zephyr/arch/riscv32/core/isr.S
Andy Ross 3a0cb2d35d kernel: Remove legacy preemption checking
The metairq feature exposed the fact that all of our arch code (and a
few mistaken spots in the scheduler too) was trying to interpret
"preemptible" threads independently.

As of the scheduler rewrite, that logic is entirely within sched.c and
doing it externally is redundant.  And now that "cooperative" threads
can be preempted, it's wrong and produces test failures when used with
metairq threads.

Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2018-05-25 09:40:55 -07:00

406 lines
11 KiB
ArmAsm

/*
* Copyright (c) 2016 Jean-Paul Etienne <fractalclone@gmail.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <toolchain.h>
#include <linker/sections.h>
#include <kernel_structs.h>
#include <offsets_short.h>
/* imports */
GDATA(_sw_isr_table)
GTEXT(__soc_save_context)
GTEXT(__soc_restore_context)
GTEXT(__soc_is_irq)
GTEXT(__soc_handle_irq)
GTEXT(_Fault)
GTEXT(_k_neg_eagain)
GTEXT(_is_next_thread_current)
GTEXT(_get_next_ready_thread)
#ifdef CONFIG_KERNEL_EVENT_LOGGER_CONTEXT_SWITCH
GTEXT(_sys_k_event_logger_context_switch)
#endif
#ifdef CONFIG_KERNEL_EVENT_LOGGER_SLEEP
GTEXT(_sys_k_event_logger_exit_sleep)
#endif
#ifdef CONFIG_KERNEL_EVENT_LOGGER_INTERRUPT
GTEXT(_sys_k_event_logger_interrupt)
#endif
#ifdef CONFIG_IRQ_OFFLOAD
GTEXT(_offload_routine)
#endif
#ifdef CONFIG_TIMESLICING
GTEXT(_update_time_slice_before_swap)
#endif
/* exports */
GTEXT(__irq_wrapper)
/* use ABI name of registers for the sake of simplicity */
/*
* ISR is handled at both ARCH and SOC levels.
* At the ARCH level, ISR handles basic context saving/restore of registers
* onto/from the thread stack and calls corresponding IRQ function registered
* at driver level.
* At SOC level, ISR handles saving/restoring of SOC-specific registers
* onto/from the thread stack (handled via __soc_save_context and
* __soc_restore_context functions). SOC level save/restore context
* is accounted for only if CONFIG_RISCV_SOC_CONTEXT_SAVE variable is set
*
* Moreover, given that RISC-V architecture does not provide a clear ISA
* specification about interrupt handling, each RISC-V SOC handles it in
* its own way. Hence, the generic RISC-V ISR handler expects the following
* functions to be provided at the SOC level:
* __soc_is_irq: to check if the exception is the result of an interrupt or not.
* __soc_handle_irq: handle pending IRQ at SOC level (ex: clear pending IRQ in
* SOC-specific IRQ register)
*/
/*
* Handler called upon each exception/interrupt/fault
* In this architecture, system call (ECALL) is used to perform context
* switching or IRQ offloading (when enabled).
*/
SECTION_FUNC(exception.entry, __irq_wrapper)
/* Allocate space on thread stack to save registers */
addi sp, sp, -__NANO_ESF_SIZEOF
/*
* Save caller-saved registers on current thread stack.
* NOTE: need to be updated to account for floating-point registers
* floating-point registers should be accounted for when corresponding
* config variable is set
*/
sw ra, __NANO_ESF_ra_OFFSET(sp)
sw gp, __NANO_ESF_gp_OFFSET(sp)
sw tp, __NANO_ESF_tp_OFFSET(sp)
sw t0, __NANO_ESF_t0_OFFSET(sp)
sw t1, __NANO_ESF_t1_OFFSET(sp)
sw t2, __NANO_ESF_t2_OFFSET(sp)
sw t3, __NANO_ESF_t3_OFFSET(sp)
sw t4, __NANO_ESF_t4_OFFSET(sp)
sw t5, __NANO_ESF_t5_OFFSET(sp)
sw t6, __NANO_ESF_t6_OFFSET(sp)
sw a0, __NANO_ESF_a0_OFFSET(sp)
sw a1, __NANO_ESF_a1_OFFSET(sp)
sw a2, __NANO_ESF_a2_OFFSET(sp)
sw a3, __NANO_ESF_a3_OFFSET(sp)
sw a4, __NANO_ESF_a4_OFFSET(sp)
sw a5, __NANO_ESF_a5_OFFSET(sp)
sw a6, __NANO_ESF_a6_OFFSET(sp)
sw a7, __NANO_ESF_a7_OFFSET(sp)
/* Save MEPC register */
csrr t0, mepc
sw t0, __NANO_ESF_mepc_OFFSET(sp)
/* Save SOC-specific MSTATUS register */
csrr t0, SOC_MSTATUS_REG
sw t0, __NANO_ESF_mstatus_OFFSET(sp)
#ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE
/* Handle context saving at SOC level. */
jal ra, __soc_save_context
#endif /* CONFIG_RISCV_SOC_CONTEXT_SAVE */
/*
* Check if exception is the result of an interrupt or not.
