zephyr/drivers/dma/dma_silabs_ldma.c
Martin Hoff 5efaf9d8c1 drivers: dma: silabs: fix warning when compiling without assert
Fix warning compilation when CONFIG_ASSERT is set to no.

Signed-off-by: Martin Hoff <martin.hoff@silabs.com>
2025-02-28 18:30:19 +01:00

618 lines
18 KiB
C

/*
* Copyright (c) 2024 Silicon Laboratories Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdbool.h>
#include <stddef.h>
#include <zephyr/device.h>
#include <zephyr/drivers/dma.h>
#include <zephyr/drivers/dma/dma_silabs_ldma.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#include <zephyr/sys/mem_blocks.h>
#include "em_ldma.h"
#include "dmadrv.h"
#define DT_DRV_COMPAT silabs_ldma
#define DMA_IRQ_PRIORITY 3
LOG_MODULE_REGISTER(silabs_dma, CONFIG_DMA_LOG_LEVEL);
struct dma_silabs_channel {
enum dma_channel_direction dir;
uint32_t complete_callback_en;
atomic_t busy;
void *user_data;
dma_callback_t cb;
LDMA_TransferCfg_t xfer_config;
LDMA_Descriptor_t *desc;
};
struct dma_silabs_config {
void (*config_irq)(const struct device *dev);
const struct device *clock_dev;
};
struct dma_silabs_data {
struct dma_context dma_ctx;
struct dma_silabs_channel *dma_chan_table;
struct sys_mem_blocks *dma_desc_pool;
};
static int dma_silabs_get_blocksize(uint32_t src_blen, uint32_t dst_blen, uint32_t src_dsize)
{
const static struct {
int native;
int efr;
} ldma_blocksize_map[] = {
{ 0x0001, ldmaCtrlBlockSizeUnit1 },
{ 0x0002, ldmaCtrlBlockSizeUnit2 },
{ 0x0003, ldmaCtrlBlockSizeUnit3 },
{ 0x0004, ldmaCtrlBlockSizeUnit4 },
{ 0x0006, ldmaCtrlBlockSizeUnit6 },
{ 0x0008, ldmaCtrlBlockSizeUnit8 },
{ 0x0010, ldmaCtrlBlockSizeUnit16 },
{ 0x0020, ldmaCtrlBlockSizeUnit32 },
{ 0x0040, ldmaCtrlBlockSizeUnit64 },
{ 0x0080, ldmaCtrlBlockSizeUnit128 },
{ 0x0100, ldmaCtrlBlockSizeUnit256 },
{ 0x0200, ldmaCtrlBlockSizeUnit512 },
{ 0x0400, ldmaCtrlBlockSizeUnit1024 }
};
uint32_t arb_unit;
if (src_blen != dst_blen) {
LOG_ERR("Source burst length (%u) and destination burst length(%u) must be equal",
src_blen, dst_blen);
return -ENOTSUP;
}
if (src_blen % src_dsize) {
LOG_ERR("burst length (%u) and data size (%u) mismatch", src_blen, dst_blen);
return -EINVAL;
}
arb_unit = src_blen / src_dsize;
for (int i = 0; i < ARRAY_SIZE(ldma_blocksize_map); i++) {
if (ldma_blocksize_map[i].native == arb_unit) {
return ldma_blocksize_map[i].efr;
}
}
return -EINVAL;
}
static int dma_silabs_block_to_descriptor(struct dma_config *config,
struct dma_silabs_channel *chan_conf,
struct dma_block_config *block, LDMA_Descriptor_t *desc)
{
int ret, src_size, xfer_count;
if (block->dest_scatter_count || block->source_gather_count ||
block->source_gather_interval || block->dest_scatter_interval ||
block->dest_reload_en || block->source_reload_en) {
return -ENOTSUP;
}
if ((block->source_gather_en || block->dest_scatter_en) && config->block_count == 1) {
LOG_WRN("DMA scatter_gather enabled but there is only one descriptor "
"configured");
}
memset(desc, 0, sizeof(*desc));
if (config->channel_direction == MEMORY_TO_MEMORY) {
desc->xfer.structReq = 1;
}
if (config->source_data_size != config->dest_data_size) {
LOG_ERR("Source data size(%u) and destination data size(%u) must be equal",
config->source_data_size, config->dest_data_size);
return -ENOTSUP;
}
if (config->source_data_size < 1 || config->source_data_size > 4) {
return -ENOTSUP;
}
src_size = config->source_data_size;
desc->xfer.size = LOG2(src_size);
if (block->block_size % config->source_data_size) {
xfer_count = block->block_size / config->source_data_size;
} else {
xfer_count = block->block_size / config->source_data_size - 1;
}
if (xfer_count > LDMA_DESCRIPTOR_MAX_XFER_SIZE) {
return -ENOTSUP;
}
desc->xfer.xferCnt = xfer_count;
/* Warning : High LDMA blockSize (high burst) mean a large transfer
* without LDMA controller re-arbitration.
