zephyr/drivers/i2c/i2c_bcm_iproc.c
Yuval Peress 8974c248cf rtio: Add default i2c submit handler
Use the RTIO work queue to fake the i2c submit calls for drivers which
haven't yet implemented the API. Applications can change the size of
the work queue pool depending on how much traffic they have on the buses.

Signed-off-by: Yuval Peress <peress@google.com>
2024-09-04 21:28:26 +02:00

953 lines
26 KiB
C

/*
* Copyright 2020 Broadcom
* Copyright 2024 Meta Platforms
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT brcm_iproc_i2c
#include <errno.h>
#include <stdint.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/sys/util.h>
#include <zephyr/logging/log.h>
#define LOG_LEVEL CONFIG_I2C_LOG_LEVEL
LOG_MODULE_REGISTER(iproc_i2c);
#include "i2c-priv.h"
/* Registers */
#define CFG_OFFSET 0x00
#define CFG_RESET_SHIFT 31
#define CFG_EN_SHIFT 30
#define CFG_M_RETRY_CNT_SHIFT 16
#define CFG_M_RETRY_CNT_MASK 0x0f
#define TIM_CFG_OFFSET 0x04
#define TIM_CFG_MODE_400_SHIFT 31
#define TIM_RAND_TARGET_STRETCH_SHIFT 24
#define TIM_RAND_TARGET_STRETCH_MASK 0x7f
#define S_ADDR_OFFSET 0x08
#define S_ADDR_OFFSET_ADDR0_MASK 0x7f
#define S_ADDR_OFFSET_ADDR0_SHIFT 0
#define S_ADDR_OFFSET_ADDR0_EN_BIT 7
#define M_FIFO_CTRL_OFFSET 0x0c
#define M_FIFO_RX_FLUSH_SHIFT 31
#define M_FIFO_TX_FLUSH_SHIFT 30
#define M_FIFO_RX_CNT_SHIFT 16
#define M_FIFO_RX_CNT_MASK 0x7f
#define M_FIFO_RX_THLD_SHIFT 8
#define M_FIFO_RX_THLD_MASK 0x3f
#define S_FIFO_CTRL_OFFSET 0x10
#define S_FIFO_RX_FLUSH_SHIFT 31
#define S_FIFO_TX_FLUSH_SHIFT 30
#define M_CMD_OFFSET 0x30
#define M_CMD_START_BUSY_SHIFT 31
#define M_CMD_STATUS_SHIFT 25
#define M_CMD_STATUS_MASK 0x07
#define M_CMD_STATUS_SUCCESS 0x0
#define M_CMD_STATUS_LOST_ARB 0x1
#define M_CMD_STATUS_NACK_ADDR 0x2
#define M_CMD_STATUS_NACK_DATA 0x3
#define M_CMD_STATUS_TIMEOUT 0x4
#define M_CMD_STATUS_FIFO_UNDERRUN 0x5
#define M_CMD_STATUS_RX_FIFO_FULL 0x6
#define M_CMD_SMB_PROT_SHIFT 9
#define M_CMD_SMB_PROT_QUICK 0x0
#define M_CMD_SMB_PROT_MASK 0xf
#define M_CMD_SMB_PROT_BLK_WR 0x7
#define M_CMD_SMB_PROT_BLK_RD 0x8
#define M_CMD_PEC_SHIFT 8
#define M_CMD_RD_CNT_MASK 0xff
#define S_CMD_OFFSET 0x34
#define S_CMD_START_BUSY_SHIFT 31
#define S_CMD_STATUS_SHIFT 23
#define S_CMD_STATUS_MASK 0x07
#define S_CMD_STATUS_TIMEOUT 0x5
#define S_CMD_STATUS_MASTER_ABORT 0x7
#define IE_OFFSET 0x38
#define IE_M_RX_FIFO_FULL_SHIFT 31
#define IE_M_RX_THLD_SHIFT 30
#define IE_M_START_BUSY_SHIFT 28
#define IE_M_TX_UNDERRUN_SHIFT 27
#define IE_S_RX_FIFO_FULL_SHIFT 26
#define IE_S_RX_THLD_SHIFT 25
#define IE_S_RX_EVENT_SHIFT 24
#define IE_S_START_BUSY_SHIFT 23
#define IE_S_TX_UNDERRUN_SHIFT 22
#define IE_S_RD_EN_SHIFT 21
#define IS_OFFSET 0x3c
#define IS_M_RX_FIFO_FULL_SHIFT 31
#define IS_M_RX_THLD_SHIFT 30
#define IS_M_START_BUSY_SHIFT 28
#define IS_M_TX_UNDERRUN_SHIFT 27
#define IS_S_RX_FIFO_FULL_SHIFT 26
#define IS_S_RX_THLD_SHIFT 25
#define IS_S_RX_EVENT_SHIFT 24
#define IS_S_START_BUSY_SHIFT 23
#define IS_S_TX_UNDERRUN_SHIFT 22
#define IS_S_RD_EN_SHIFT 21
#define M_TX_OFFSET 0x40
