zephyr/subsys/debug/gdb_server.c
Anas Nashif 569f0b4105 debug: move debug features from misc to subsys/debug
Change-Id: I446be0202325cf3cead7ce3024ca2047e3f7660d
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
2016-12-19 19:58:40 +00:00

2469 lines
60 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2015 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file Generic part of the GDB server
*
* This module provides the embedded GDB Remote Serial Protocol for Zephyr.
*
* The following is a list of all currently defined GDB RSP commands.
*
* `?'
* Indicate the reason the target halted.
*
* `c [addr]'
* Continue. addr is address to resume. If addr is omitted, resume at
* current address.
*
* `C sig[;addr]'
* Continue with signal sig (hex signal number). If `;addr' is omitted,
* resume at same address.
*
* _WRS_XXX - Current limitation: Even if this syntax is understood, the
* GDB server does not resume the context with the specified signal but
* resumes it with the exception vector that caused the context to stop.
*
* `D'
* Detach GDB from the remote system.
*
* `g'
* Read general registers.
*
* `G XX...'
* Write general registers.
*
* `k'
* Detach GDB from the remote system.
*
* `m addr,length'
* Read length bytes of memory starting at address addr. Note that addr
* may not be aligned to any particular boundary. The stub need not use
* any particular size or alignment when gathering data from memory for
* the response; even if addr is word-aligned and length is a multiple of
* the word size, the stub is free to use byte accesses, or not. For this
* reason, this packet may not be suitable for accessing memory-mapped I/O
* devices.
*
* `M addr,length:XX...'
* Write length bytes of memory starting at address addr. XX... is the data.
* Each byte is transmitted as a two-digit hexadecimal number.
*
* `p n'
* Read the value of register n; n is in hex.
*
* `P n...=r...'
* Write register n... with value r.... The register number n is in
* hexadecimal, and r... contains two hex digits for each byte in the
* register (target byte order).
*
* `q name params...'
* General query. See General Query Packets description
*
* `s [addr]'
* Single step. addr is the address at which to resume. If addr is omitted,
* resume at same address.
*
* `S sig[;addr]'
* Step with signal. This is analogous to the `C' packet, but requests a
* single-step, rather than a normal resumption of execution.
*
* NOTE: Current limitation: Even if this syntax is understood, the GDB
* server steps the context without the specified signal (i.e like the
* `s [addr]' command).
*
* `T thread-id'
* Find out if the thread thread-id is alive.
*
* `vCont[;action[:thread-id]]...'
* Resume the inferior, specifying different actions for each thread. If an
* action is specified with no thread-id, then it is applied to any threads
* that don't have a specific action specified; if no default action is
* specified then other threads should remain stopped. Specifying multiple
* default actions is an error; specifying no actions is also an error.
*
* Currently supported actions are:
*
* `c'
* Continue.
* `C sig'
* Continue with signal sig. The signal sig should be two hex digits.
* `s'
* Step.
* `S sig'
* Step with signal sig. The signal sig should be two hex digits.
*
* The optional argument addr normally associated with the `c', `C', `s',
* and `S' packets is not supported in `vCont'.
*
* `X addr,length:XX...'
* Write length bytes of memory starting at address addr, where the data
* is transmitted in binary. The binary data representation uses 7d (ascii
* }) as an escape character. Any escaped byte is transmitted as the
* escape character followed by the original character XORed with 0x20.
*
* `z type,addr,length'
* `Z type,addr,length'
* Insert (`Z') or remove (`z') a type breakpoint starting at addr address
* of length length.
*
* General Query Packets:
* `qC'
* Return the current thread ID.
*
* `qSupported'
* Query the GDB server for features it supports. This packet allows
* client to take advantage of GDB server's features.
*
* These are the currently defined GDB server features, in more detail:
*
* `PacketSize=bytes'
* The GDB server can accept packets up to at least bytes in length.
* client will send packets up to this size for bulk transfers, and
* will never send larger packets. This is a limit on the data
* characters in the packet, including the frame and checksum. There
* is no trailing NUL byte in a remote protocol packet;
*
* `qXfer:features:read'
* Access the target description. Target description can identify the
* architecture of the remote target and (for some architectures)
* provide information about custom register sets. They can also
* identify the OS ABI of the remote target. Client can use this
* information to autoconfigure for your target, or to warn you if you
* connect to an unsupported target.
*
* By default, the following simple target description is supported:
*
* <target version="1.0">
* <architecture>i386</architecture>
* </target>
*
* But architectures may also reports information on specific features
* such as extended registers definitions or hardware breakpoint
* definitions.
*
* Each `<feature>' describes some logical portion of the target
* system.
* A `<feature>' element has this form:
*
* <feature name="NAME">
* [TYPE...]
* REG...
* </feature>
*
* Each feature's name should be unique within the description. The
* name of a feature does not matter unless GDB has some special
* knowledge of the contents of that feature; if it does, the feature
* should have its standard name.
*
* Extended registers definitions are reported following the standard
* register format defined by GDB Remote protocol:
*
* Each register is represented as an element with this form:
*
* <reg name="NAME"
* bitsize="SIZE"
* [regnum="NUM"]
* [save-restore="SAVE-RESTORE"]
* [type="TYPE"]
* [group="GROUP"]/>
*
* The components are as follows:
*
* NAME
* The register's name; it must be unique within the target
* description.
*
* BITSIZE
* The register's size, in bits.
*
* REGNUM
* The register's number. If omitted, a register's number is one
* greater than that of the previous register (either in the
* current feature or in a preceding feature); the first register
* in the target description defaults to zero. This register
* number is used to read or write the register; e.g. it is used
* in the remote `p' and `P' packets, and registers appear in the
* `g' and `G' packets in order of increasing register number.
*
* SAVE-RESTORE
* Whether the register should be preserved across inferior
* function calls; this must be either `yes' or `no'. The default
* is `yes', which is appropriate for most registers except for
* some system control registers; this is not related to the
* target's ABI.
*
* TYPE
* The type of the register. TYPE may be a predefined type, a
* type defined in the current feature, or one of the special
* types `int' and `float'. `int' is an integer type of the
* correct size for BITSIZE, and `float' is a floating point type
* (in the architecture's normal floating point format) of the
* correct size for BITSIZE. The default is `int'.
*
* GROUP
* The register group to which this register belongs. GROUP must
* be either `general', `float', or `vector'. If no GROUP is
* specified, GDB will not display the register in `info
* registers'.
*
*
* Hardware breakpoint definitions are reported using the following
* format:
*
* <feature name="HW_BP_FEATURE">
* <defaults
* max_bp="MAX_BP"
* max_inst_bp="MAX_INST_BP"
* max_watch_bp="MAX_WATCH_BP"
* length="LENGTH"
* >
* HW_BP_DESC...
* </feature>
*
* The defaults section allows to define some default values and avoid
* to list them in each HW_BP_DESC.
*
* Each HW_BP_DESC entry has the form:
*
* <hwbp type="ACCESS_TYPE"
* [length="LENGTH"]
* [max_bp="MAX_BP"]
* />
*
* If HW_BP_DESC defines an item which has a default value defined,
* then it overwrite the default value for HW_BP_DESC entry.
*
* Items in [brackets] are optional. The components are as follows:
*
* MAX_BP
* Maximum number of hardware breakpoints that can be set.
