zephyr/arch/riscv32/core/thread.c
Jean-Paul Etienne cd83e85edc arch: added support for the riscv32 architecture
RISC-V is an open-source instruction set architecture.
Added support for the 32bit version of RISC-V to Zephyr.

1) exceptions/interrupts/faults are handled at the architecture
   level via the __irq_wrapper handler. Context saving/restoring
   of registers can be handled at both architecture and SOC levels.
   If SOC-specific registers need to be saved, SOC level needs to
   provide __soc_save_context and __soc_restore_context functions
   that shall be accounted by the architecture level, when
   corresponding config variable RISCV_SOC_CONTEXT_SAVE is set.

2) As RISC-V architecture does not provide a clear ISA specification
   about interrupt handling, each RISC-V SOC handles it in its own
   way. Hence, at the architecture level, the __irq_wrapper handler
   expects the following functions to be provided by the SOC level:
   __soc_is_irq: to check if the exception is the result of an
                 interrupt or not.
   __soc_handle_irq: handle pending IRQ at SOC level (ex: clear
                     pending IRQ in SOC-specific IRQ register)

3) Thread/task scheduling, as well as IRQ offloading are handled via
   the RISC-V system call ("ecall"), which is also handled via the
   __irq_wrapper handler. The _Swap asm function just calls "ecall"
   to generate an exception.

4) As there is no conventional way of handling CPU power save in
   RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle
   functions just unlock interrupts and return to the caller, without
   issuing any CPU power saving instruction. Nonetheless, to allow
   SOC-level to implement proper CPU power save, nano_cpu_idle and
   nano_cpu_atomic_idle functions are defined as __weak
   at the architecture level.

Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389
Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-13 19:52:23 +00:00

113 lines
3.7 KiB
C

/*
* Copyright (c) 2016 Jean-Paul Etienne <fractalclone@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <kernel.h>
#include <arch/cpu.h>
#include <kernel_structs.h>
#include <wait_q.h>
#include <string.h>
#if defined(CONFIG_THREAD_MONITOR)
/*
* Add a thread to the kernel's list of active threads.
*/
static ALWAYS_INLINE void thread_monitor_init(struct k_thread *thread)
{
unsigned int key;
key = irq_lock();
thread->next_thread = _kernel.threads;
_kernel.threads = thread;
irq_unlock(key);
}
#else
#define thread_monitor_init(thread) \
do {/* do nothing */ \
} while ((0))
#endif /* CONFIG_THREAD_MONITOR */
void _thread_entry_wrapper(_thread_entry_t thread,
void *arg1,
void *arg2,
void *arg3);
void _new_thread(char *stack_memory, size_t stack_size,
_thread_entry_t thread_func,
void *arg1, void *arg2, void *arg3,
int priority, unsigned options)
{
_ASSERT_VALID_PRIO(priority, thread_func);
struct k_thread *thread;
struct __esf *stack_init;
#ifdef CONFIG_INIT_STACKS
memset(stack_memory, 0xaa, stack_size);
#endif
/* Initial stack frame for thread */
stack_init = (struct __esf *)
STACK_ROUND_DOWN(stack_memory +
stack_size - sizeof(struct __esf));
/* Setup the initial stack frame */
stack_init->a0 = (uint32_t)thread_func;
stack_init->a1 = (uint32_t)arg1;
stack_init->a2 = (uint32_t)arg2;
stack_init->a3 = (uint32_t)arg3;
/*
* Following the RISC-V architecture,
* the MSTATUS register (used to globally enable/disable interrupt),
* as well as the MEPC register (used to by the core to save the
* value of the program counter at which an interrupt/exception occcurs)
* need to be saved on the stack, upon an interrupt/exception
* and restored prior to returning from the interrupt/exception.
* This shall allow to handle nested interrupts.
*
* Given that context switching is performed via a system call exception
* within the RISCV32 architecture implementation, initially set:
* 1) MSTATUS to SOC_MSTATUS_DEF_RESTORE in the thread stack to enable
* interrupts when the newly created thread will be scheduled;
* 2) MEPC to the address of the _thread_entry_wrapper in the thread
* stack.
* Hence, when going out of an interrupt/exception/context-switch,
* after scheduling the newly created thread:
* 1) interrupts will be enabled, as the MSTATUS register will be
* restored following the MSTATUS value set within the thread stack;
* 2) the core will jump to _thread_entry_wrapper, as the program
* counter will be restored following the MEPC value set within the
* thread stack.
*/
stack_init->mstatus = SOC_MSTATUS_DEF_RESTORE;
stack_init->mepc = (uint32_t)_thread_entry_wrapper;
/* Initialize various struct k_thread members */
thread = (struct k_thread *)stack_memory;
_init_thread_base(&thread->base, priority, K_PRESTART, options);
/* static threads overwrite it afterwards with real value */
thread->init_data = NULL;
thread->fn_abort = NULL;
#ifdef CONFIG_THREAD_CUSTOM_DATA
/* Initialize custom data field (value is opaque to kernel) */
thread->custom_data = NULL;
#endif
thread->callee_saved.sp = (uint32_t)stack_init;
thread_monitor_init(thread);
}