#define M_TX_WR_STATUS_SHIFT 31
#define M_TX_DATA_MASK 0xff
#define M_RX_OFFSET 0x44
#define M_RX_STATUS_SHIFT 30
#define M_RX_STATUS_MASK 0x03
#define M_RX_PEC_ERR_SHIFT 29
#define M_RX_DATA_SHIFT 0
#define M_RX_DATA_MASK 0xff
#define S_TX_OFFSET 0x48
#define S_TX_WR_STATUS_SHIFT 31
#define S_RX_OFFSET 0x4c
#define S_RX_STATUS_SHIFT 30
#define S_RX_STATUS_MASK 0x03
#define S_RX_DATA_SHIFT 0x0
#define S_RX_DATA_MASK 0xff
#define I2C_TIMEOUT_MSEC 100
#define TX_RX_FIFO_SIZE 64
#define M_RX_FIFO_MAX_THLD_VALUE (TX_RX_FIFO_SIZE - 1)
#define M_RX_FIFO_THLD_VALUE 50
#define I2C_MAX_TARGET_ADDR 0x7f
#define I2C_TARGET_RX_FIFO_EMPTY 0x0
#define I2C_TARGET_RX_START 0x1
#define I2C_TARGET_RX_DATA 0x2
#define I2C_TARGET_RX_END 0x3
#define IE_S_ALL_INTERRUPT_SHIFT 21
#define IE_S_ALL_INTERRUPT_MASK 0x3f
#define TARGET_CLOCK_STRETCH_TIME 25
/*
* To keep running in ISR for less time,
* max target read per interrupt is set to 10 bytes.
*/
#define MAX_TARGET_RX_PER_INT 10
#define ISR_MASK_TARGET \
(BIT(IS_S_START_BUSY_SHIFT) | BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EN_SHIFT) | \
BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT) | BIT(IS_S_RX_THLD_SHIFT))
#define ISR_MASK \
(BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT) | BIT(IS_M_RX_THLD_SHIFT))
#define DEV_CFG(dev) ((struct iproc_i2c_config *)(dev)->config)
#define DEV_DATA(dev) ((struct iproc_i2c_data *)(dev)->data)
#define DEV_BASE(dev) ((DEV_CFG(dev))->base)
struct iproc_i2c_config {
mem_addr_t base;
uint32_t bitrate;
void (*irq_config_func)(const struct device *dev);
};
struct iproc_i2c_data {
struct i2c_target_config *target_cfg;
struct i2c_msg *msg;
uint32_t tx_bytes;
uint32_t rx_bytes;
uint32_t thld_bytes;
uint32_t tx_underrun;
struct k_sem device_sync_sem;
uint32_t target_int_mask;
bool rx_start_rcvd;
bool target_read_complete;
bool target_rx_only;
};
static void iproc_i2c_enable_disable(const struct device *dev, bool enable)
{
mem_addr_t base = DEV_BASE(dev);
uint32_t val;
val = sys_read32(base + CFG_OFFSET);
if (enable) {
val |= BIT(CFG_EN_SHIFT);
} else {
val &= ~BIT(CFG_EN_SHIFT);
}
sys_write32(val, base + CFG_OFFSET);
}
static void iproc_i2c_reset_controller(const struct device *dev)
{
mem_addr_t base = DEV_BASE(dev);
uint32_t val;
/* put controller in reset */
val = sys_read32(base + CFG_OFFSET);
val |= BIT(CFG_RESET_SHIFT);
val &= ~BIT(CFG_EN_SHIFT);
sys_write32(val, base + CFG_OFFSET);
k_busy_wait(100);
/* bring controller out of reset */
sys_clear_bit(base + CFG_OFFSET, CFG_RESET_SHIFT);
}
#ifdef CONFIG_I2C_TARGET
/* Set target addr */
static int iproc_i2c_target_set_address(const struct device *dev, uint16_t addr)
{
mem_addr_t base = DEV_BASE(dev);
uint32_t val;
if ((addr == 0) && (addr > I2C_MAX_TARGET_ADDR)) {
LOG_ERR("Invalid target address(0x%x) received", addr);
return -EINVAL;
}
addr = ((addr & S_ADDR_OFFSET_ADDR0_MASK) | BIT(S_ADDR_OFFSET_ADDR0_EN_BIT));
val = sys_read32(base + S_ADDR_OFFSET);
val &= ~(S_ADDR_OFFSET_ADDR0_MASK | BIT(S_ADDR_OFFSET_ADDR0_EN_BIT));
val |= addr;