*
* MAX_INST_BP
* Maximum number of instruction hardware breakpoints that can be
* set.
*
* MAX_WATCH_BP
* Maximum number of data hardware breakpoints that can be set.
*
* LENGTH
* Supported access lengths (in hexadecimal without 0x prefix).
* Access lengths are encoded as powers of 2 which can be OR'ed.
* For example, if an hardware breakpoint type supports 1, 2, 4,
* 8 bytes access, length will be f (0x1|0x2|0x4|0x8).
*
* ACCESS_TYPE
* Hardware breakpoint type:
* inst : Instruction breakpoint
* watch : Write access breakpoint
* rwatch: Read access breakpoint
* awatch: Read|Write access breakpoint
*
* The GDB server can also reports additional information using the
* "WR_AGENT_FEATURE" feature. The purpose of this feature is to report
* information about the agent configuration.
* The GDB server feature is using the following format:
*
* <feature name="WR_AGENT_FEATURE">
* <config max_sw_bp="MAX_SW_BP"
* step_only_on_bp="STEP_ONLY_ON_BP"
* />
* </feature>
*
* The components are as follows:
*
* MAX_SW_BP
* Maximum number of software breakpoint that can be set.
*
* STEP_ONLY_ON_BP
* This parameter is set to 1 if the GDB server is only able to
* step the context which hit the breakpoint.
* This parameter is set to 0 if the GDB server is able to step
* any context.
*
* `QStartNoAckMode'
* By default, when either the client or the server sends a packet,
* the first response expected is an acknowledgment: either `+' (to
* indicate the package was received correctly) or `-' (to request
* retransmission). This mechanism allows the GDB remote protocol to
* operate over unreliable transport mechanisms, such as a serial
* line.
*
* In cases where the transport mechanism is itself reliable (such as
* a pipe or TCP connection), the `+'/`-' acknowledgments are
* redundant. It may be desirable to disable them in that case to
* reduce communication overhead, or for other reasons. This can be
* accomplished by means of the `QStartNoAckMode' packet.
*
* `CONFIG_GDB_REMOTE_SERIAL_EXT_NOTIF_PREFIX_STR`
* This parameter indicates that the GDB server supports transfer of
* Zephyr console I/O to the client using GDB notification packets.
*
* NOTE: Current limitation: For now, the GDB server only supports the
* console output.
*
* Notification Packets:
* Extension of the GDB Remote Serial Protocol uses notification packets
* (See `CONFIG_GDB_REMOTE_SERIAL_EXT_NOTIF_PREFIX_STR` support).
* Those packets are transferred using the following format:
* %<notificationName:<notificationData>#<checksum>
*
* For example:
* %CONFIG_GDB_REMOTE_SERIAL_EXT_NOTIF_PREFIX_STR:<notificationData>#<checksum>
*/
#include <nanokernel.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <kernel_structs.h>
#include <board.h>
#include <device.h>
#include <uart.h>
#include <cache.h>
#include <init.h>
#include <debug/gdb_arch.h>
#include <debug/mem_safe.h>
#include <gdb_server.h>
#include <debug_info.h>
#ifdef CONFIG_GDB_SERVER_INTERRUPT_DRIVEN
#include <drivers/console/uart_console.h>
#endif
#ifdef CONFIG_REBOOT
#include <misc/reboot.h>
#endif
#define STUB_OK "OK"
#define STUB_ERROR "ENN"
/* Size of notification data buffers */
#ifndef GDB_NOTIF_DATA_SIZE
#define GDB_NOTIF_DATA_SIZE 100
#endif
/* Overhead size for notification packet encoding. */
#define NOTIF_PACKET_OVERHEAD 6
/* Maximum number of software breakpoints */
#define MAX_SW_BP CONFIG_GDB_SERVER_MAX_SW_BP
#define GDB_INVALID_REG_SET ((void *)-1)
#define fill_output_buffer(x) strncpy((char *)gdb_buffer, x, GDB_BUF_SIZE - 1)
#ifdef CONFIG_GDB_SERVER_BOOTLOADER
#define STR_TYPE ";type=zephyr_boot"
#else
#define STR_TYPE ";type=zephyr"
#endif
#ifdef GDB_ARCH_HAS_RUNCONTROL
#define RESUME_SYSTEM() resume_system()
#define REMOVE_ALL_INSTALLED_BREAKPOINTS() \
remove_all_installed_breakpoints()
#define UNINSTALL_BREAKPOINTS() uninstall_breakpoints()
#else
#define RESUME_SYSTEM()
#define REMOVE_ALL_INSTALLED_BREAKPOINTS()
#define UNINSTALL_BREAKPOINTS()
#endif
#ifdef GDB_ARCH_HAS_RUNCONTROL
struct bp_array {
gdb_instr_t *addr; /* breakpoint address */
gdb_instr_t instr; /* saved instruction */
char valid; /* breakpoint is valid? */
char enabled; /* breakpoint is enabled? */
};
#endif
static const unsigned char hex_chars[] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
};
static int client_is_connected;
static int in_no_ack_mode;
static int valid_registers;
static volatile int event_is_pending;
static volatile int cpu_stop_signal = GDB_SIG_NULL;
static volatile int cpu_pending_signal;
static struct gdb_reg_set gdb_regs;
static const char *xml_target_header = "<?xml version=\"1.0\"?> "
"<!DOCTYPE target SYSTEM "
"\"gdb-target.dtd\"> <target version=\"1.0\">\n";
static const char *xml_target_footer = "</target>";
static unsigned char gdb_buffer[GDB_BUF_SIZE];
static unsigned char tmp_reg_buffer[GDB_NUM_REG_BYTES];
#ifdef GDB_ARCH_HAS_RUNCONTROL
#ifdef GDB_ARCH_HAS_HW_BP
static int hw_bp_cnt;
static struct gdb_debug_regs dbg_regs;
#endif
static int trace_lock_key;
/*
* GDB breakpoint table. Note that all the valid entries in the breakpoint
* table are kept contiguous. When parsing the table, the first invalid entry
* in the table marks the end of the table.
