zephyr/drivers/adc/adc_ambiq.c
Pieter De Gendt 8442b6a83f drivers: adc: Place API into iterable section
Move all adc driver api structs into an iterable section, this allows us
to verify if an api pointer is located in compatible linker section.

Signed-off-by: Pieter De Gendt <pieter.degendt@basalte.be>
2024-11-29 14:50:40 +01:00

439 lines
14 KiB
C

/*
* Copyright (c) 2024 Ambiq Micro Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ambiq_adc
#include <zephyr/drivers/adc.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
#include <zephyr/kernel.h>
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
/* ambiq-sdk includes */
#include <am_mcu_apollo.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(adc_ambiq, CONFIG_ADC_LOG_LEVEL);
typedef int (*ambiq_adc_pwr_func_t)(void);
#define PWRCTRL_MAX_WAIT_US 5
/* Number of slots available. */
#define AMBIQ_ADC_SLOT_NUMBER AM_HAL_ADC_MAX_SLOTS
struct adc_ambiq_config {
uint32_t base;
int size;
uint8_t num_channels;
void (*irq_config_func)(void);
const struct pinctrl_dev_config *pin_cfg;
ambiq_adc_pwr_func_t pwr_func;
};
struct adc_ambiq_data {
struct adc_context ctx;
void *adcHandle;
uint16_t *buffer;
uint16_t *repeat_buffer;
uint8_t active_channels;
};
static int adc_ambiq_set_resolution(am_hal_adc_slot_prec_e *prec, uint8_t adc_resolution)
{
switch (adc_resolution) {
case 8:
*prec = AM_HAL_ADC_SLOT_8BIT;
break;
case 10:
*prec = AM_HAL_ADC_SLOT_10BIT;
break;
case 12:
*prec = AM_HAL_ADC_SLOT_12BIT;
break;
#if !defined(CONFIG_SOC_SERIES_APOLLO4X)
case 14:
*prec = AM_HAL_ADC_SLOT_14BIT;
break;
#endif
default:
return -ENOTSUP;
}
return 0;
}
static int adc_ambiq_slot_config(const struct device *dev, const struct adc_sequence *sequence,
am_hal_adc_slot_chan_e channel, uint32_t ui32SlotNumber)
{
struct adc_ambiq_data *data = dev->data;
am_hal_adc_slot_config_t ADCSlotConfig;
if (adc_ambiq_set_resolution(&ADCSlotConfig.ePrecisionMode, sequence->resolution) != 0) {
LOG_ERR("unsupported resolution %d", sequence->resolution);
return -ENOTSUP;
}
/* Set up an ADC slot */
ADCSlotConfig.eMeasToAvg = AM_HAL_ADC_SLOT_AVG_1;
ADCSlotConfig.eChannel = channel;
ADCSlotConfig.bWindowCompare = false;
ADCSlotConfig.bEnabled = true;
#if defined(CONFIG_SOC_SERIES_APOLLO4X)
ADCSlotConfig.ui32TrkCyc = AM_HAL_ADC_MIN_TRKCYC;
#endif
if (AM_HAL_STATUS_SUCCESS !=
am_hal_adc_configure_slot(data->adcHandle, ui32SlotNumber, &ADCSlotConfig)) {
LOG_ERR("configuring ADC Slot 0 failed.\n");
return -ENODEV;
}
return 0;
}
static void adc_ambiq_isr(const struct device *dev)
{
struct adc_ambiq_data *data = dev->data;
uint32_t ui32IntMask;
uint32_t ui32NumSamples;
am_hal_adc_sample_t Sample;
/* Read the interrupt status. */
am_hal_adc_interrupt_status(data->adcHandle, &ui32IntMask, true);
/* Clear the ADC interrupt.*/
am_hal_adc_interrupt_clear(data->adcHandle, ui32IntMask);
/*
* If we got a conversion completion interrupt (which should be our only
* ADC interrupt), go ahead and read the data.