sys_write32(val, base + S_ADDR_OFFSET);
return 0;
}
static int iproc_i2c_target_init(const struct device *dev, bool need_reset)
{
struct iproc_i2c_data *dd = DEV_DATA(dev);
mem_addr_t base = DEV_BASE(dev);
struct i2c_target_config *target_config = dd->target_cfg;
uint32_t val;
int ret;
if (need_reset) {
iproc_i2c_reset_controller(dev);
}
/* flush target TX/RX FIFOs */
val = BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT);
sys_write32(val, base + S_FIFO_CTRL_OFFSET);
/* Maximum target stretch time */
val = sys_read32(base + TIM_CFG_OFFSET);
val &= ~(TIM_RAND_TARGET_STRETCH_MASK << TIM_RAND_TARGET_STRETCH_SHIFT);
val |= (TARGET_CLOCK_STRETCH_TIME << TIM_RAND_TARGET_STRETCH_SHIFT);
sys_write32(val, base + TIM_CFG_OFFSET);
/* Set target address */
ret = iproc_i2c_target_set_address(dev, target_config->address);
if (ret) {
return ret;
}
/* clear all pending target interrupts */
sys_write32(ISR_MASK_TARGET, base + IS_OFFSET);
/* Enable interrupt register to indicate a valid byte in receive fifo */
val = BIT(IE_S_RX_EVENT_SHIFT);
/* Enable interrupt register to indicate target Rx FIFO Full */
val |= BIT(IE_S_RX_FIFO_FULL_SHIFT);
/* Enable interrupt register to indicate a Master read transaction */
val |= BIT(IE_S_RD_EN_SHIFT);
/* Enable interrupt register for the target BUSY command */
val |= BIT(IE_S_START_BUSY_SHIFT);
dd->target_int_mask = val;
sys_write32(val, base + IE_OFFSET);
return ret;
}
static int iproc_i2c_check_target_status(const struct device *dev)
{
mem_addr_t base = DEV_BASE(dev);
uint32_t val;
val = sys_read32(base + S_CMD_OFFSET);
/* status is valid only when START_BUSY is cleared after it was set */
if (val & BIT(S_CMD_START_BUSY_SHIFT)) {
return -EBUSY;
}
val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
if ((val == S_CMD_STATUS_TIMEOUT) || (val == S_CMD_STATUS_MASTER_ABORT)) {
if (val == S_CMD_STATUS_TIMEOUT) {
LOG_ERR("target random stretch time timeout");
} else if (val == S_CMD_STATUS_MASTER_ABORT) {
LOG_ERR("Master aborted read transaction");
}
/* re-initialize i2c for recovery */
iproc_i2c_enable_disable(dev, false);
iproc_i2c_target_init(dev, true);
iproc_i2c_enable_disable(dev, true);
return -ETIMEDOUT;
}
return 0;
}
static void iproc_i2c_target_read(const struct device *dev)
{
struct iproc_i2c_data *dd = DEV_DATA(dev);
struct i2c_target_config *target_cfg = dd->target_cfg;
mem_addr_t base = DEV_BASE(dev);
uint8_t rx_data, rx_status;
uint32_t rx_bytes = 0;
uint32_t val;
while (rx_bytes < MAX_TARGET_RX_PER_INT) {
val = sys_read32(base + S_RX_OFFSET);
rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
if (rx_status == I2C_TARGET_RX_START) {
/* Start of SMBUS Master write */
target_cfg->callbacks->write_requested(target_cfg);
dd->rx_start_rcvd = true;
dd->target_read_complete = false;
} else if ((rx_status == I2C_TARGET_RX_DATA) && dd->rx_start_rcvd) {
/* Middle of SMBUS Master write */
target_cfg->callbacks->write_received(target_cfg, rx_data);
} else if ((rx_status == I2C_TARGET_RX_END) && dd->rx_start_rcvd) {