*/
static struct bp_array bp_array[MAX_SW_BP];
#ifdef GDB_ARCH_NO_SINGLE_STEP
static gdb_instr_t *gdb_step_emu_next_pc;
static gdb_instr_t gdb_step_emu_instr;
#endif
#endif
#ifdef GDB_ARCH_HAS_REMOTE_SERIAL_EXT_USING_NOTIF_PACKETS
static volatile int notif_pkt_pending;
static volatile int notif_data_idx;
static unsigned char notif_data[GDB_NOTIF_DATA_SIZE];
#endif
#ifdef CONFIG_GDB_SERVER_INTERRUPT_DRIVEN
static struct nano_fifo avail_queue;
static struct nano_fifo cmds_queue;
#endif
static struct device *uart_console_dev;
/* global definitions */
volatile int gdb_debug_status = NOT_DEBUGGING;
#ifdef GDB_ARCH_HAS_RUNCONTROL
#ifdef GDB_ARCH_HAS_HW_BP
volatile int cpu_stop_bp_type = GDB_SOFT_BP;
long cpu_stop_hw_bp_addr;
#endif
#endif
static int put_packet(unsigned char *buffer);
static void put_debug_char(unsigned char ch);
static unsigned char get_debug_char(void);
static void post_event(void);
static void control_loop(void);
static void handle_system_stop(NANO_ISF *reg, int sig);
#ifdef GDB_ARCH_HAS_RUNCONTROL
#define ADD_DEL_BP_SIG(x) \
int(x)(enum gdb_bp_type type, long addr, int len, \
enum gdb_error_code *err)
typedef ADD_DEL_BP_SIG(add_del_bp_t);
static ADD_DEL_BP_SIG(add_bp);
static ADD_DEL_BP_SIG(delete_bp);
static void resume_system(void);
static int set_instruction(void *addr, gdb_instr_t *instruction, size_t size);
static void remove_all_installed_breakpoints(void);
#endif
#ifdef GDB_ARCH_HAS_REMOTE_SERIAL_EXT_USING_NOTIF_PACKETS
static void handle_notification(void);
static void request_notification_packet_flush(void);
static uint32_t write_to_console(char *buf, uint32_t len);
#endif
#ifdef CONFIG_GDB_SERVER_INTERRUPT_DRIVEN
static int console_irq_input_hook(uint8_t ch);
#endif
static int get_hex_char_value(unsigned char ch)
{
if ((ch >= 'a') && (ch <= 'f')) {
return ch - 'a' + 10;
}
if ((ch >= '0') && (ch <= '9')) {
return ch - '0';
}
if ((ch >= 'A') && (ch <= 'F')) {
return ch - 'A' + 10;
}
return -1;
}
/**
* @brief Consume a hex number from a string and convert to long long number
*
* Consume the string up to the end of the hex number, i.e. the pointer to the
* string is advanced and output that number via the @a value parameter.
*
* Does not handle negative numbers.
*
* @return The number of characters consumed from the string.
*/
static int hex_str_to_longlong(unsigned char **hex_str, long long *value)
{
int num_chars_consumed = 0;
int hex_value;
*value = 0;
while (**hex_str) {
hex_value = get_hex_char_value(**hex_str);
if (hex_value < 0) {
break;
}
*value = (*value << 4) | hex_value;
num_chars_consumed++;
(*hex_str)++;
}
return num_chars_consumed;
}
/*
* Similar to hex_str_to_longlong, but outputs an int and handles negative
* numbers.
*/
static int hex_str_to_int(unsigned char **ptr, int *value)
{
int num_chars_consumed = 0;
int hex_value;
int neg = 0;
*value = 0;
if (**ptr == '-') {
neg = 1;
(*ptr)++;
num_chars_consumed++;
}
while (**ptr) {
hex_value = get_hex_char_value(**ptr);
if (hex_value < 0) {
break;
}
*value = (*value << 4) | hex_value;
num_chars_consumed++;
(*ptr)++;
}
if (neg) {
if (num_chars_consumed == 1) {
(*ptr)--;
num_chars_consumed = 0;
} else {
*value = -(*value);
}
}
return num_chars_consumed;
}
/*
* Consume two hex characters from a string and return the corresponding
* value.
*/
static int hex_str_to_byte(unsigned char **str)
{
unsigned char *ptr = *str;
int byte;
byte = get_hex_char_value(*ptr++);
byte = (byte << 4) + get_hex_char_value(*ptr++);
if (byte >= 0) {
*str = ptr;
}
return byte;
}
/*
* Turn a one-byte value into two hex characters and write them to the buffer.
* Return the next position in the buffer.
*/
static unsigned char *put_hex_byte(unsigned char *buf, int value)
{
*buf++ = hex_chars[value >> 4];
*buf++ = hex_chars[value & 0xf];
return buf;
}
static inline int is_size_encoder(int num)
{
/*
* It is not possible to use the '$', '#' and '%' characters to encode
* the size per GDB remote protocol specification.
*/
return (num + 29) != '$' && (num + 29) != '#' && (num + 29) != '%';
}
/*
* Compress memory pointed to by buffer into its ascii hex value, the
* character '*' and the number of times it is reapeated, placing result in
* the same buffer. Return a pointer to the last char put in buf (null).
*/
static unsigned char *compress(unsigned char *buf)
{
unsigned char *read_ptr = buf;
unsigned char *write_ptr = buf;
unsigned char ch;
size_t count = strlen((char *)buf);
int max_repeat = 126 - 29;
size_t ix;
for (ix = 0; ix < count; ix++) {
int num = 0;
int jx;
ch = *read_ptr++;
*write_ptr++ = ch;
for (jx = 1; ((jx + ix) < count) && (jx < max_repeat); jx++) {
if (read_ptr[jx - 1] == ch) {
num++;
} else {
break;
}
}
if (num >= 3) {
/*
* Skip characters that cannot be used as size
* encoders.
*/
while (!is_size_encoder(num)) {
num--;
}
*write_ptr++ = '*';
*write_ptr++ = (unsigned char)(num + 29);
read_ptr += num;
ix += num;
}
}
*write_ptr = 0;
return write_ptr;
}
/**
* @brief encode memory data using hexadecimal value of chars from '0' to 'f'
*
* For example, 0x3 (CTRL+C) will be encoded with hexadecimal values of
* '0' (0x30) and '3' (0x33): 0x3033.
*
* Use mem2hex() to encode a buffer avoid to send control chars that could
* perturbate communication protocol.
*
* @param data to encode
* @param output buffer
* @param size of data to encode
* @param Compress output data ?
*
* @return Pointer to the last char put in buf (null).
*/
static unsigned char *mem2hex(unsigned char *mem, unsigned char *buf,
int count, int do_compress)
{
int i;
unsigned char ch;
unsigned char *saved_buf = buf;
for (i = 0; i < count; i++) {
ch = *mem++;
buf = put_hex_byte(buf, ch);
}
*buf = 0;
if (do_compress) {
return compress(saved_buf);
}
return buf;
}
static inline int do_mem_probe(char *addr, int mode, int width,
int preserve, long *dummy)
{
char *p = (char *)dummy;
if (preserve) {
if (_mem_probe(addr, SYS_MEM_SAFE_READ, width, p) < 0) {
return -1;
}
}
if (_mem_probe(addr, mode, width, p) < 0) {
return -1;
}
return 0;
}
/**
* @brief Probe if memory location is valid
*
* @param addr Address to test
* @param mode Mode of access (SYS_MEM_SAFE_READ/WRITE)
* @param size Number of bytes to test
* @param width Width of memory access (1, 2, or 4)
* @param preserve Preserve memory on write test ?
*
* @return 0 if memory is accessible, -1 otherwise.