*/
ret = dma_silabs_get_blocksize(config->source_burst_length, config->dest_burst_length,
config->source_data_size);
if (ret < 0) {
return ret;
}
desc->xfer.blockSize = ret;
/* if complete_callbacks_enabled, callback is called at then end of each descriptor
* in the list (block for zephyr)
*/
desc->xfer.doneIfs = config->complete_callback_en;
if (config->channel_direction == PERIPHERAL_TO_MEMORY ||
config->channel_direction == MEMORY_TO_PERIPHERAL) {
if (block->flow_control_mode) {
desc->xfer.reqMode = ldmaCtrlReqModeAll;
} else {
desc->xfer.reqMode = ldmaCtrlReqModeBlock;
}
} else {
desc->xfer.reqMode = ldmaCtrlReqModeAll;
}
/* In silabs LDMA, increment sign is managed with the transfer configuration
* which is common for all descs of the channel. Zephyr DMA API allows
* to manage increment sign for each block desc which can't be done with
* silabs LDMA. If increment sign is different in 2 block desc, then an
* error is returned.
*/
if (block->source_addr_adj != DMA_ADDR_ADJ_NO_CHANGE &&
block->source_addr_adj != chan_conf->xfer_config.ldmaCfgSrcIncSign) {
return -ENOTSUP;
}
if (block->source_addr_adj == DMA_ADDR_ADJ_NO_CHANGE) {
desc->xfer.srcInc = ldmaCtrlSrcIncNone;
} else {
desc->xfer.srcInc = ldmaCtrlSrcIncOne;
}
if (block->dest_addr_adj == DMA_ADDR_ADJ_NO_CHANGE) {
desc->xfer.dstInc = ldmaCtrlDstIncNone;
} else {
desc->xfer.dstInc = ldmaCtrlDstIncOne;
}
desc->xfer.srcAddrMode = ldmaCtrlSrcAddrModeAbs;
desc->xfer.dstAddrMode = ldmaCtrlDstAddrModeAbs;
if (block->source_address == 0) {
LOG_WRN("source_buffer address is null.");
}
if (block->dest_address == 0) {
LOG_WRN("dest_buffer address is null.");
}
desc->xfer.srcAddr = block->source_address;
desc->xfer.dstAddr = block->dest_address;
return 0;
}
static int dma_silabs_release_descriptor(struct dma_silabs_data *data, LDMA_Descriptor_t *desc)
{
LDMA_Descriptor_t *head_desc, *next_desc;
int ret;
head_desc = desc;
while (desc) {
next_desc = LDMA_DESCRIPTOR_LINKABS_LINKADDR_TO_ADDR(desc->xfer.linkAddr);
ret = sys_mem_blocks_free(data->dma_desc_pool, 1, (void **)&desc);
if (ret) {
return ret;
}
desc = next_desc;
/* Protection against descriptor loop*/
if (desc == head_desc) {
break;
}
}
return 0;
}
static int dma_silabs_configure_descriptor(struct dma_config *config, struct dma_silabs_data *data,
struct dma_silabs_channel *chan_conf)
{
struct dma_block_config *head_block = config->head_block;
struct dma_block_config *block = config->head_block;
LDMA_Descriptor_t *desc, *prev_desc;
int ret;
/* Descriptors configuration
* block refers to user configured block (dma_block_config structure from dma.h)
* desc refers to driver configured block (LDMA_Descriptor_t structure from silabs
* hal)
*/
prev_desc = NULL;
while (block) {
ret = sys_mem_blocks_alloc(data->dma_desc_pool, 1, (void **)&desc);
if (ret) {
goto err;
}
ret = dma_silabs_block_to_descriptor(config, chan_conf, block, desc);
if (ret) {
goto err;
}
if (!prev_desc) {
chan_conf->desc = desc;
} else {
prev_desc->xfer.linkAddr = LDMA_DESCRIPTOR_LINKABS_ADDR_TO_LINKADDR(desc);
prev_desc->xfer.linkMode = ldmaLinkModeAbs;
prev_desc->xfer.link = 1;
}
prev_desc = desc;
block = block->next_block;
if (block == head_block) {
block = NULL;
prev_desc->xfer.linkAddr =
LDMA_DESCRIPTOR_LINKABS_ADDR_TO_LINKADDR(chan_conf->desc);
prev_desc->xfer.linkMode = ldmaLinkModeAbs;