/* End of SMBUS Master write */
if (dd->target_rx_only) {
target_cfg->callbacks->write_received(target_cfg, rx_data);
}
target_cfg->callbacks->stop(target_cfg);
} else if (rx_status == I2C_TARGET_RX_FIFO_EMPTY) {
dd->rx_start_rcvd = false;
dd->target_read_complete = true;
break;
}
rx_bytes++;
}
}
static void iproc_i2c_target_rx(const struct device *dev)
{
struct iproc_i2c_data *dd = DEV_DATA(dev);
mem_addr_t base = DEV_BASE(dev);
iproc_i2c_target_read(dev);
if (!dd->target_rx_only && dd->target_read_complete) {
/*
* In case of single byte master-read request,
* IS_S_TX_UNDERRUN_SHIFT event is generated before
* IS_S_START_BUSY_SHIFT event. Hence start target data send
* from first IS_S_TX_UNDERRUN_SHIFT event.
*
* This means don't send any data from target when
* IS_S_RD_EN_SHIFT event is generated else it will increment
* eeprom or other backend target driver read pointer twice.
*/
dd->tx_underrun = 0;
dd->target_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT);
/* clear IS_S_RD_EN_SHIFT interrupt */
sys_write32(BIT(IS_S_RD_EN_SHIFT), base + IS_OFFSET);
}
/* enable target interrupts */
sys_write32(dd->target_int_mask, base + IE_OFFSET);
}
static void iproc_i2c_target_isr(const struct device *dev, uint32_t status)
{
struct iproc_i2c_data *dd = DEV_DATA(dev);
struct i2c_target_config *target_cfg = dd->target_cfg;
mem_addr_t base = DEV_BASE(dev);
uint32_t val;
uint8_t data;
LOG_DBG("iproc_i2c(0x%x): %s: sl_sts 0x%x", (uint32_t)base, __func__, status);
if (status & BIT(IS_S_RX_EVENT_SHIFT) || status & BIT(IS_S_RD_EN_SHIFT) ||
status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
/* disable target interrupts */
val = sys_read32(base + IE_OFFSET);
val &= ~dd->target_int_mask;
sys_write32(val, base + IE_OFFSET);
if (status & BIT(IS_S_RD_EN_SHIFT)) {
/* Master-write-read request */
dd->target_rx_only = false;
} else {
/* Master-write request only */
dd->target_rx_only = true;
}
/*
* Clear IS_S_RX_EVENT_SHIFT &
* IS_S_RX_FIFO_FULL_SHIFT interrupt
*/
val = BIT(IS_S_RX_EVENT_SHIFT);
if (status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
val |= BIT(IS_S_RX_FIFO_FULL_SHIFT);
}
sys_write32(val, base + IS_OFFSET);
iproc_i2c_target_rx(dev);
}
if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
dd->tx_underrun++;
if (dd->tx_underrun == 1) {
/* Start of SMBUS for Master Read */
target_cfg->callbacks->read_requested(target_cfg, &data);
} else {
/* Master read other than start */
target_cfg->callbacks->read_processed(target_cfg, &data);
}
sys_write32(data, base + S_TX_OFFSET);
/* start transfer */
val = BIT(S_CMD_START_BUSY_SHIFT);
sys_write32(val, base + S_CMD_OFFSET);
sys_write32(BIT(IS_S_TX_UNDERRUN_SHIFT), base + IS_OFFSET);
}
/* Stop received from master in case of master read transaction */
if (status & BIT(IS_S_START_BUSY_SHIFT)) {
/*
* Disable interrupt for TX FIFO becomes empty and
* less than PKT_LENGTH bytes were output on the SMBUS
*/
dd->target_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
sys_write32(dd->target_int_mask, base + IE_OFFSET);