*/
static int mem_probe(char *addr, int mode, int size,
int width, int preserve)
{
long dummy;
/* if memory length is zero, test is done */
if (size == 0) {
return 0;
}
/* Validate parameters */
preserve = mode == SYS_MEM_SAFE_READ ? 0 : preserve;
if (width == 0) {
width = 1;
} else {
if ((width != 1) && (width != 2) && (width != 4)) {
return -1;
}
}
/* Check addr, size & width parameters coherency */
if (((unsigned long)addr % width) || (size % width)) {
return -1;
}
/* Check first address */
if (do_mem_probe(addr, mode, width, preserve, &dummy) < 0) {
return -1;
}
/* Check if we have tested the whole memory */
if (width == size) {
return 0;
}
/* Check last address */
addr = addr + size - width;
if (do_mem_probe(addr, mode, width, preserve, &dummy) < 0) {
return -1;
}
return 0;
}
static int put_packet(unsigned char *buffer)
{
unsigned char checksum = 0;
int count = 0;
unsigned char ch;
/* $<packet info>#<checksum>. */
do {
put_debug_char('$');
checksum = 0;
count = 0;
/* Buffer terminated with null character */
while ((ch = buffer[count])) {
put_debug_char(ch);
checksum = (unsigned char)(checksum + ch);
count += 1;
}
put_debug_char('#');
put_debug_char(hex_chars[(checksum >> 4)]);
put_debug_char(hex_chars[(checksum & 0xf)]);
if (!in_no_ack_mode) {
/* Wait for ack */
ch = get_debug_char();
if (ch == '+') {
return 0;
}
if (ch == '$') {
put_debug_char('-');
return 0;
}
if (ch == GDB_STOP_CHAR) {
cpu_stop_signal = GDB_SIG_INT;
gdb_debug_status = DEBUGGING;
post_event();
return 0;
}
} else {
return 0;
}
} while (1);
}
#ifdef GDB_ARCH_HAS_REMOTE_SERIAL_EXT_USING_NOTIF_PACKETS
/*
* Request a flush of pending notification packets. This is done by setting
* notif_pkt_pending to 1 before stopping the CPU. Once stopped, the
* control loop will send pending packets before resuming the system.
*/
static void request_notification_packet_flush(void)
{
/*
* Before stopping CPU we must indicate that we're stopping the system
* to handle a packet notification. During the packet notification, we
* should prevent CPU from reading protocol...
*/
if (gdb_debug_status != NOT_DEBUGGING) {
return;
}
notif_pkt_pending = 1;
gdb_debug_status = DEBUGGING;
control_loop();
gdb_debug_status = NOT_DEBUGGING;
RESUME_SYSTEM();
}
/*
* If the notification buffer for current CPU is full, or if we found a new
* line or carriage return character, then we must flush received data to
* remote client.
*/
static inline int must_flush_notification_buffer(unsigned char ch)
{
return (notif_data_idx == GDB_NOTIF_DATA_SIZE) ||
(ch == '\n') || (ch == '\r');
}
/*
* Write data to debug agent console. For performance reason, the data is
* bufferized until we receive a carriage return character or until the buffer
* gets full.
*
* The buffer is also automatically flushed when system is stopped.
*/
static uint32_t write_to_console(char *buf, uint32_t len)
{
uint32_t ix;
unsigned char ch;
int key = irq_lock();
/* Copy data to notification buffer for current CPU */
for (ix = 0; ix < len; ix++) {
ch = buf[ix];
notif_data[notif_data_idx++] = ch;
if (must_flush_notification_buffer(ch)) {
notif_data[notif_data_idx] = '\0';
request_notification_packet_flush();
}
}
irq_unlock(key);
return len;
}
/*
* Handle pending notification packets for the CPU. It is invoked while
* running in GDB CPU control loop (When system is stopped).
*/
static void handle_notification(void)
{
const char *name = CONFIG_GDB_REMOTE_SERIAL_EXT_NOTIF_PREFIX_STR;
unsigned char checksum = 0;
int ix = 0;
unsigned char ch;
int more_data = 0;
uint32_t max_packet_size;
uint32_t data_size;
unsigned char *ptr = notif_data;
/* First, check if there is pending data */
if (notif_data[0] == '\0') {
return;
}
again:
/*
* Build notification packet.
*
* A notification packet has the form `%<data>#<checksum>', where data
* is the content of the notification, and checksum is a checksum of
* data, computed and formatted as for ordinary gdb packets. A
* notification's data never contains `$', `%' or `#' characters. Upon
* receiving a notification, the recipient sends no `+' or `-' to
* acknowledge the notification's receipt or to report its corruption.
*
* Every notification's data begins with a name, which contains no
* colon characters, followed by a colon character.
*/
put_debug_char('%');
checksum = 0;
/* Add name to notification packet */
ix = 0;
while ((ch = name[ix++])) {
put_debug_char(ch);
checksum += ch;
}
/* Name must be followed by a colon character. */
put_debug_char(':');
checksum += ':';
/*
* Add data to notification packet.
* Warning: The value to hex encoding double the size of the data,
* so we must not encode more than the remaining GDB buffer size
* divided by 2.
*/
max_packet_size =
GDB_BUF_SIZE - (strlen(name) + NOTIF_PACKET_OVERHEAD);
data_size = strlen((char *)ptr);
if (data_size <= (max_packet_size / 2)) {
more_data = 0;
} else {
data_size = max_packet_size / 2;
more_data = 1; /* Not enough room in notif packet */
}
/* Encode data using hex values */
for (ix = 0; ix < data_size; ix++) {
ch = hex_chars[(*ptr >> 4)];
put_debug_char(ch);
checksum += ch;
ch = hex_chars[(*ptr & 0xf)];
put_debug_char(ch);
checksum += ch;
ptr++;
}
/* Terminate packet with #<checksum> */
put_debug_char('#');
put_debug_char(hex_chars[(checksum >> 4)]);
put_debug_char(hex_chars[(checksum & 0xf)]);
if (more_data) {
goto again;
}
/* Clear buffer & index */
notif_data[0] = '\0';
notif_data_idx = 0;
}
#endif
#ifdef GDB_ARCH_HAS_HW_BP
static int has_hit_a_hw_bp(void)
{
/* instruction hw breakpoints are reported as sw breakpoints */
return (cpu_stop_signal == GDB_SIG_TRAP) &&
(cpu_stop_bp_type != GDB_SOFT_BP) &&
(cpu_stop_bp_type != GDB_HW_INST_BP);
}
#endif
static void do_post_event_hw_bp(unsigned char **buf, size_t *buf_size)
{
#ifdef GDB_ARCH_HAS_HW_BP
/*
* If it's an hardware breakpoint, report the address and access
* type at the origin of the HW breakpoint. Supported syntaxes:
* watch:<dataAddr> : Write access
* rwatch:<dataAddr> : Read access
* awatch:<dataAddr> : Read/Write Access
* Instruction hardware breakpoints are reported as software
* breakpoints
*/
if (!has_hit_a_hw_bp()) {
return;
}
int count = 0;
switch (cpu_stop_bp_type) {
case GDB_HW_DATA_WRITE_BP:
count = snprintf((char *)*buf, *buf_size, ";watch");
break;
case GDB_HW_DATA_READ_BP:
count = snprintf((char *)*buf, *buf_size, ";rwatch");
break;
case GDB_HW_DATA_ACCESS_BP:
count = snprintf((char *)*buf, *buf_size, ";awatch");
break;
}
if (count != 0) {
*buf += count;
*buf_size -= count;
count = snprintf((char *)*buf, *buf_size, ":%lx",
cpu_stop_hw_bp_addr);
*buf += count;
*buf_size -= count;
}
cpu_stop_hw_bp_addr = 0;
cpu_stop_bp_type = GDB_SOFT_BP;
cpu_stop_signal = GDB_SIG_NULL;
#endif
}
static void write_regs_to_buffer(unsigned char **buf, size_t *buf_size)
{
unsigned char *saved_buf;
int count;
#ifdef GDB_ARCH_HAS_ALL_REGS
count = snprintf((char *)*buf, *buf_size, ";regs:");
*buf += count;
*buf_size -= count;
saved_buf = *buf;
*buf = mem2hex(tmp_reg_buffer, *buf, sizeof(gdb_regs), 1);
*buf_size -= (*buf - saved_buf);
#else
int offset = 0;
int size = 4;
count = snprintf((char *)*buf, *buf_size, ";%x:", GDB_PC_REG);
*buf += count;
*buf_size -= count;
gdb_arch_reg_info_get(GDB_PC_REG, &size, &offset);
saved_buf = *buf;
*buf = mem2hex(tmp_reg_buffer + offset, *buf, size, 1);
*buf_size -= (*buf - saved_buf);
#endif
}
static void do_post_event(void)
{
unsigned char *buf = gdb_buffer;
size_t buf_size = GDB_BUF_SIZE;
int count;
if (buf != gdb_buffer) {
*buf++ = '|';
buf_size--;
}
count = snprintf((char *)buf, buf_size, "T%02xthread:%02x",
cpu_stop_signal, 1);
buf += count;
buf_size -= count;
do_post_event_hw_bp(&buf, &buf_size);
if (valid_registers) {
gdb_arch_regs_get(&gdb_regs, (char *)tmp_reg_buffer);
write_regs_to_buffer(&buf, &buf_size);
}
/* clear stop reason */
cpu_stop_signal = GDB_SIG_NULL;
*buf = '\0';
}
static void post_event(void)
{
event_is_pending = 0;
if (cpu_stop_signal != GDB_SIG_NULL) {
do_post_event();
} else {
(void)snprintf((char *)gdb_buffer, GDB_BUF_SIZE, "S%02x",
GDB_SIG_INT);
}
(void)put_packet(gdb_buffer);
}
/**
* @brief Get a character from serial line
*
* It loops until it has received a character or until it has detected that a
* GDB event is pending and should be handled.