* (SOC dependent). Following the RISC-V architecture spec, the MSB
* of the mcause register is used to indicate whether an exception
* is the result of an interrupt or an exception/fault. But for some
* SOCs (like pulpino or riscv-qemu), the MSB is never set to indicate
* interrupt. Hence, check for interrupt/exception via the __soc_is_irq
* function (that needs to be implemented by each SOC). The result is
* returned via register a0 (1: interrupt, 0 exception)
*/
jal ra, __soc_is_irq
/* If a0 != 0, jump to is_interrupt */
addi t1, x0, 0
bnez a0, is_interrupt
/*
* If exception is not an interrupt, MEPC will contain
* the instruction address, which has caused the exception.
* Increment saved MEPC by 4 to prevent running into the
* exception again, upon exiting the ISR.
*/
lw t0, __NANO_ESF_mepc_OFFSET(sp)
addi t0, t0, 4
sw t0, __NANO_ESF_mepc_OFFSET(sp)
/*
* If the exception is the result of an ECALL, check whether to
* perform a context-switch or an IRQ offload. Otherwise call _Fault
* to report the exception.
*/
csrr t0, mcause
li t2, SOC_MCAUSE_EXP_MASK
and t0, t0, t2
li t1, SOC_MCAUSE_ECALL_EXP
/*
* If mcause == SOC_MCAUSE_ECALL_EXP, handle system call,
* otherwise handle fault
*/
#ifdef CONFIG_IRQ_OFFLOAD
/* If not system call, jump to is_fault */
bne t0, t1, is_fault
/*
* Determine if the system call is the result of an IRQ offloading.
* Done by checking if _offload_routine is not pointing to NULL.
* If NULL, jump to reschedule to perform a context-switch, otherwise,
* jump to is_interrupt to handle the IRQ offload.
*/
la t0, _offload_routine
lw t1, 0x00(t0)
beqz t1, reschedule
bnez t1, is_interrupt
is_fault:
#else
/*
* Go to reschedule to handle context-switch if system call,
* otherwise call _Fault to handle exception
*/
beq t0, t1, reschedule
#endif
/*
* Call _Fault to handle exception.
* Stack pointer is pointing to a NANO_ESF structure, pass it
* to _Fault (via register a0).
* If _Fault shall return, set return address to no_reschedule
* to restore stack.
*/
addi a0, sp, 0
la ra, no_reschedule
tail _Fault
is_interrupt:
/*
* Save current thread stack pointer and switch
* stack pointer to interrupt stack.
*/
/* Save thread stack pointer to temp register t0 */
addi t0, sp, 0
/* Switch to interrupt stack */
la t2, _kernel
lw sp, _kernel_offset_to_irq_stack(t2)
/*
* Save thread stack pointer on interrupt stack
* In RISC-V, stack pointer needs to be 16-byte aligned
*/
addi sp, sp, -16
sw t0, 0x00(sp)
on_irq_stack:
/* Increment _kernel.nested variable */
lw t3, _kernel_offset_to_nested(t2)
addi t3, t3, 1
sw t3, _kernel_offset_to_nested(t2)
/*
* If we are here due to a system call, t1 register should != 0.
* In this case, perform IRQ offloading, otherwise jump to call_irq
*/
beqz t1, call_irq
/*
* Call _irq_do_offload to handle IRQ offloading.
* Set return address to on_thread_stack in order to jump there
* upon returning from _irq_do_offload
*/
la ra, on_thread_stack
tail _irq_do_offload
call_irq:
#ifdef CONFIG_KERNEL_EVENT_LOGGER_SLEEP
call _sys_k_event_logger_exit_sleep
#endif
#ifdef CONFIG_KERNEL_EVENT_LOGGER_INTERRUPT
call _sys_k_event_logger_interrupt
#endif
/* Get IRQ causing interrupt */
csrr a0, mcause
li t0, SOC_MCAUSE_EXP_MASK
and a0, a0, t0
/*
* Clear pending IRQ generating the interrupt at SOC level
* Pass IRQ number to __soc_handle_irq via register a0
*/
jal ra, __soc_handle_irq
/*
* Call corresponding registered function in _sw_isr_table.
* (table is 8-bytes wide, we should shift index by 3)
*/
la t0, _sw_isr_table
slli a0, a0, 3
add t0, t0, a0
/* Load argument in a0 register */
lw a0, 0x00(t0)
/* Load ISR function address in register t1 */
lw t1, 0x04(t0)
/* Call ISR function */
jalr ra, t1
on_thread_stack:
/* Get reference to _kernel */
la t1, _kernel
/* Decrement _kernel.nested variable */
lw t2, _kernel_offset_to_nested(t1)
addi t2, t2, -1
sw t2, _kernel_offset_to_nested(t1)
/* Restore thread stack pointer */
lw t0, 0x00(sp)
addi sp, t0, 0
#ifdef CONFIG_STACK_SENTINEL
call _check_stack_sentinel
la t1, _kernel
#endif
#ifdef CONFIG_PREEMPT_ENABLED
/*
* Check if we need to perform a reschedule
*/
/* Get pointer to _kernel.current */
lw t2, _kernel_offset_to_current(t1)
/*
* Check if next thread to schedule is current thread.