/* End of SMBUS for Master Read */
val = BIT(S_TX_WR_STATUS_SHIFT);
sys_write32(val, base + S_TX_OFFSET);
val = BIT(S_CMD_START_BUSY_SHIFT);
sys_write32(val, base + S_CMD_OFFSET);
/* flush TX FIFOs */
val = sys_read32(base + S_FIFO_CTRL_OFFSET);
val |= (BIT(S_FIFO_TX_FLUSH_SHIFT));
sys_write32(val, base + S_FIFO_CTRL_OFFSET);
target_cfg->callbacks->stop(target_cfg);
sys_write32(BIT(IS_S_START_BUSY_SHIFT), base + IS_OFFSET);
}
/* check target transmit status only if target is transmitting */
if (!dd->target_rx_only) {
iproc_i2c_check_target_status(dev);
}
}
static int iproc_i2c_target_register(const struct device *dev,
struct i2c_target_config *target_config)
{
struct iproc_i2c_data *dd = DEV_DATA(dev);
mem_addr_t base = DEV_BASE(dev);
int ret = 0;
if (dd->target_cfg) {
LOG_ERR("Target already registered");
return -EBUSY;
}
/* Save pointer to received target config */
dd->target_cfg = target_config;
ret = iproc_i2c_target_init(dev, false);
if (ret < 0) {
LOG_ERR("Failed to register iproc_i2c(0x%x) as target, ret %d", (uint32_t)base,
ret);
return ret;
}
return 0;
}
static int iproc_i2c_target_unregister(const struct device *dev, struct i2c_target_config *config)
{
uint32_t val;
mem_addr_t base = DEV_BASE(dev);
struct iproc_i2c_data *dd = DEV_DATA(dev);
if (!dd->target_cfg) {
return -EINVAL;
}
/* Erase the target address programmed */
sys_write32(0x0, base + S_ADDR_OFFSET);
/* disable all target interrupts */
val = sys_read32(base + IE_OFFSET);
val &= ~(IE_S_ALL_INTERRUPT_MASK << IE_S_ALL_INTERRUPT_SHIFT);
sys_write32(val, base + IE_OFFSET);
dd->target_cfg = NULL;
return 0;
}
#endif /* CONFIG_I2C_TARGET */
static void iproc_i2c_common_init(const struct device *dev)
{
mem_addr_t base = DEV_BASE(dev);
uint32_t val;
iproc_i2c_reset_controller(dev);
/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
sys_write32(val, base + M_FIFO_CTRL_OFFSET);
/* disable all interrupts */
sys_write32(0, base + IE_OFFSET);
/* clear all pending interrupts */
sys_write32(~0, base + IS_OFFSET);
}
static int iproc_i2c_check_status(const struct device *dev, uint16_t dev_addr, struct i2c_msg *msg)
{
mem_addr_t base = DEV_BASE(dev);
uint32_t val;
int rc;
val = sys_read32(base + M_CMD_OFFSET);
val >>= M_CMD_STATUS_SHIFT;
val &= M_CMD_STATUS_MASK;
switch (val) {
case M_CMD_STATUS_SUCCESS:
rc = 0;
break;
case M_CMD_STATUS_LOST_ARB:
LOG_ERR("lost bus arbitration");
rc = -EAGAIN;
break;
case M_CMD_STATUS_NACK_ADDR:
LOG_ERR("NAK addr:0x%02x", dev_addr);
rc = -ENXIO;
break;
case M_CMD_STATUS_NACK_DATA:
LOG_ERR("NAK data");
rc = -ENXIO;
break;
case M_CMD_STATUS_TIMEOUT:
LOG_ERR("bus timeout");
rc = -ETIMEDOUT;
break;
case M_CMD_STATUS_FIFO_UNDERRUN:
LOG_ERR("FIFO Under-run");
rc = -ENXIO;
break;
case M_CMD_STATUS_RX_FIFO_FULL:
LOG_ERR("RX FIFO full");
rc = -ETIMEDOUT;
break;
default:
LOG_ERR("Unknown Error : 0x%x", val);
iproc_i2c_enable_disable(dev, false);
iproc_i2c_common_init(dev);
iproc_i2c_enable_disable(dev, true);
rc = -EIO;
break;
}
if (rc < 0) {
/* flush both Master TX/RX FIFOs */
val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