*
* Note that this routine should only be called from the gdb control loop when
* the system is stopped.
*
* @return -1 if no character has been received and there is a GDB event
* pending or debug operation pending, number of received character otherwise.
*/
static int get_debug_char_raw(void)
{
char ch;
while (uart_poll_in(uart_console_dev, &ch) != 0) {
if (event_is_pending) {
return -1;
}
}
return ch;
}
static unsigned char get_debug_char(void)
{
return (unsigned char)get_debug_char_raw();
}
/**
* @brief Get a GDB serial packet
*
* Poll the serial line to get a full GDB serial packet. Once
* the packet is received, it computes its checksum and return acknowledgment.
* It then returns the packet to the caller.
*
* This routine must only be called when all CPUs are stopped (from the GDB
* CPU control loop).
*
* If a pending GDB event is detected or if a stop event is received from the
* client, the corresponding GDB stop event is sent to the client. This
* loop does also handle the GDB cpu loop hooks by the intermediate of
* get_debug_char() API.
*
* If a debug operation is pending, this routine returns immediately.
*
* @return Pointer to received packet or NULL on pending debug operation
*/
static unsigned char *get_packet(unsigned char *buffer, size_t size)
{
unsigned char checksum, c, *p;
while (1) {
while ((c = get_debug_char()) != '$') {
if (!event_is_pending) {
return NULL;
}
/* ignore other chars than GDB break character */
if ((c == GDB_STOP_CHAR) || event_is_pending) {
post_event();
}
}
checksum = 0;
p = buffer;
/*
* Continue reading characters until a '#' is found or until
* the end of the buffer is reached.
*/
while (p < &buffer[size]) {
c = get_debug_char();
if (c == '#') {
break;
} else if (c == '$') {
/* start over */
checksum = 0;
p = buffer;
continue;
} else {
checksum += c;
*p++ = c;
}
}
*p = 0;
if (c == '#') {
if (in_no_ack_mode) {
(void)get_debug_char();
(void)get_debug_char();
return buffer;
}
unsigned char cs[2];
cs[0] = get_hex_char_value(get_debug_char()) << 4;
cs[1] = get_hex_char_value(get_debug_char());
if (checksum != (cs[0]|cs[1])) {
/* checksum failed */
put_debug_char('-');
} else {
/* checksum passed */
put_debug_char('+');
if (buffer[2] == ':') {
put_debug_char(buffer[0]);
put_debug_char(buffer[1]);
return &buffer[3];
}
return buffer;
}
}
}
return NULL;
}
/**
* @brief write a XML string into output buffer
*
* It takes care of offset, length and also deal with overflow (if the XML
* string is bigger than the output buffer).
*/
static void write_xml_string(char *buf, const char *xml_str, int off, int len)
{
size_t max_len = strlen(xml_str);
if (off == max_len) {
strncat((char *)buf, "l", len - 1);
} else if (off > max_len) {
fill_output_buffer("E00");
} else {
if ((off + max_len) <= len) {
/* we can read the full data */
buf[0] = 'l';
int size_to_copy = len <= (GDB_BUF_SIZE - 2) ? len :
GDB_BUF_SIZE - 2;
strncpy(&buf[1], xml_str + off, size_to_copy);
} else {
buf[0] = 'm';
strncpy(&buf[1], xml_str + off, GDB_BUF_SIZE - 2);
buf[len + 1] = '\0';
}
}
}
/**
* @brief get XML target description
*
* This routine is used to build the string that will hold the XML target
* description provided to the GDB client.
*
* NOTE: Non-re-entrant, since it uses a static buffer.
*
* @return a pointer on XML target description
*/
static char *get_xml_target_description(void)
{
static char target_description[GDB_BUF_SIZE] = { 0 };
char *ptr = target_description;
size_t buf_size = sizeof(target_description);
size_t size;
if (target_description[0] != 0) {
return target_description;
}
strncpy(ptr, xml_target_header, GDB_BUF_SIZE - 1);
size = strlen(ptr);
ptr += size;
buf_size -= size;
/* Add architecture definition */
(void)snprintf(ptr, buf_size, " <architecture>%s</architecture>\n",
GDB_TGT_ARCH);
size = strlen(ptr);
ptr += size;
buf_size -= size;
strncpy(ptr, xml_target_footer,
GDB_BUF_SIZE - (ptr - target_description) - 1);
return target_description;
}
/* utility functions for handling each case of protocal_parse() */
static void handle_new_connection(void)
{
/*
* This is a new connection. Clear in_no_ack_mode field if it was set
* and send acknowledgment for this command that has not been sent as
* it should have.
*/
if (in_no_ack_mode) {
put_debug_char('+');
in_no_ack_mode = 0;
}
snprintf((char *)gdb_buffer, GDB_BUF_SIZE, "T02thread:%02x;", 1);
/*
* This is an initial connection, should remove all
* the breakpoints and cleanup.