prev_desc->xfer.link = 1;
}
}
return 0;
err:
/* Free all eventually allocated descriptor */
dma_silabs_release_descriptor(data, chan_conf->desc);
return ret;
}
static void dma_silabs_irq_handler(const struct device *dev, uint32_t id)
{
const struct dma_silabs_data *data = dev->data;
struct dma_silabs_channel *chan;
int status;
uint32_t pending, chnum;
pending = LDMA_IntGetEnabled();
for (chnum = 0; chnum < data->dma_ctx.dma_channels; chnum++) {
chan = &data->dma_chan_table[chnum];
status = DMA_STATUS_COMPLETE;
if (pending & LDMA_IF_ERROR) {
if (chan->cb) {
chan->cb(dev, chan->user_data, chnum, -EIO);
}
} else if (pending & BIT(chnum)) {
LDMA_IntClear(BIT(chnum));
/* Is it only an interrupt for the end of a descriptor and not a complete
* transfer.
*/
if (chan->complete_callback_en) {
status = DMA_STATUS_BLOCK;
} else {
atomic_clear(&chan->busy);
}
/*
* In the case that the transfer is done but we have append a new
* descriptor, we need to manually load the next descriptor
*/
if (LDMA_TransferDone(chnum) &&
LDMA->CH[chnum].LINK & _LDMA_CH_LINK_LINK_MASK) {
sys_clear_bit((mem_addr_t)&LDMA->CHDONE, chnum);
LDMA->LINKLOAD = BIT(chnum);
}
if (chan->cb) {
chan->cb(dev, chan->user_data, chnum, status);
}
}
}
}
static int dma_silabs_configure(const struct device *dev, uint32_t channel,
struct dma_config *config)
{
struct dma_silabs_data *data = dev->data;
struct dma_silabs_channel *chan_conf = &data->dma_chan_table[channel];
LDMA_TransferCfg_t *xfer_config = &chan_conf->xfer_config;
int ret;
if (channel > data->dma_ctx.dma_channels) {
return -EINVAL;
}
if (!config) {
return -EINVAL;
}
if (atomic_get(&chan_conf->busy)) {
LOG_ERR("DMA channel %u is busy", channel);
return -EBUSY;
}
/* Release previously owned descriptor for this channel*/
ret = dma_silabs_release_descriptor(data, chan_conf->desc);
if (ret) {
return ret;
}
if (config->dest_data_size != config->source_data_size) {
LOG_ERR("source and dest data size differ");
return -ENOTSUP;
}
if (config->source_handshake || config->dest_handshake || config->source_chaining_en ||
config->dest_chaining_en || config->linked_channel) {
return -ENOTSUP;
}
LDMA_StopTransfer(channel);
chan_conf->user_data = config->user_data;
chan_conf->cb = config->dma_callback;
chan_conf->dir = config->channel_direction;
chan_conf->complete_callback_en = config->complete_callback_en;
memset(xfer_config, 0, sizeof(*xfer_config));
switch (config->channel_direction) {
case MEMORY_TO_MEMORY:
break;
case PERIPHERAL_TO_MEMORY:
case MEMORY_TO_PERIPHERAL:
xfer_config->ldmaReqSel = SILABS_LDMA_SLOT_TO_REQSEL(config->dma_slot);
break;
case PERIPHERAL_TO_PERIPHERAL:
case HOST_TO_MEMORY:
case MEMORY_TO_HOST:
default:
return -ENOTSUP;
}
/* Directly transform channel_priority into efr priority */
if (config->channel_priority < ldmaCfgArbSlotsAs1 ||
config->channel_priority > ldmaCfgArbSlotsAs8) {
return -EINVAL;
}
xfer_config->ldmaCfgArbSlots = config->channel_priority;
switch (config->head_block->source_addr_adj) {
case DMA_ADDR_ADJ_INCREMENT:
xfer_config->ldmaCfgSrcIncSign = ldmaCfgSrcIncSignPos;
break;
case DMA_ADDR_ADJ_DECREMENT:
xfer_config->ldmaCfgSrcIncSign = ldmaCfgSrcIncSignNeg;
break;
case DMA_ADDR_ADJ_NO_CHANGE:
xfer_config->ldmaCfgSrcIncSign = ldmaCfgSrcIncSignPos;
break;
default:
LOG_ERR("Addr Adjustement error %d", config->head_block->source_addr_adj);