sys_write32(val, base + M_FIFO_CTRL_OFFSET);
}
return rc;
}
static int iproc_i2c_configure(const struct device *dev, uint32_t dev_cfg_raw)
{
mem_addr_t base = DEV_BASE(dev);
if (I2C_ADDR_10_BITS & dev_cfg_raw) {
LOG_ERR("10-bit addressing not supported");
return -ENOTSUP;
}
switch (I2C_SPEED_GET(dev_cfg_raw)) {
case I2C_SPEED_STANDARD:
sys_clear_bit(base + TIM_CFG_OFFSET, TIM_CFG_MODE_400_SHIFT);
break;
case I2C_SPEED_FAST:
sys_set_bit(base + TIM_CFG_OFFSET, TIM_CFG_MODE_400_SHIFT);
break;
default:
LOG_ERR("Only standard or Fast speed modes are supported");
return -ENOTSUP;
}
return 0;
}
static void iproc_i2c_read_valid_bytes(const struct device *dev)
{
mem_addr_t base = DEV_BASE(dev);
struct iproc_i2c_data *dd = DEV_DATA(dev);
struct i2c_msg *msg = dd->msg;
uint32_t val;
/* Read valid data from RX FIFO */
while (dd->rx_bytes < msg->len) {
val = sys_read32(base + M_RX_OFFSET);
/* rx fifo empty */
if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK)) {
break;
}
msg->buf[dd->rx_bytes] = (val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
dd->rx_bytes++;
}
}
static int iproc_i2c_data_recv(const struct device *dev)
{
struct iproc_i2c_data *dd = DEV_DATA(dev);
mem_addr_t base = DEV_BASE(dev);
struct i2c_msg *msg = dd->msg;
uint32_t bytes_left, val;
iproc_i2c_read_valid_bytes(dev);
bytes_left = msg->len - dd->rx_bytes;
if (bytes_left == 0) {
/* finished reading all data, disable rx thld event */
sys_clear_bit(base + IE_OFFSET, IS_M_RX_THLD_SHIFT);
} else if (bytes_left < dd->thld_bytes) {
/* set bytes left as threshold */
val = sys_read32(base + M_FIFO_CTRL_OFFSET);
val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
sys_write32(val, base + M_FIFO_CTRL_OFFSET);
dd->thld_bytes = bytes_left;
}
/*
* if bytes_left >= dd->thld_bytes, no need to change the THRESHOLD.
* It will remain as dd->thld_bytes itself
*/
return 0;
}
static int iproc_i2c_transfer_one(const struct device *dev, struct i2c_msg *msg, uint16_t dev_addr)
{
mem_addr_t base = DEV_BASE(dev);
struct iproc_i2c_data *dd = DEV_DATA(dev);
uint32_t val, addr, tx_bytes, val_intr_en;
int rc;
if (!!(sys_read32(base + M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
LOG_ERR("Bus busy, prev xfer ongoing");
return -EBUSY;
}
LOG_DBG("%s: msg dev_addr 0x%x flags 0x%x len 0x%x val 0x%x\n", __func__, dev_addr,
msg->flags, msg->len, msg->buf[0]);
/* Save current i2c_msg */
dd->msg = msg;
addr = dev_addr << 1 | (msg->flags & I2C_MSG_READ ? 1 : 0);
sys_write32(addr, base + M_TX_OFFSET);
tx_bytes = MIN(msg->len, (TX_RX_FIFO_SIZE - 1));
if (!(msg->flags & I2C_MSG_READ)) {
/* Fill master TX fifo */
for (uint32_t i = 0; i < tx_bytes; i++) {
val = msg->buf[i];
/* For the last byte, set MASTER_WR_STATUS bit */
if (i == msg->len - 1) {
val |= BIT(M_TX_WR_STATUS_SHIFT);
}
sys_write32(val, base + M_TX_OFFSET);
}
dd->tx_bytes = tx_bytes;
}
/*
* Enable the "start busy" interrupt, which will be triggered after the
* transaction is done, i.e., the internal start_busy bit, transitions
* from 1 to 0.
