH_COMMON)
IRQ_CONNECT(DT_IRQ_ETH_COMMON, DT_ETH_MCUX_0_IRQ_PRI,
eth_mcux_dispacher_isr, DEVICE_GET(eth_mcux_0), 0);
irq_enable(DT_IRQ_ETH_COMMON);
#endif
#if defined(CONFIG_PTP_CLOCK_MCUX)
IRQ_CONNECT(DT_IRQ_ETH_IEEE1588_TMR, DT_ETH_MCUX_0_IRQ_PRI,
eth_mcux_ptp_isr, DEVICE_GET(eth_mcux_0), 0);
irq_enable(DT_IRQ_ETH_IEEE1588_TMR);
#endif
}
#if defined(CONFIG_PTP_CLOCK_MCUX)
struct ptp_context {
struct eth_context *eth_context;
};
static struct ptp_context ptp_mcux_0_context;
static int ptp_clock_mcux_set(struct device *dev, struct net_ptp_time *tm)
{
struct ptp_context *ptp_context = dev->driver_data;
struct eth_context *context = ptp_context->eth_context;
enet_ptp_time_t enet_time;
enet_time.second = tm->second;
enet_time.nanosecond = tm->nanosecond;
ENET_Ptp1588SetTimer(ENET, &context->enet_handle, &enet_time);
return 0;
}
static int ptp_clock_mcux_get(struct device *dev, struct net_ptp_time *tm)
{
struct ptp_context *ptp_context = dev->driver_data;
struct eth_context *context = ptp_context->eth_context;
enet_ptp_time_t enet_time;
ENET_Ptp1588GetTimer(ENET, &context->enet_handle, &enet_time);
tm->second = enet_time.second;
tm->nanosecond = enet_time.nanosecond;
return 0;
}
static int ptp_clock_mcux_adjust(struct device *dev, int increment)
{
int key, ret;
ARG_UNUSED(dev);
if ((increment <= -NSEC_PER_SEC) || (increment >= NSEC_PER_SEC)) {
ret = -EINVAL;
} else {
key = irq_lock();
if (ENET->ATPER != NSEC_PER_SEC) {
ret = -EBUSY;
} else {
/* Seconds counter is handled by software. Change the
* period of one software second to adjust the clock.
*/
ENET->ATPER = NSEC_PER_SEC - increment;
ret = 0;
}
irq_unlock(key);
}
return ret;
}
static int ptp_clock_mcux_rate_adjust(struct device *dev, float ratio)
{
const int hw_inc = NSEC_PER_SEC / CONFIG_ETH_MCUX_PTP_CLOCK_SRC_HZ;
struct ptp_context *ptp_context = dev->driver_data;
struct eth_context *context = ptp_context->eth_context;
int corr;
s32_t mul;
float val;
/* No change needed. */
if (ratio == 1.0) {
return 0;
}
ratio *= context->clk_ratio;
/* Limit possible ratio. */
if ((ratio > 1.0 + 1.0/(2 * hw_inc)) ||
(ratio < 1.0 - 1.0/(2 * hw_inc))) {
return -EINVAL;
}
/* Save new ratio. */
context->clk_ratio = ratio;
if (ratio < 1.0) {
corr = hw_inc - 1;
val = 1.0 / (hw_inc * (1.0 - ratio));
} else if (ratio > 1.0) {
corr = hw_inc + 1;
val = 1.0 / (hw_inc * (ratio-1.0));
} else {
val = 0;
corr = hw_inc;
}
if (val >= INT32_MAX) {
/* Value is too high.
* It is not possible to adjust the rate of the clock.
*/
mul = 0;
} else {
mul = val;
}
ENET_Ptp1588AdjustTimer(ENET, corr, mul);
return 0;
}
static const struct ptp_clock_driver_api api = {
.set = ptp_clock_mcux_set,
.get = ptp_clock_mcux_get,
.adjust = ptp_clock_mcux_adjust,
.rate_adjust = ptp_clock_mcux_rate_adjust,
};
static int ptp_mcux_init(struct device *port)
{
struct device *eth_dev = DEVICE_GET(eth_mcux_0);
struct eth_context *context = eth_dev->driver_data;
struct ptp_context *ptp_context = port->driver_data;
context->ptp_clock = port;
ptp_context->eth_context = context;
return 0;
}
DEVICE_AND_API_INIT(mcux_ptp_clock_0, PTP_CLOCK_NAME, ptp_mcux_init,
&ptp_mcux_0_context, NULL, POST_KERNEL,
CONFIG_APPLICATION_INIT_PRIORITY, &api);
#endif /* CONFIG_PTP_CLOCK_MCUX */