*/
REMOVE_ALL_INSTALLED_BREAKPOINTS();
client_is_connected = 1;
}
static void reboot(void)
{
#ifdef CONFIG_REBOOT
sys_reboot(SYS_REBOOT_COLD);
fill_output_buffer(STUB_OK);
#endif
}
static void detach(void)
{
fill_output_buffer(STUB_OK);
REMOVE_ALL_INSTALLED_BREAKPOINTS();
client_is_connected = 0;
gdb_debug_status = NOT_DEBUGGING;
RESUME_SYSTEM();
in_no_ack_mode = 0;
}
static unsigned char *handle_thread_query(unsigned char *packet)
{
int thread;
if (!hex_str_to_int(&packet, &thread)) {
gdb_buffer[0] = '\0';
return packet;
}
if (thread != 1) {
fill_output_buffer(STUB_ERROR);
} else {
fill_output_buffer(STUB_OK);
}
return packet;
}
#ifdef CONFIG_REBOOT
#define STR_REBOOT ";reboot+"
static size_t concat_reboot_feature_if_supported(size_t size)
{
strncat((char *)gdb_buffer, STR_REBOOT, size);
return sizeof(STR_REBOOT);
}
#else
#define concat_reboot_feature_if_supported(size) (0)
#endif
static ALWAYS_INLINE int is_valid_xml_query(unsigned char **packet,
int *off, int *len)
{
unsigned char *p = *packet;
int is_valid = hex_str_to_int(&p, off) && *p++ == ','
&& hex_str_to_int(&p, len) && *p == '\0';
*packet = p;
return is_valid;
}
static unsigned char *handle_xml_query(unsigned char *packet)
{
int off, len;
packet += 11;
if (is_valid_xml_query(&packet, &off, &len)) {
char *xml = get_xml_target_description();
write_xml_string((char *)gdb_buffer, xml, off, len);
} else {
fill_output_buffer(STUB_ERROR);
}
return packet;
}
static const char *supported_features_cmd =
"PacketSize=%x;qXfer:features:read+;QStartNoAckMode+"
#ifdef GDB_ARCH_HAS_REMOTE_SERIAL_EXT_USING_NOTIF_PACKETS
";" CONFIG_GDB_REMOTE_SERIAL_EXT_NOTIF_PREFIX_STR "+"
#endif
;
static unsigned char *handle_general_query(unsigned char *packet)
{
if (packet[0] == 'C') {
snprintf((char *)gdb_buffer, GDB_BUF_SIZE, "QC%x", 1);
} else if (strncmp((char *)packet, "wr.", 3) == 0) {
packet += 3;
gdb_buffer[0] = '\0';
} else if (strcmp((char *)packet, "Supported") == 0) {
size_t size = GDB_BUF_SIZE;
snprintf((char *)gdb_buffer, size, supported_features_cmd,
GDB_BUF_SIZE);
size -= (strlen((char *)gdb_buffer) + 1);
size -= concat_reboot_feature_if_supported(size);
strncat((char *)gdb_buffer, STR_TYPE, size);
size -= sizeof(STR_TYPE);
} else if (strncmp((char *)packet, "Xfer:features:read:", 19) == 0) {
packet += 19;
if (strncmp((char *)packet, "target.xml:", 11) == 0) {
packet = handle_xml_query(packet);
} else {
gdb_buffer[0] = '\0';
}
} else {
gdb_buffer[0] = '\0';
}
return packet;
}
static ALWAYS_INLINE void handle_get_registers(void)
{
if (!valid_registers) {
fill_output_buffer("E02");
return;
}
(void)gdb_arch_regs_get(&gdb_regs, (char *)tmp_reg_buffer);
mem2hex(tmp_reg_buffer, gdb_buffer, GDB_NUM_REG_BYTES, 1);
}
static ALWAYS_INLINE
unsigned char *handle_write_registers(unsigned char *packet)
{
if (!valid_registers) {
fill_output_buffer("E02");
return packet;
}
(void)gdb_arch_regs_get(&gdb_regs, (char *)tmp_reg_buffer);
for (int i = 0; i < GDB_NUM_REG_BYTES; i++) {
int value = hex_str_to_byte(&packet);
if (value < 0) {
break;
}
tmp_reg_buffer[i] = (unsigned char)value;
}
gdb_arch_regs_set(&gdb_regs, (char *)tmp_reg_buffer);
fill_output_buffer(STUB_OK);
return packet;
}
#ifdef GDB_HAS_SINGLE_REG_ACCESS
static ALWAYS_INLINE
unsigned char *handle_write_single_register(unsigned char *packet)
{
int reg_num = 0;
int offset = 0;
int size = 4;
int i, value;
if (!valid_registers) {
fill_output_buffer("E02");
return packet;
}
if (!hex_str_to_int(&packet, &reg_num) || *(packet++) != '=') {
fill_output_buffer("E02");
return packet;
}
gdb_arch_regs_get(&gdb_regs, (char *)tmp_reg_buffer);
gdb_arch_reg_info_get(reg_num, &size, &offset);
for (i = 0; i < size; i++) {
value = hex_str_to_byte(&packet);
if (value < 0) {
break;
}
tmp_reg_buffer[offset + i] = (unsigned char)value;
}
if (i != size) {
fill_output_buffer(STUB_ERROR);
return packet;
}
gdb_arch_regs_set(&gdb_regs, (char *)tmp_reg_buffer);
fill_output_buffer(STUB_OK);
return packet;
}
static ALWAYS_INLINE
unsigned char *handle_read_single_register(unsigned char *packet)
{
int reg_num = 0;
int offset = 0;
int size = 4;
if (!valid_registers) {
fill_output_buffer("E02");
return packet;
}
/* p<regno> */
if (!hex_str_to_int(&packet, &reg_num)) {
fill_output_buffer("E02");
return packet;
}
gdb_arch_regs_get(&gdb_regs, (char *)tmp_reg_buffer);
gdb_arch_reg_info_get(reg_num, &size, &offset);
mem2hex(tmp_reg_buffer + offset, gdb_buffer, size, 1);
return packet;
}
#endif
static ALWAYS_INLINE
unsigned char *handle_read_memory(unsigned char *packet)
{
/* m<addr>,<length> */
long long addr;
int length;
void *p;
if (hex_str_to_longlong((unsigned char **)&packet, &addr) == 0) {
fill_output_buffer("E01");
return packet;
}
if (!(*packet++ == ',' && hex_str_to_int(&packet, &length))) {
fill_output_buffer("E01");
return packet;
}
p = (void *)((long)addr);
if (mem_probe(p, SYS_MEM_SAFE_READ, length, 0, 1) == -1) {
/* No read access */
fill_output_buffer("E01");
return packet;
}
/* Now read memory */
mem2hex(p, gdb_buffer, length, 1);
return packet;
}
#define WRITE_MEM_SIG(x) \
unsigned char *(x)(unsigned char *packet, unsigned char *dest, int len)
typedef WRITE_MEM_SIG(write_mem_t);
static ALWAYS_INLINE unsigned char *handle_write_memory(unsigned char *packet,
write_mem_t *write_mem)
{
long long addr;
int len;
unsigned char *p;
/* [X or P]<addr>,<length>:<val><val>...<val> */
if (hex_str_to_longlong(&packet, &addr) == 0) {
fill_output_buffer("E02");
return packet;
}
p = packet; /* to allow the if expression to fit on one line */
if (!(*p++ == ',' && hex_str_to_int(&p, &len) && *p++ == ':')) {
fill_output_buffer("E02");
return p;
}
packet = p;
p = (void *)((long)addr);
if (mem_probe(p, SYS_MEM_SAFE_WRITE, len, 0, 1) == -1) {
/* No write access */
fill_output_buffer("E02");
return packet;
}
packet = write_mem(packet, p, len);
fill_output_buffer(STUB_OK);
return packet;
}
static WRITE_MEM_SIG(write_memory)
{
unsigned char value;
int i;
for (i = 0; i < len; i++) {
value = hex_str_to_byte(&packet);
if (value < 0) {
break;
}
dest[i] = (unsigned char)value;
}
return packet;
}
static WRITE_MEM_SIG(write_memory_from_binary_format)