break;
}
switch (config->head_block->dest_addr_adj) {
case DMA_ADDR_ADJ_INCREMENT:
xfer_config->ldmaCfgDstIncSign = ldmaCfgDstIncSignPos;
break;
case DMA_ADDR_ADJ_DECREMENT:
xfer_config->ldmaCfgDstIncSign = ldmaCfgDstIncSignNeg;
break;
case DMA_ADDR_ADJ_NO_CHANGE:
xfer_config->ldmaCfgDstIncSign = ldmaCfgDstIncSignPos;
break;
default:
break;
}
ret = dma_silabs_configure_descriptor(config, data, chan_conf);
if (ret) {
return ret;
}
atomic_set_bit(data->dma_ctx.atomic, channel);
return 0;
}
static int dma_silabs_start(const struct device *dev, uint32_t channel)
{
const struct dma_silabs_data *data = dev->data;
struct dma_silabs_channel *chan = &data->dma_chan_table[channel];
if (channel > data->dma_ctx.dma_channels) {
return -EINVAL;
}
atomic_inc(&chan->busy);
LDMA_StartTransfer(channel, &chan->xfer_config, chan->desc);
return 0;
}
static int dma_silabs_stop(const struct device *dev, uint32_t channel)
{
const struct dma_silabs_data *data = dev->data;
struct dma_silabs_channel *chan = &data->dma_chan_table[channel];
if (channel > data->dma_ctx.dma_channels) {
return -EINVAL;
}
LDMA_StopTransfer(channel);
atomic_clear(&chan->busy);
LDMA_IntClear(BIT(channel));
return 0;
}
static int dma_silabs_get_status(const struct device *dev, uint32_t channel,
struct dma_status *status)
{
const struct dma_silabs_data *data = dev->data;
if (channel > data->dma_ctx.dma_channels) {
return -EINVAL;
}
if (!atomic_test_bit(data->dma_ctx.atomic, channel)) {
return -EINVAL;
}
status->pending_length = LDMA_TransferRemainingCount(channel);
status->busy = data->dma_chan_table[channel].busy;
status->dir = data->dma_chan_table[channel].dir;
return 0;
}
bool dma_silabs_chan_filter(const struct device *dev, int channel, void *filter_param)
{
ARG_UNUSED(dev);
ARG_UNUSED(filter_param);
return (DMADRV_AllocateChannelById(channel, 0) == ECODE_EMDRV_DMADRV_OK);
}
void dma_silabs_chan_release(const struct device *dev, uint32_t channel)
{
ARG_UNUSED(dev);
Ecode_t __maybe_unused err = DMADRV_FreeChannel(channel);
__ASSERT_NO_MSG(err == ECODE_EMDRV_DMADRV_OK);
}
static int dma_silabs_init(const struct device *dev)
{
const struct dma_silabs_config *config = dev->config;
/* Clock is managed by em_ldma */
DMADRV_Init();
/* LDMA_Init configure IRQ but we want IRQ to match with configured one in the dts*/
config->config_irq(dev);
return 0;
}
static DEVICE_API(dma, dma_funcs) = {
.config = dma_silabs_configure,
.start = dma_silabs_start,
.stop = dma_silabs_stop,
.get_status = dma_silabs_get_status,
.chan_filter = dma_silabs_chan_filter,
.chan_release = dma_silabs_chan_release
};
int silabs_ldma_append_block(const struct device *dev, uint32_t channel, struct dma_config *config)
{
const struct dma_silabs_data *data = dev->data;
struct dma_silabs_channel *chan_conf = &data->dma_chan_table[channel];
struct dma_block_config *block_config = config->head_block;
LDMA_Descriptor_t *desc = data->dma_chan_table[channel].desc;
unsigned int key;
int ret;
__ASSERT(!((uintptr_t)desc & ~_LDMA_CH_LINK_LINKADDR_MASK),
"DMA Descriptor is not 32 bits aligned");
if (channel > data->dma_ctx.dma_channels) {
return -EINVAL;
}
if (!atomic_test_bit(data->dma_ctx.atomic, channel)) {
return -EINVAL;
}
/* DMA Channel already have loaded a descriptor with a linkaddr
* so we can't append a new block just after the current transfer.