*/
val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
if (!(msg->flags & I2C_MSG_READ) && (msg->len > dd->tx_bytes)) {
val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
}
/*
* Program master command register (0x30) with protocol type and set
* start_busy_command bit to initiate the write transaction
*/
val = BIT(M_CMD_START_BUSY_SHIFT);
if (msg->len == 0) {
/* SMBUS QUICK Command (Read/Write) */
val |= (M_CMD_SMB_PROT_QUICK << M_CMD_SMB_PROT_SHIFT);
} else if (msg->flags & I2C_MSG_READ) {
uint32_t tmp;
dd->rx_bytes = 0;
/* SMBUS Block Read Command */
val |= M_CMD_SMB_PROT_BLK_RD << M_CMD_SMB_PROT_SHIFT;
val |= msg->len;
if (msg->len > M_RX_FIFO_MAX_THLD_VALUE) {
dd->thld_bytes = M_RX_FIFO_THLD_VALUE;
} else {
dd->thld_bytes = msg->len;
}
/* set threshold value */
tmp = sys_read32(base + M_FIFO_CTRL_OFFSET);
tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
tmp |= dd->thld_bytes << M_FIFO_RX_THLD_SHIFT;
sys_write32(tmp, base + M_FIFO_CTRL_OFFSET);
/* enable the RX threshold interrupt */
val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
} else {
/* SMBUS Block Write Command */
val |= M_CMD_SMB_PROT_BLK_WR << M_CMD_SMB_PROT_SHIFT;
}
sys_write32(val_intr_en, base + IE_OFFSET);
sys_write32(val, base + M_CMD_OFFSET);
/* Wait for the transfer to complete or timeout */
rc = k_sem_take(&dd->device_sync_sem, K_MSEC(I2C_TIMEOUT_MSEC));
/* disable all interrupts */
sys_write32(0, base + IE_OFFSET);
if (rc != 0) {
/* flush both Master TX/RX FIFOs */
val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
sys_write32(val, base + M_FIFO_CTRL_OFFSET);
return rc;
}
/* Check for Master Xfer status */
rc = iproc_i2c_check_status(dev, dev_addr, msg);
return rc;
}
static int iproc_i2c_transfer_multi(const struct device *dev, struct i2c_msg *msgs,
uint8_t num_msgs, uint16_t addr)
{
int rc;
struct i2c_msg *msgs_chk = msgs;
if (!msgs_chk) {
return -EINVAL;
}
/* pre-check all msgs */
for (uint8_t i = 0; i < num_msgs; i++, msgs_chk++) {
if (!msgs_chk->buf) {
LOG_ERR("Invalid msg buffer");
return -EINVAL;
}
if (I2C_MSG_ADDR_10_BITS & msgs_chk->flags) {
LOG_ERR("10-bit addressing not supported");
return -ENOTSUP;
}
}
for (uint8_t i = 0; i < num_msgs; i++, msgs++) {
rc = iproc_i2c_transfer_one(dev, msgs, addr);
if (rc < 0) {
return rc;
}
}
return 0;
}
static void iproc_i2c_send_data(const struct device *dev)
{
mem_addr_t base = DEV_BASE(dev);
struct iproc_i2c_data *dd = DEV_DATA(dev);
struct i2c_msg *msg = dd->msg;
uint32_t tx_bytes = msg->len - dd->tx_bytes;
/* can only fill up to the FIFO size */
tx_bytes = MIN(tx_bytes, TX_RX_FIFO_SIZE);
for (uint32_t i = 0; i < tx_bytes; i++) {
/* start from where we left over */
uint32_t idx = dd->tx_bytes + i;
uint32_t val = msg->buf[idx];
/* mark the last byte */
if (idx == (msg->len - 1)) {
uint32_t tmp;
val |= BIT(M_TX_WR_STATUS_SHIFT);
/*
* Since this is the last byte, we should now
* disable TX FIFO underrun interrupt
*/
tmp = sys_read32(base + IE_OFFSET);
tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