{
unsigned char value;
int i;
for (i = 0; i < len; i++) {
value = packet[0];
packet++;
if (value == '}') {
value = packet[0] ^ 0x20;
packet++;
}
dest[i] = (unsigned char)value;
}
return packet;
}
static ALWAYS_INLINE
unsigned char *handle_pass_signal_to_context(unsigned char *packet)
{
int signal;
/* read signal number */
if (!hex_str_to_int(&packet, &signal)) {
fill_output_buffer("E02");
return packet;
}
cpu_pending_signal = signal;
if (*packet == ';') {
packet++;
}
return packet;
}
static ALWAYS_INLINE
unsigned char *handle_continue_execution(unsigned char *packet)
{
long long addr;
/* try to read optional parameter, PC unchanged if no param */
hex_str_to_longlong(&packet, &addr);
gdb_debug_status = NOT_DEBUGGING;
return packet;
}
static ALWAYS_INLINE unsigned char *handle_step(unsigned char *packet)
{
long long addr;
/* try to read optional parameter, PC unchanged if no param */
hex_str_to_longlong(&packet, &addr);
gdb_debug_status = SINGLE_STEP;
return packet;
}
static ALWAYS_INLINE
unsigned char *handle_vcont_action(unsigned char *packet, int *do_not_send_ack)
{
char action;
int signal = 0, thread;
packet += 5;
action = *packet++;
if ((action != 'c') && (action != 'C') &&
(action != 's') && (action != 'S')) {
gdb_buffer[0] = '\0';
return packet;
}
if ((action == 'C') || (action == 'S')) {
/* read signal number */
if (!hex_str_to_int(&packet, &signal)) {
fill_output_buffer("E02");
return packet;
}
}
if (*packet == ':') {
packet++;
hex_str_to_int(&packet, &thread);
}
if (signal != 0) {
cpu_pending_signal = signal;
}
if ((action == 'c') || (action == 'C')) {
gdb_debug_status = NOT_DEBUGGING;
} else {
gdb_debug_status = SINGLE_STEP;
}
*do_not_send_ack = 1;
return packet;
}
#ifdef GDB_ARCH_HAS_RUNCONTROL
static ALWAYS_INLINE
unsigned char *handle_breakpoint_install(unsigned char *packet,
add_del_bp_t *bp_op)
{
/* remove (ztype,addr,length) or insert (Ztype,addr,length) */
int type, len;
long long addr;
enum gdb_error_code err;
/* read <type> & <addr> */
if (!(hex_str_to_int(&packet, &type) && *packet++ == ',' &&
hex_str_to_longlong(&packet, &addr))) {
fill_output_buffer("E07");
return packet;
}
/* read length */
if (!(*packet++ == ',' && hex_str_to_int(&packet, &len))) {
fill_output_buffer("E07");
return packet;
}
if (bp_op(type, (long)addr, len, &err) == 0) {
fill_output_buffer(STUB_OK);
} else {
snprintf((char *)gdb_buffer, GDB_BUF_SIZE, "E%02d", err);
}
return packet;
}
#endif
/**
* @brief parse given GDB command string
*
* Parse and execute the given GDB command string, and send acknowledgment if
* acknowledgment is enabled.
*
* @return 0 on success, -1 if failed to send acknowledgment.
*/
static int protocol_parse(unsigned char *packet)
{
unsigned char ch;
int do_not_send_ack = 0;
ch = *packet++;
switch (ch) {
case '?':
handle_new_connection();
break;
case 'k':
/* Kill request: we use it to reboot */
reboot();
break;
case 'D':
detach();
break;
case 'T':
packet = handle_thread_query(packet);
break;
case 'Q':
/* the only 'Q' command we support is "start no-ack mode" */
if (strcmp((const char *)packet, "StartNoAckMode") == 0) {
in_no_ack_mode = 1;
fill_output_buffer(STUB_OK);
} else {
gdb_buffer[0] = '\0';
}
break;
case 'q':
packet = handle_general_query(packet);
break;
case 'g':
handle_get_registers();
break;
case 'G':
packet = handle_write_registers(packet);
break;
#ifdef GDB_HAS_SINGLE_REG_ACCESS
case 'P':
packet = handle_write_single_register(packet);
break;
case 'p':
packet = handle_read_single_register(packet);
break;
#endif
case 'm':
packet = handle_read_memory(packet);
break;
case 'M':
packet = handle_write_memory(packet, write_memory);
break;
case 'X':
packet = handle_write_memory(packet,
write_memory_from_binary_format);
break;
case 'C':
packet = handle_pass_signal_to_context(packet);
/* fall through */
case 'c':
packet = handle_continue_execution(packet);
do_not_send_ack = 1;
break;
case 'S':
packet = handle_pass_signal_to_context(packet);
/* fall through */
case 's':
packet = handle_step(packet);
do_not_send_ack = 1;
break;
case 'v':
if (strcmp((const char *)packet, "Cont?") == 0) {
fill_output_buffer("vCont;c;s;C;S");
break;
} else if (strncmp((const char *)packet, "Cont;", 5) != 0) {
gdb_buffer[0] = '\0';
break;
}
packet = handle_vcont_action(packet, &do_not_send_ack);
break;
#ifdef GDB_ARCH_HAS_RUNCONTROL
case 'z':
packet = handle_breakpoint_install(packet, delete_bp);
break;
case 'Z':
packet = handle_breakpoint_install(packet, add_bp);
break;
#endif
default:
/* in case of an unsupported command, send empty response */
gdb_buffer[0] = '\0';
break;
}
/* Send the acknowledgment command when necessary */
if (!do_not_send_ack) {
if (put_packet(gdb_buffer) < 0) {
return -1;
}
}
return 0;
}
/*
* function: put_debug_char
* description:
* - "What you must do for the stub"
* - Write a single character from a port.
*/
static void put_debug_char(unsigned char ch)
{
(void)uart_poll_out(uart_console_dev, ch);
}
#ifdef GDB_ARCH_HAS_RUNCONTROL
/**
* @brief add an hardware breakpoint to debug registers set
*
* This routine adds an hardware breakpoint to debug registers structure.
* It does not update the debug registers.
*
* @param addr Address where to set the breakpoint
* @param type Type of breakpoint
* @param len Length of data
* @param err Container for returning error code
*
* @return 0 on success, -1 if failed (Error code returned via @a err).
*/
static int add_hw_bp(long addr, enum gdb_bp_type type, int len,
enum gdb_error_code *err)
{
#ifdef GDB_ARCH_HAS_HW_BP
if (gdb_hw_bp_set(&dbg_regs, addr, type, len, err) == -1) {
return -1;
}
hw_bp_cnt++;
return 0;
#else
*err = GDB_ERROR_HW_BP_NOT_SUP;
return -1;
#endif
}
/**
* @brief remove an hardware breakpoint from debug registers set
*
* This routine removes an hardware breakpoint from debug registers structure.
* It does not update the debug registers.
*
* @param addr Address where to set the breakpoint
* @param type Type of breakpoint
* @param len Length of data
* @param err Container for returning error code
*
* @return 0 on success, -1 if failed (Error code returned via @a err).