* You can't also append a descriptor list.
* This check is here to not use the function in a wrong way
*/
if (desc->xfer.linkAddr || config->head_block->next_block) {
return -EINVAL;
}
/* A link is already set by a previous call to the function */
if (sys_test_bit((mem_addr_t)&LDMA->CH[channel].LINK, _LDMA_CH_LINK_LINK_SHIFT)) {
return -EINVAL;
}
ret = dma_silabs_block_to_descriptor(config, chan_conf, block_config, desc);
if (ret) {
return ret;
}
key = irq_lock();
if (!LDMA_TransferDone(channel)) {
/*
* It is voluntary to split this 2 lines in order to separate the write of the link
* addr and the write of the link bit. In this way, there is always a linkAddr when
* the link bit is set.
*/
sys_write32((uintptr_t)desc, (mem_addr_t)&LDMA->CH[channel].LINK);
sys_set_bit((mem_addr_t)&LDMA->CH[channel].LINK, _LDMA_CH_LINK_LINK_SHIFT);
irq_unlock(key);
} else {
irq_unlock(key);
LDMA_StartTransfer(channel, &chan_conf->xfer_config, desc);
}
return 0;
}
#define SILABS_DMA_IRQ_CONNECT(n, inst) \
IRQ_CONNECT(DT_INST_IRQ_BY_IDX(inst, n, irq), DT_INST_IRQ_BY_IDX(inst, n, priority), \
dma_silabs_irq_handler, DEVICE_DT_INST_GET(inst), 0); \
irq_enable(DT_INST_IRQ_BY_IDX(inst, n, irq));
#define CONFIGURE_ALL_IRQS(inst, n) LISTIFY(n, SILABS_DMA_IRQ_CONNECT, (), inst)
#define DMA_SILABS_LDMA_INIT(inst) \
\
static void silabs_dma_irq_configure_##inst(const struct device *dev) \
{ \
ARG_UNUSED(dev); \
CONFIGURE_ALL_IRQS(inst, DT_NUM_IRQS(DT_DRV_INST(inst))); \
}; \
\
const struct dma_silabs_config dma_silabs_config_##inst = { \
.config_irq = silabs_dma_irq_configure_##inst \
}; \
\
static ATOMIC_DEFINE(dma_channels_atomic_##inst, DT_INST_PROP(inst, dma_channels)); \
\
static struct dma_silabs_channel \
dma_silabs_channel_##inst[DT_INST_PROP(inst, dma_channels)]; \
\
SYS_MEM_BLOCKS_DEFINE_STATIC(desc_pool_##inst, sizeof(LDMA_Descriptor_t), \
CONFIG_DMA_MAX_DESCRIPTOR, 4); \
\
static struct dma_silabs_data dma_silabs_data_##inst = { \
.dma_ctx.magic = DMA_MAGIC, \
.dma_ctx.dma_channels = DT_INST_PROP(inst, dma_channels), \
.dma_ctx.atomic = dma_channels_atomic_##inst, \
.dma_chan_table = dma_silabs_channel_##inst, \
.dma_desc_pool = &desc_pool_##inst \
}; \
\
DEVICE_DT_INST_DEFINE(inst, &dma_silabs_init, NULL, &dma_silabs_data_##inst, \
&dma_silabs_config_##inst, PRE_KERNEL_1, CONFIG_DMA_INIT_PRIORITY, \
&dma_funcs);
DT_INST_FOREACH_STATUS_OKAY(DMA_SILABS_LDMA_INIT);