* If yes do not perform a reschedule
*/
lw t3, _kernel_offset_to_ready_q_cache(t1)
beq t3, t2, no_reschedule
#else
j no_reschedule
#endif /* CONFIG_PREEMPT_ENABLED */
reschedule:
#if CONFIG_TIMESLICING
call _update_time_slice_before_swap
#endif
#if CONFIG_KERNEL_EVENT_LOGGER_CONTEXT_SWITCH
call _sys_k_event_logger_context_switch
#endif /* CONFIG_KERNEL_EVENT_LOGGER_CONTEXT_SWITCH */
/* Get reference to _kernel */
la t0, _kernel
/* Get pointer to _kernel.current */
lw t1, _kernel_offset_to_current(t0)
/*
* Save callee-saved registers of current thread
* prior to handle context-switching
*/
sw s0, _thread_offset_to_s0(t1)
sw s1, _thread_offset_to_s1(t1)
sw s2, _thread_offset_to_s2(t1)
sw s3, _thread_offset_to_s3(t1)
sw s4, _thread_offset_to_s4(t1)
sw s5, _thread_offset_to_s5(t1)
sw s6, _thread_offset_to_s6(t1)
sw s7, _thread_offset_to_s7(t1)
sw s8, _thread_offset_to_s8(t1)
sw s9, _thread_offset_to_s9(t1)
sw s10, _thread_offset_to_s10(t1)
sw s11, _thread_offset_to_s11(t1)
/*
* Save stack pointer of current thread and set the default return value
* of _Swap to _k_neg_eagain for the thread.
*/
sw sp, _thread_offset_to_sp(t1)
la t2, _k_neg_eagain
lw t3, 0x00(t2)
sw t3, _thread_offset_to_swap_return_value(t1)
/* Get next thread to schedule. */
lw t1, _kernel_offset_to_ready_q_cache(t0)
/*
* Set _kernel.current to new thread loaded in t1
*/
sw t1, _kernel_offset_to_current(t0)
/* Switch to new thread stack */
lw sp, _thread_offset_to_sp(t1)
/* Restore callee-saved registers of new thread */
lw s0, _thread_offset_to_s0(t1)
lw s1, _thread_offset_to_s1(t1)
lw s2, _thread_offset_to_s2(t1)
lw s3, _thread_offset_to_s3(t1)
lw s4, _thread_offset_to_s4(t1)
lw s5, _thread_offset_to_s5(t1)
lw s6, _thread_offset_to_s6(t1)
lw s7, _thread_offset_to_s7(t1)
lw s8, _thread_offset_to_s8(t1)
lw s9, _thread_offset_to_s9(t1)
lw s10, _thread_offset_to_s10(t1)
lw s11, _thread_offset_to_s11(t1)
no_reschedule:
#ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE
/* Restore context at SOC level */
jal ra, __soc_restore_context
#endif /* CONFIG_RISCV_SOC_CONTEXT_SAVE */
/* Restore MEPC register */
lw t0, __NANO_ESF_mepc_OFFSET(sp)
csrw mepc, t0
/* Restore SOC-specific MSTATUS register */
lw t0, __NANO_ESF_mstatus_OFFSET(sp)
csrw SOC_MSTATUS_REG, t0
/* Restore caller-saved registers from thread stack */
lw ra, __NANO_ESF_ra_OFFSET(sp)
lw gp, __NANO_ESF_gp_OFFSET(sp)
lw tp, __NANO_ESF_tp_OFFSET(sp)
lw t0, __NANO_ESF_t0_OFFSET(sp)
lw t1, __NANO_ESF_t1_OFFSET(sp)
lw t2, __NANO_ESF_t2_OFFSET(sp)
lw t3, __NANO_ESF_t3_OFFSET(sp)
lw t4, __NANO_ESF_t4_OFFSET(sp)
lw t5, __NANO_ESF_t5_OFFSET(sp)
lw t6, __NANO_ESF_t6_OFFSET(sp)
lw a0, __NANO_ESF_a0_OFFSET(sp)
lw a1, __NANO_ESF_a1_OFFSET(sp)
lw a2, __NANO_ESF_a2_OFFSET(sp)
lw a3, __NANO_ESF_a3_OFFSET(sp)
lw a4, __NANO_ESF_a4_OFFSET(sp)
lw a5, __NANO_ESF_a5_OFFSET(sp)
lw a6, __NANO_ESF_a6_OFFSET(sp)
lw a7, __NANO_ESF_a7_OFFSET(sp)
/* Release stack space */
addi sp, sp, __NANO_ESF_SIZEOF
/* Call SOC_ERET to exit ISR */
SOC_ERET