zephyr/drivers/adc/adc_nrfx_saadc.c
Pieter De Gendt 8442b6a83f drivers: adc: Place API into iterable section
Move all adc driver api structs into an iterable section, this allows us
to verify if an api pointer is located in compatible linker section.

Signed-off-by: Pieter De Gendt <pieter.degendt@basalte.be>
2024-11-29 14:50:40 +01:00

700 lines
19 KiB
C

/*
* Copyright (c) 2018 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#include <haly/nrfy_saadc.h>
#include <zephyr/dt-bindings/adc/nrf-saadc-v3.h>
#include <zephyr/dt-bindings/adc/nrf-saadc-nrf54l.h>
#include <zephyr/linker/devicetree_regions.h>
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(adc_nrfx_saadc);
#define DT_DRV_COMPAT nordic_nrf_saadc
#if (NRF_SAADC_HAS_AIN_AS_PIN)
#if defined(CONFIG_NRF_PLATFORM_HALTIUM)
static const uint8_t saadc_psels[NRF_SAADC_AIN7 + 1] = {
[NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(0U, 1),
[NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(1U, 1),
[NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(2U, 1),
[NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(3U, 1),
[NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1),
[NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1),
[NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1),
[NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1),
};
#elif defined(CONFIG_SOC_NRF54L05) || defined(CONFIG_SOC_NRF54L10) || defined(CONFIG_SOC_NRF54L15)
static const uint32_t saadc_psels[NRF_SAADC_DVDD + 1] = {
[NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1),
[NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1),
[NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1),
[NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1),
[NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(11U, 1),
[NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(12U, 1),
[NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(13U, 1),
[NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(14U, 1),
[NRF_SAADC_VDD] = NRF_SAADC_INPUT_VDD,
[NRF_SAADC_AVDD] = NRF_SAADC_INPUT_AVDD,
[NRF_SAADC_DVDD] = NRF_SAADC_INPUT_DVDD,
};
#endif
#else
BUILD_ASSERT((NRF_SAADC_AIN0 == NRF_SAADC_INPUT_AIN0) &&
(NRF_SAADC_AIN1 == NRF_SAADC_INPUT_AIN1) &&
(NRF_SAADC_AIN2 == NRF_SAADC_INPUT_AIN2) &&
(NRF_SAADC_AIN3 == NRF_SAADC_INPUT_AIN3) &&
(NRF_SAADC_AIN4 == NRF_SAADC_INPUT_AIN4) &&
(NRF_SAADC_AIN5 == NRF_SAADC_INPUT_AIN5) &&
(NRF_SAADC_AIN6 == NRF_SAADC_INPUT_AIN6) &&
(NRF_SAADC_AIN7 == NRF_SAADC_INPUT_AIN7) &&
#if defined(SAADC_CH_PSELP_PSELP_VDDHDIV5)
(NRF_SAADC_VDDHDIV5 == NRF_SAADC_INPUT_VDDHDIV5) &&
#endif
#if defined(SAADC_CH_PSELP_PSELP_VDD)
(NRF_SAADC_VDD == NRF_SAADC_INPUT_VDD) &&
#endif
1,
"Definitions from nrf-adc.h do not match those from nrf_saadc.h");
#endif
#if defined(CONFIG_NRF_PLATFORM_HALTIUM)
/* Haltium devices always use bounce buffers in RAM */
#define SAADC_MEMORY_SECTION \
COND_CODE_1(DT_NODE_HAS_PROP(DT_NODELABEL(adc), memory_regions), \
(__attribute__((__section__(LINKER_DT_NODE_REGION_NAME( \
DT_PHANDLE(DT_NODELABEL(adc), memory_regions)))))), \
())
static uint16_t adc_samples_buffer[SAADC_CH_NUM] SAADC_MEMORY_SECTION;
#define ADC_BUFFER_IN_RAM
#endif /* defined(CONFIG_NRF_PLATFORM_HALTIUM) */
struct driver_data {
struct adc_context ctx;
uint8_t positive_inputs[SAADC_CH_NUM];
uint8_t single_ended_channels;
#if defined(ADC_BUFFER_IN_RAM)
void *samples_buffer;
void *user_buffer;
uint8_t active_channels;
#endif
};
static struct driver_data m_data = {
ADC_CONTEXT_INIT_TIMER(m_data, ctx),
ADC_CONTEXT_INIT_LOCK(m_data, ctx),
ADC_CONTEXT_INIT_SYNC(m_data, ctx),
#if defined(ADC_BUFFER_IN_RAM)
.samples_buffer = adc_samples_buffer,
#endif
};
/* Helper function to convert number of samples to the byte representation. */
static uint32_t samples_to_bytes(const struct adc_sequence *sequence, uint16_t number_of_samples)
{
if (NRF_SAADC_8BIT_SAMPLE_WIDTH == 8 && sequence->resolution == 8) {
return number_of_samples;
}
return number_of_samples * 2;