*/
if (ui32IntMask & AM_HAL_ADC_INT_CNVCMP) {
for (uint32_t i = 0; i < data->active_channels; i++) {
/* Read the value from the FIFO. */
ui32NumSamples = 1;
am_hal_adc_samples_read(data->adcHandle, false, NULL, &ui32NumSamples,
&Sample);
*data->buffer++ = Sample.ui32Sample;
}
am_hal_adc_disable(data->adcHandle);
adc_context_on_sampling_done(&data->ctx, dev);
}
}
static int adc_ambiq_check_buffer_size(const struct adc_sequence *sequence, uint8_t active_channels)
{
size_t needed_buffer_size;
needed_buffer_size = active_channels * sizeof(uint16_t);
if (sequence->options) {
needed_buffer_size *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < needed_buffer_size) {
LOG_DBG("Provided buffer is too small (%u/%u)", sequence->buffer_size,
needed_buffer_size);
return -ENOMEM;
}
return 0;
}
static int adc_ambiq_start_read(const struct device *dev, const struct adc_sequence *sequence)
{
struct adc_ambiq_data *data = dev->data;
const struct adc_ambiq_config *cfg = dev->config;
uint8_t channel_id = 0;
uint32_t channels = 0;
uint8_t active_channels = 0;
uint8_t slot_index;
int error = 0;
if (sequence->channels & ~BIT_MASK(cfg->num_channels)) {
LOG_ERR("Incorrect channels, bitmask 0x%x", sequence->channels);
return -EINVAL;
}
if (sequence->channels == 0UL) {
LOG_ERR("No channel selected");
return -EINVAL;
}
error = adc_ambiq_check_buffer_size(sequence, active_channels);
if (error < 0) {
return error;
}
active_channels = POPCOUNT(sequence->channels);
if (active_channels > AMBIQ_ADC_SLOT_NUMBER) {
LOG_ERR("Too many channels for sequencer. Max: %d", AMBIQ_ADC_SLOT_NUMBER);
return -ENOTSUP;
}
channels = sequence->channels;
for (slot_index = 0; slot_index < active_channels; slot_index++) {
channel_id = find_lsb_set(channels) - 1;
error = adc_ambiq_slot_config(dev, sequence, channel_id, slot_index);
if (error < 0) {
return error;
}
channels &= ~BIT(channel_id);
}
__ASSERT_NO_MSG(channels == 0);
data->active_channels = active_channels;
data->buffer = sequence->buffer;
/* Start ADC conversion */
adc_context_start_read(&data->ctx, sequence);
error = adc_context_wait_for_completion(&data->ctx);
return error;
}
static int adc_ambiq_read(const struct device *dev, const struct adc_sequence *sequence)
{
struct adc_ambiq_data *data = dev->data;
int error = 0;
error = pm_device_runtime_get(dev);
if (error < 0) {
LOG_ERR("pm_device_runtime_get failed: %d", error);
}
adc_context_lock(&data->ctx, false, NULL);
error = adc_ambiq_start_read(dev, sequence);
adc_context_release(&data->ctx, error);
int ret = error;
error = pm_device_runtime_put(dev);
if (error < 0) {
LOG_ERR("pm_device_runtime_put failed: %d", error);
}
error = ret;
return error;
}
static int adc_ambiq_channel_setup(const struct device *dev, const struct adc_channel_cfg *chan_cfg)
{
const struct adc_ambiq_config *cfg = dev->config;
if (chan_cfg->channel_id >= cfg->num_channels) {
LOG_ERR("unsupported channel id '%d'", chan_cfg->channel_id);
return -ENOTSUP;
}
if (chan_cfg->gain != ADC_GAIN_1) {
LOG_ERR("Gain is not valid");
return -ENOTSUP;
}
if (chan_cfg->reference != ADC_REF_INTERNAL) {
LOG_ERR("Reference is not valid");
return -ENOTSUP;
}
if (chan_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("unsupported acquisition_time '%d'", chan_cfg->acquisition_time);
return -ENOTSUP;
}
if (chan_cfg->differential) {
LOG_ERR("Differential sampling not supported");
return -ENOTSUP;
}
return 0;
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat_sampling)
{
struct adc_ambiq_data *data = CONTAINER_OF(ctx, struct adc_ambiq_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct adc_ambiq_data *data = CONTAINER_OF(ctx, struct adc_ambiq_data, ctx);
data->repeat_buffer = data->buffer;
/* Enable the ADC. */
am_hal_adc_enable(data->adcHandle);
/*Trigger the ADC*/
am_hal_adc_sw_trigger(data->adcHandle);
}
static int adc_ambiq_init(const struct device *dev)
{
struct adc_ambiq_data *data = dev->data;
const struct adc_ambiq_config *cfg = dev->config;
am_hal_adc_config_t ADCConfig;
int ret;
/* Initialize the ADC and get the handle*/
if (AM_HAL_STATUS_SUCCESS !=
am_hal_adc_initialize((cfg->base - ADC_BASE) / (cfg->size * 4), &data->adcHandle)) {
ret = -ENODEV;
LOG_ERR("Faile to initialize ADC, code:%d", ret);
return ret;
}
/* power on ADC*/
ret = cfg->pwr_func();
/* Set up the ADC configuration parameters. These settings are reasonable
* for accurate measurements at a low sample rate.