sys_write32(tmp, base + IE_OFFSET);
}
/* load data into TX FIFO */
sys_write32(val, base + M_TX_OFFSET);
}
/* update number of transferred bytes */
dd->tx_bytes += tx_bytes;
}
static void iproc_i2c_master_isr(const struct device *dev, uint32_t status)
{
struct iproc_i2c_data *dd = DEV_DATA(dev);
/* TX FIFO is empty and we have more data to send */
if (status & BIT(IS_M_TX_UNDERRUN_SHIFT)) {
iproc_i2c_send_data(dev);
}
/* RX FIFO threshold is reached and data needs to be read out */
if (status & BIT(IS_M_RX_THLD_SHIFT)) {
iproc_i2c_data_recv(dev);
}
/* transfer is done */
if (status & BIT(IS_M_START_BUSY_SHIFT)) {
k_sem_give(&dd->device_sync_sem);
}
}
static void iproc_i2c_isr(void *arg)
{
const struct device *dev = (const struct device *)arg;
mem_addr_t base = DEV_BASE(dev);
uint32_t status;
uint32_t sl_status, curr_irqs;
curr_irqs = sys_read32(base + IE_OFFSET);
status = sys_read32(base + IS_OFFSET);
/* process only target interrupt which are enabled */
sl_status = status & curr_irqs & ISR_MASK_TARGET;
LOG_DBG("iproc_i2c(0x%x): sts 0x%x, sl_sts 0x%x, curr_ints 0x%x", (uint32_t)base, status,
sl_status, curr_irqs);
#ifdef CONFIG_I2C_TARGET
/* target events */
if (sl_status) {
iproc_i2c_target_isr(dev, sl_status);
return;
}
#endif
status &= ISR_MASK;
/* master events */
if (status) {
iproc_i2c_master_isr(dev, status);
sys_write32(status, base + IS_OFFSET);
}
}
static int iproc_i2c_init(const struct device *dev)
{
const struct iproc_i2c_config *config = DEV_CFG(dev);
struct iproc_i2c_data *dd = DEV_DATA(dev);
uint32_t bitrate = config->bitrate;
int error;
k_sem_init(&dd->device_sync_sem, 0, 1);
iproc_i2c_common_init(dev);
/* Set default clock frequency */
bitrate = i2c_map_dt_bitrate(bitrate);
if (dd->target_cfg == NULL) {
bitrate |= I2C_MODE_CONTROLLER;
}
error = iproc_i2c_configure(dev, bitrate);
if (error) {
return error;
}
config->irq_config_func(dev);
iproc_i2c_enable_disable(dev, true);
return 0;
}
static const struct i2c_driver_api iproc_i2c_driver_api = {
.configure = iproc_i2c_configure,
.transfer = iproc_i2c_transfer_multi,
#ifdef CONFIG_I2C_TARGET
.target_register = iproc_i2c_target_register,
.target_unregister = iproc_i2c_target_unregister,
#endif
#ifdef CONFIG_I2C_RTIO
.iodev_submit = i2c_iodev_submit_fallback,
#endif
};
#define IPROC_I2C_DEVICE_INIT(n) \
static void iproc_i2c_irq_config_func_##n(const struct device *dev) \
{ \
ARG_UNUSED(dev); \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), iproc_i2c_isr, \
DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQN(n)); \
} \
\
static const struct iproc_i2c_config iproc_i2c_config_##n = { \
.base = DT_INST_REG_ADDR(n), \
.irq_config_func = iproc_i2c_irq_config_func_##n, \
.bitrate = DT_INST_PROP(n, clock_frequency), \
}; \
\
static struct iproc_i2c_data iproc_i2c_data_##n; \
\
I2C_DEVICE_DT_INST_DEFINE(n, &iproc_i2c_init, NULL, &iproc_i2c_data_##n, \
&iproc_i2c_config_##n, POST_KERNEL, CONFIG_I2C_INIT_PRIORITY, \
&iproc_i2c_driver_api);
DT_INST_FOREACH_STATUS_OKAY(IPROC_I2C_DEVICE_INIT)