}
/* Helper function to convert acquisition time to register TACQ value. */
static int adc_convert_acq_time(uint16_t acquisition_time, nrf_saadc_acqtime_t *p_tacq_val)
{
int result = 0;
#if NRF_SAADC_HAS_ACQTIME_ENUM
switch (acquisition_time) {
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 3):
*p_tacq_val = NRF_SAADC_ACQTIME_3US;
break;
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 5):
*p_tacq_val = NRF_SAADC_ACQTIME_5US;
break;
case ADC_ACQ_TIME_DEFAULT:
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 10):
*p_tacq_val = NRF_SAADC_ACQTIME_10US;
break;
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 15):
*p_tacq_val = NRF_SAADC_ACQTIME_15US;
break;
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 20):
*p_tacq_val = NRF_SAADC_ACQTIME_20US;
break;
case ADC_ACQ_TIME_MAX:
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 40):
*p_tacq_val = NRF_SAADC_ACQTIME_40US;
break;
default:
result = -EINVAL;
}
#else
#define MINIMUM_ACQ_TIME_IN_NS 125
#define DEFAULT_ACQ_TIME_IN_NS 10000
nrf_saadc_acqtime_t tacq = 0;
uint16_t acq_time =
(acquisition_time == ADC_ACQ_TIME_DEFAULT
? DEFAULT_ACQ_TIME_IN_NS
: (ADC_ACQ_TIME_VALUE(acquisition_time) *
(ADC_ACQ_TIME_UNIT(acquisition_time) == ADC_ACQ_TIME_MICROSECONDS
? 1000
: 1)));
tacq = (nrf_saadc_acqtime_t)(acq_time / MINIMUM_ACQ_TIME_IN_NS) - 1;
if ((tacq > NRF_SAADC_ACQTIME_MAX) || (acq_time < MINIMUM_ACQ_TIME_IN_NS)) {
result = -EINVAL;
} else {
*p_tacq_val = tacq;
}
#endif
return result;
}
/* Implementation of the ADC driver API function: adc_channel_setup. */
static int adc_nrfx_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
nrf_saadc_channel_config_t config = {
#if NRF_SAADC_HAS_CH_CONFIG_RES
.resistor_p = NRF_SAADC_RESISTOR_DISABLED,
.resistor_n = NRF_SAADC_RESISTOR_DISABLED,
#endif
.burst = NRF_SAADC_BURST_DISABLED,
};
uint8_t channel_id = channel_cfg->channel_id;
uint32_t input_negative = channel_cfg->input_negative;
if (channel_id >= SAADC_CH_NUM) {
return -EINVAL;
}
switch (channel_cfg->gain) {
#if defined(SAADC_CH_CONFIG_GAIN_Gain1_6)
case ADC_GAIN_1_6:
config.gain = NRF_SAADC_GAIN1_6;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain1_5)
case ADC_GAIN_1_5:
config.gain = NRF_SAADC_GAIN1_5;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain1_4) || defined(SAADC_CH_CONFIG_GAIN_Gain2_8)
case ADC_GAIN_1_4:
config.gain = NRF_SAADC_GAIN1_4;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain1_3) || defined(SAADC_CH_CONFIG_GAIN_Gain2_6)
case ADC_GAIN_1_3:
config.gain = NRF_SAADC_GAIN1_3;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain2_5)
case ADC_GAIN_2_5:
config.gain = NRF_SAADC_GAIN2_5;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain1_2) || defined(SAADC_CH_CONFIG_GAIN_Gain2_4)
case ADC_GAIN_1_2:
config.gain = NRF_SAADC_GAIN1_2;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain2_3)
case ADC_GAIN_2_3:
config.gain = NRF_SAADC_GAIN2_3;
break;
#endif
case ADC_GAIN_1:
config.gain = NRF_SAADC_GAIN1;
break;
case ADC_GAIN_2:
config.gain = NRF_SAADC_GAIN2;
break;
#if defined(SAADC_CH_CONFIG_GAIN_Gain4)
case ADC_GAIN_4:
config.gain = NRF_SAADC_GAIN4;
break;
#endif
default:
LOG_ERR("Selected ADC gain is not valid");
return -EINVAL;
}
switch (channel_cfg->reference) {
#if defined(SAADC_CH_CONFIG_REFSEL_Internal)
case ADC_REF_INTERNAL:
config.reference = NRF_SAADC_REFERENCE_INTERNAL;
break;
#endif
#if defined(SAADC_CH_CONFIG_REFSEL_VDD1_4)
case ADC_REF_VDD_1_4:
config.reference = NRF_SAADC_REFERENCE_VDD4;
break;
#endif
#if defined(SAADC_CH_CONFIG_REFSEL_External)
case ADC_REF_EXTERNAL0:
config.reference = NRF_SAADC_REFERENCE_EXTERNAL;
break;
#endif
default:
LOG_ERR("Selected ADC reference is not valid");
return -EINVAL;
}
int ret = adc_convert_acq_time(channel_cfg->acquisition_time, &config.acq_time);
if (ret) {
LOG_ERR("Selected ADC acquisition time is not valid");
return -EINVAL;
}
/* Store channel mode to allow correcting negative readings in single-ended mode
* after ADC sequence ends.