*/
#if !defined(CONFIG_SOC_SERIES_APOLLO4X)
ADCConfig.eClock = AM_HAL_ADC_CLKSEL_HFRC;
ADCConfig.eReference = AM_HAL_ADC_REFSEL_INT_1P5;
#else
ADCConfig.eClock = AM_HAL_ADC_CLKSEL_HFRC_24MHZ;
ADCConfig.eRepeatTrigger = AM_HAL_ADC_RPTTRIGSEL_TMR,
#endif
ADCConfig.ePolarity = AM_HAL_ADC_TRIGPOL_RISING;
ADCConfig.eTrigger = AM_HAL_ADC_TRIGSEL_SOFTWARE;
ADCConfig.eClockMode = AM_HAL_ADC_CLKMODE_LOW_POWER;
ADCConfig.ePowerMode = AM_HAL_ADC_LPMODE0;
ADCConfig.eRepeat = AM_HAL_ADC_SINGLE_SCAN;
if (AM_HAL_STATUS_SUCCESS != am_hal_adc_configure(data->adcHandle, &ADCConfig)) {
ret = -ENODEV;
LOG_ERR("Configuring ADC failed, code:%d", ret);
return ret;
}
ret = pinctrl_apply_state(cfg->pin_cfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
/* Enable the ADC interrupts in the ADC. */
cfg->irq_config_func();
am_hal_adc_interrupt_enable(data->adcHandle, AM_HAL_ADC_INT_CNVCMP);
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
#ifdef CONFIG_ADC_ASYNC
static int adc_ambiq_read_async(const struct device *dev, const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct adc_ambiq_data *data = dev->data;
int error = 0;
error = pm_device_runtime_get(dev);
if (error < 0) {
LOG_ERR("pm_device_runtime_get failed: %d", error);
}
adc_context_lock(&data->ctx, true, async);
error = adc_ambiq_start_read(dev, sequence);
adc_context_release(&data->ctx, error);
int ret = error;
error = pm_device_runtime_put(dev);
if (error < 0) {
LOG_ERR("pm_device_runtime_put failed: %d", error);
}
error = ret;
return error;
}
#endif
#ifdef CONFIG_PM_DEVICE
static int adc_ambiq_pm_action(const struct device *dev, enum pm_device_action action)
{
struct adc_ambiq_data *data = dev->data;
uint32_t ret = 0;
am_hal_sysctrl_power_state_e status;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
status = AM_HAL_SYSCTRL_WAKE;
break;
case PM_DEVICE_ACTION_SUSPEND:
status = AM_HAL_SYSCTRL_DEEPSLEEP;
break;
default:
return -ENOTSUP;
}
ret = am_hal_adc_power_control(data->adcHandle, status, true);
if (ret != AM_HAL_STATUS_SUCCESS) {
return -EPERM;
} else {
return 0;
}
}
#endif /* CONFIG_PM_DEVICE */
#ifdef CONFIG_ADC_ASYNC
#define ADC_AMBIQ_DRIVER_API(n) \
static DEVICE_API(adc, adc_ambiq_driver_api_##n) = { \
.channel_setup = adc_ambiq_channel_setup, \
.read = adc_ambiq_read, \
.read_async = adc_ambiq_read_async, \
.ref_internal = DT_INST_PROP(n, internal_vref_mv), \
};
#else
#define ADC_AMBIQ_DRIVER_API(n) \
static DEVICE_API(adc, adc_ambiq_driver_api_##n) = { \
.channel_setup = adc_ambiq_channel_setup, \
.read = adc_ambiq_read, \
.ref_internal = DT_INST_PROP(n, internal_vref_mv), \
};
#endif
#define ADC_AMBIQ_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
ADC_AMBIQ_DRIVER_API(n); \
static int pwr_on_ambiq_adc_##n(void) \
{ \
uint32_t addr = DT_REG_ADDR(DT_INST_PHANDLE(n, ambiq_pwrcfg)) + \
DT_INST_PHA(n, ambiq_pwrcfg, offset); \
sys_write32((sys_read32(addr) | DT_INST_PHA(n, ambiq_pwrcfg, mask)), addr); \
k_busy_wait(PWRCTRL_MAX_WAIT_US); \
return 0; \
} \
static void adc_irq_config_func_##n(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), adc_ambiq_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
}; \
static struct adc_ambiq_data adc_ambiq_data_##n = { \
ADC_CONTEXT_INIT_TIMER(adc_ambiq_data_##n, ctx), \
ADC_CONTEXT_INIT_LOCK(adc_ambiq_data_##n, ctx), \
ADC_CONTEXT_INIT_SYNC(adc_ambiq_data_##n, ctx), \
}; \
const static struct adc_ambiq_config adc_ambiq_config_##n = { \
.base = DT_INST_REG_ADDR(n), \
.size = DT_INST_REG_SIZE(n), \
.num_channels = DT_PROP(DT_DRV_INST(n), channel_count), \
.irq_config_func = adc_irq_config_func_##n, \
.pin_cfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.pwr_func = pwr_on_ambiq_adc_##n, \
}; \
PM_DEVICE_DT_INST_DEFINE(n, adc_ambiq_pm_action); \
DEVICE_DT_INST_DEFINE(n, &adc_ambiq_init, PM_DEVICE_DT_INST_GET(n), &adc_ambiq_data_##n, \
&adc_ambiq_config_##n, POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \
&adc_ambiq_driver_api_##n);
DT_INST_FOREACH_STATUS_OKAY(ADC_AMBIQ_INIT)