*/
if (channel_cfg->differential) {
config.mode = NRF_SAADC_MODE_DIFFERENTIAL;
m_data.single_ended_channels &= ~BIT(channel_cfg->channel_id);
} else {
config.mode = NRF_SAADC_MODE_SINGLE_ENDED;
m_data.single_ended_channels |= BIT(channel_cfg->channel_id);
}
#if (NRF_SAADC_HAS_AIN_AS_PIN)
if ((channel_cfg->input_positive >= ARRAY_SIZE(saadc_psels)) ||
(channel_cfg->input_positive < NRF_SAADC_AIN0)) {
return -EINVAL;
}
if (config.mode == NRF_SAADC_MODE_DIFFERENTIAL) {
if (input_negative > NRF_SAADC_AIN7 ||
input_negative < NRF_SAADC_AIN0) {
return -EINVAL;
}
input_negative = saadc_psels[input_negative];
} else {
input_negative = NRF_SAADC_INPUT_DISABLED;
}
#endif
/* Store the positive input selection in a dedicated array,
* to get it later when the channel is selected for a sampling
* and to mark the channel as configured (ready to be selected).
*/
m_data.positive_inputs[channel_id] = channel_cfg->input_positive;
nrf_saadc_channel_init(NRF_SAADC, channel_id, &config);
/* Keep the channel disabled in hardware (set positive input to
* NRF_SAADC_INPUT_DISABLED) until it is selected to be included
* in a sampling sequence.
*/
nrf_saadc_channel_input_set(NRF_SAADC,
channel_id,
NRF_SAADC_INPUT_DISABLED,
input_negative);
return 0;
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
nrf_saadc_enable(NRF_SAADC);
if (ctx->sequence.calibrate) {
nrf_saadc_task_trigger(NRF_SAADC,
NRF_SAADC_TASK_CALIBRATEOFFSET);
} else {
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_START);
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_SAMPLE);
}
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat)
{
ARG_UNUSED(ctx);
if (!repeat) {
#if defined(ADC_BUFFER_IN_RAM)
m_data.user_buffer = (uint8_t *)m_data.user_buffer +
samples_to_bytes(&ctx->sequence, nrfy_saadc_amount_get(NRF_SAADC));
#else
nrf_saadc_value_t *buffer =
(uint8_t *)nrf_saadc_buffer_pointer_get(NRF_SAADC) +
samples_to_bytes(&ctx->sequence, nrfy_saadc_amount_get(NRF_SAADC));
nrfy_saadc_buffer_pointer_set(NRF_SAADC, buffer);
#endif
}
}
static int set_resolution(const struct adc_sequence *sequence)
{
nrf_saadc_resolution_t nrf_resolution;
switch (sequence->resolution) {
case 8:
nrf_resolution = NRF_SAADC_RESOLUTION_8BIT;
break;
case 10:
nrf_resolution = NRF_SAADC_RESOLUTION_10BIT;
break;
case 12:
nrf_resolution = NRF_SAADC_RESOLUTION_12BIT;
break;
case 14:
nrf_resolution = NRF_SAADC_RESOLUTION_14BIT;
break;
default:
LOG_ERR("ADC resolution value %d is not valid",
sequence->resolution);
return -EINVAL;
}
nrf_saadc_resolution_set(NRF_SAADC, nrf_resolution);
return 0;
}
static int set_oversampling(const struct adc_sequence *sequence,
uint8_t active_channels)
{
nrf_saadc_oversample_t nrf_oversampling;
if ((active_channels > 1) && (sequence->oversampling > 0)) {
LOG_ERR(
"Oversampling is supported for single channel only");
return -EINVAL;
}
switch (sequence->oversampling) {
case 0:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_DISABLED;
break;
case 1:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_2X;
break;
case 2:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_4X;
break;
case 3:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_8X;
break;
case 4:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_16X;
break;
case 5:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_32X;
break;
case 6:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_64X;
break;
case 7:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_128X;
break;
case 8:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_256X;
break;
default:
LOG_ERR("Oversampling value %d is not valid",
sequence->oversampling);
return -EINVAL;
}
nrf_saadc_oversample_set(NRF_SAADC, nrf_oversampling);
return 0;
}
static int check_buffer_size(const struct adc_sequence *sequence,
uint8_t active_channels)
{
size_t needed_buffer_size;
needed_buffer_size = samples_to_bytes(sequence, active_channels);
if (sequence->options) {
needed_buffer_size *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < needed_buffer_size) {
LOG_ERR("Provided buffer is too small (%u/%u)",
sequence->buffer_size, needed_buffer_size);
return -ENOMEM;
}
return 0;
}
static bool has_single_ended(const struct adc_sequence *sequence)
{
return sequence->channels & m_data.single_ended_channels;
}
static void correct_single_ended(const struct adc_sequence *sequence)
{
uint16_t channel_bit = BIT(0);
uint8_t selected_channels = sequence->channels;
uint8_t single_ended_channels = m_data.single_ended_channels;
int16_t *sample = nrf_saadc_buffer_pointer_get(NRF_SAADC);
while (channel_bit <= single_ended_channels) {
if (channel_bit & selected_channels) {
if ((channel_bit & single_ended_channels) && (*sample < 0)) {
*sample = 0;
}
sample++;
}
channel_bit <<= 1;
}
}
static int start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
int error;
uint32_t selected_channels = sequence->channels;
uint8_t resolution = sequence->resolution;
uint8_t active_channels;
uint8_t channel_id;
/* Signal an error if channel selection is invalid (no channels or
* a non-existing one is selected).
*/
if (!selected_channels ||
(selected_channels & ~BIT_MASK(SAADC_CH_NUM))) {
LOG_ERR("Invalid selection of channels");
return -EINVAL;
}
active_channels = 0U;
/* Enable only the channels selected for the pointed sequence.
* Disable all the rest.
*/
channel_id = 0U;
do {
if (selected_channels & BIT(channel_id)) {
/* Signal an error if a selected channel has not been
* configured yet.
*/
if (m_data.positive_inputs[channel_id] == 0U) {
LOG_ERR("Channel %u not configured",
channel_id);
return -EINVAL;
}
/* Signal an error if the channel is configured as
* single ended with a resolution which is identical
* to the sample bit size. The SAADC's "single ended"
* mode is really differential mode with the
* negative input tied to ground. We can therefore
* observe negative values if the positive input falls
* below ground. If the sample bitsize is larger than
* the resolution, we can detect negative values and
* correct them to 0 after the sequencen has ended.
*/
if ((m_data.single_ended_channels & BIT(channel_id)) &&
(NRF_SAADC_8BIT_SAMPLE_WIDTH == 8 && resolution == 8)) {
LOG_ERR("Channel %u invalid single ended resolution",
channel_id);
return -EINVAL;
}
/* When oversampling is used, the burst mode needs to
* be activated. Unfortunately, this mode cannot be
* activated permanently in the channel setup, because
* then the multiple channel sampling fails (the END
* event is not generated) after switching to a single
* channel sampling and back. Thus, when oversampling
* is not used (hence, the multiple channel sampling is
* possible), the burst mode have to be deactivated.
*/
nrf_saadc_burst_set(NRF_SAADC, channel_id,
(sequence->oversampling != 0U ?
NRF_SAADC_BURST_ENABLED :
NRF_SAADC_BURST_DISABLED));
nrf_saadc_channel_pos_input_set(
NRF_SAADC,
channel_id,
#if NRF_SAADC_HAS_AIN_AS_PIN
saadc_psels[m_data.positive_inputs[channel_id]]
#else
m_data.positive_inputs[channel_id]
#endif
);
++active_channels;
} else {
nrf_saadc_burst_set(
NRF_SAADC,
channel_id,
NRF_SAADC_BURST_DISABLED);
nrf_saadc_channel_pos_input_set(
NRF_SAADC,
channel_id,
NRF_SAADC_INPUT_DISABLED);
}
} while (++channel_id < SAADC_CH_NUM);
error = set_resolution(sequence);
if (error) {
return error;
}
error = set_oversampling(sequence, active_channels);
if (error) {
return error;
}
error = check_buffer_size(sequence, active_channels);
if (error) {
return error;
}
#if defined(ADC_BUFFER_IN_RAM)
m_data.user_buffer = sequence->buffer;
m_data.active_channels = active_channels;
nrf_saadc_buffer_init(NRF_SAADC,
(nrf_saadc_value_t *)m_data.samples_buffer,
active_channels);
#else
nrf_saadc_buffer_init(NRF_SAADC,
(nrf_saadc_value_t *)sequence->buffer,
active_channels);
#endif
adc_context_start_read(&m_data.ctx, sequence);
return adc_context_wait_for_completion(&m_data.ctx);
}
/* Implementation of the ADC driver API function: adc_read. */
static int adc_nrfx_read(const struct device *dev,
const struct adc_sequence *sequence)
{
int error;
adc_context_lock(&m_data.ctx, false, NULL);
error = start_read(dev, sequence);
adc_context_release(&m_data.ctx, error);
return error;
}
#ifdef CONFIG_ADC_ASYNC
/* Implementation of the ADC driver API function: adc_read_async. */
static int adc_nrfx_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
int error;
adc_context_lock(&m_data.ctx, true, async);
error = start_read(dev, sequence);
adc_context_release(&m_data.ctx, error);
return error;
}
#endif /* CONFIG_ADC_ASYNC */
static void saadc_irq_handler(const struct device *dev)
{
if (nrf_saadc_event_check(NRF_SAADC, NRF_SAADC_EVENT_END)) {
nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_END);
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_STOP);
nrf_saadc_disable(NRF_SAADC);
if (has_single_ended(&m_data.ctx.sequence)) {
correct_single_ended(&m_data.ctx.sequence);
}
#if defined(ADC_BUFFER_IN_RAM)
memcpy(m_data.user_buffer, m_data.samples_buffer,
samples_to_bytes(&m_data.ctx.sequence, m_data.active_channels));
#endif
adc_context_on_sampling_done(&m_data.ctx, dev);
} else if (nrf_saadc_event_check(NRF_SAADC,
NRF_SAADC_EVENT_CALIBRATEDONE)) {
nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_CALIBRATEDONE);
/*
* The workaround for Nordic nRF52832 anomalies 86 and
* 178 is an explicit STOP after CALIBRATEOFFSET
* before issuing START.
*/
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_STOP);
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_START);
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_SAMPLE);
}
}
static int init_saadc(const struct device *dev)
{
nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_END);
nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_CALIBRATEDONE);
nrf_saadc_int_enable(NRF_SAADC,
NRF_SAADC_INT_END | NRF_SAADC_INT_CALIBRATEDONE);
NRFX_IRQ_ENABLE(DT_INST_IRQN(0));
IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority),
saadc_irq_handler, DEVICE_DT_INST_GET(0), 0);
adc_context_unlock_unconditionally(&m_data.ctx);
return 0;
}
static DEVICE_API(adc, adc_nrfx_driver_api) = {
.channel_setup = adc_nrfx_channel_setup,
.read = adc_nrfx_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = adc_nrfx_read_async,
#endif
#if defined(CONFIG_SOC_NRF54L05) || defined(CONFIG_SOC_NRF54L10) || defined(CONFIG_SOC_NRF54L15)
.ref_internal = 900,
#elif defined(CONFIG_NRF_PLATFORM_HALTIUM)
.ref_internal = 1024,
#else
.ref_internal = 600,
#endif
};
/*
* There is only one instance on supported SoCs, so inst is guaranteed
* to be 0 if any instance is okay. (We use adc_0 above, so the driver
* is relying on the numeric instance value in a way that happens to
* be safe.)
*
* Just in case that assumption becomes invalid in the future, we use
* a BUILD_ASSERT().
*/
#define SAADC_INIT(inst) \
BUILD_ASSERT((inst) == 0, \
"multiple instances not supported"); \
DEVICE_DT_INST_DEFINE(0, \
init_saadc, \
NULL, \
NULL, \
NULL, \
POST_KERNEL, \
CONFIG_ADC_INIT_PRIORITY, \
&adc_nrfx_driver_api);
DT_INST_FOREACH_STATUS_OKAY(SAADC_INIT)