*/
static int remove_hw_bp(long addr, enum gdb_bp_type type, int len,
enum gdb_error_code *err)
{
#ifdef GDB_ARCH_HAS_HW_BP
if (gdb_hw_bp_clear(&dbg_regs, addr, type, len, err) == -1) {
return -1;
}
hw_bp_cnt--;
return 0;
#else
*err = GDB_ERROR_HW_BP_NOT_SUP;
return -1;
#endif
}
/**
* @brief add a new breakpoint or watchpoint to breakpoint list
*
* This routine adds a new breakpoint or watchpoint to breakpoint list. For
* watchpoints, this routine checks that the given type/length combination is
* supported on current architecture, and that debug registers are not full.
*
* @param type GDB breakpoint type:
*
* 0 : software breakpoint (GDB_SOFT_BP)
* 1 : hardware breakpoint (GDB_HW_INST_BP)
* 2 : write watchpoint (GDB_HW_DATA_WRITE_BP)
* 3 : read watchpoint (GDB_HW_DATA_READ_BP)
* 4 : access watchpoint (GDB_HW_DATA_ACCESS_BP)
*
* @param addr Breakpoint address
* @param len For a software breakpoint, len specifies the size of the
* instruction to be patched. For hardware breakpoints and
* watchpoints length specifies the memory region to be monitored.
* @param err Pointer to error code if failed to add breakpoint.
*
* @return 0 on success, -1 if failed to add breakpoint.
*/
static int add_bp(enum gdb_bp_type type, long addr, int len,
enum gdb_error_code *err)
{
if (type != GDB_SOFT_BP) {
return add_hw_bp(addr, type, len, err);
}
if (mem_probe((void *)addr, SYS_MEM_SAFE_READ, len, 0, 1) == -1) {
*err = GDB_ERROR_INVALID_MEM;
return -1;
}
/* Add software breakpoint to BP list */
for (int ix = 0; ix < MAX_SW_BP; ix++) {
if (bp_array[ix].valid == 0) {
bp_array[ix].valid = 1;
bp_array[ix].enabled = 0;
bp_array[ix].addr = (gdb_instr_t *)addr;
return 0;
}
}
*err = GDB_ERROR_BP_LIST_FULL;
return -1;
}
/**
* @brief delete a breakpoint or watchpoint from breakpoint list
*
* @return 0 on success, -1 if failed to remove breakpoint.
*/
static int delete_bp(enum gdb_bp_type type, long addr, int len,
enum gdb_error_code *err)
{
gdb_instr_t *bp_addr = (gdb_instr_t *)addr;
if (type != GDB_SOFT_BP) {
return remove_hw_bp(addr, type, len, err);
}
for (int ix = 0; ix < MAX_SW_BP; ix++) {
if (bp_array[ix].valid && bp_array[ix].addr == bp_addr) {
bp_array[ix].valid = 0;
/*
* Make sure all valid entries are contiguous to speed
* up breakpoint table parsing.
*/
for (int jx = ix + 1; jx < MAX_SW_BP; jx++) {
if (bp_array[jx].valid == 1) {
bp_array[jx - 1] = bp_array[jx];
bp_array[jx].valid = 0;
} else {
break;
}
}
return 0;
} else if (!bp_array[ix].valid) {
break;
}
}
*err = GDB_ERROR_INVALID_BP;
return -1;
}
static void remove_all_installed_breakpoints(void)
{
for (int ix = 0; ix < MAX_SW_BP; ix++) {
if (!bp_array[ix].valid) {
break;
}
bp_array[ix].valid = 0;
}
}
#ifdef GDB_ARCH_HAS_HW_BP
static inline void set_debug_regs_for_hw_breakpoints(void)
{
if (hw_bp_cnt > 0) {
gdb_dbg_regs_set(&dbg_regs);
}
}
#else
#define set_debug_regs_for_hw_breakpoints() do { } while ((0))
#endif
/*
* Physically install breakpoints, and make sure that modified memory is
* flushed on all CPUs.
*
* Must only be called when ready to exit the CPU control loop.
*/
static void install_breakpoints(void)
{
gdb_instr_t instr = GDB_BREAK_INSTRUCTION;
/* Software breakpoints installation */
for (int ix = 0; ix < MAX_SW_BP; ix++) {
if (bp_array[ix].valid && !bp_array[ix].enabled) {
gdb_instr_t *addr = bp_array[ix].addr;
bp_array[ix].instr = *addr;
(void)set_instruction(addr, &instr, sizeof(instr));
bp_array[ix].enabled = 1;
} else if (!bp_array[ix].valid) {
break;
}
}
set_debug_regs_for_hw_breakpoints();
}
#ifdef GDB_ARCH_HAS_HW_BP
static inline void clear_debug_regs_for_hw_breakpoints(void)
{
if (hw_bp_cnt > 0) {
gdb_dbg_regs_clear();
}
}
#else
#define clear_debug_regs_for_hw_breakpoints() do { } while ((0))
#endif
/*
* Physically uninstall breakpoints, and make sure that modified memory is
* flushed on all CPUs.
*
* Must only be called in the CPU control loop.
*/
static void uninstall_breakpoints(void)
{
for (int ix = 0; ix < MAX_SW_BP; ix++) {
if (bp_array[ix].valid == 1 && bp_array[ix].enabled) {
gdb_instr_t *addr = bp_array[ix].addr;
(void)set_instruction(addr, &bp_array[ix].instr,
sizeof(gdb_instr_t));
bp_array[ix].enabled = 0;
} else if (bp_array[ix].valid == 0) {
break;
}
}
clear_debug_regs_for_hw_breakpoints();
}
/* Re-install breakpoints and resume the system. */
static void resume_system(void)
{
/*
* System must not be resumed if we're going to execute a single step.
*/
if (gdb_debug_status == SINGLE_STEP) {
return;
}
install_breakpoints();
}
static inline void enter_trace_mode(void)
{
#ifdef GDB_ARCH_NO_SINGLE_STEP
gdb_instr_t bp_instr = GDB_BREAK_INSTRUCTION;
gdb_step_emu_next_pc = gdb_get_next_pc(&gdb_regs);
gdb_step_emu_instr = *gdb_step_emu_next_pc;
(void)set_instruction(gdb_step_emu_next_pc, &bp_instr,
sizeof(gdb_instr_t));
trace_lock_key = gdb_int_regs_lock(&gdb_regs);
#else
/* Handle single step request for runcontrol CPU */
trace_lock_key = gdb_trace_mode_set(&gdb_regs);
#endif
}
static inline void disable_trace_mode(void)
{
#ifdef GDB_ARCH_NO_SINGLE_STEP
/* remove temporary breakpoint */
(void)set_instruction(gdb_step_emu_next_pc,
&gdb_step_emu_instr,
sizeof(gdb_instr_t));
/* Disable trace mode */
gdb_int_regs_unlock(&gdb_regs, trace_lock_key);
#else
/* Disable trace mode */
gdb_trace_mode_clear(&gdb_regs, trace_lock_key);
#endif
}
/**
* @brief stop mode agent BP/trace handler
*
* Common handler of breakpoint and trace mode exceptions.
* It is invoked with interrupts locked.
*
* @return n/a
*/
void gdb_handler(enum gdb_exc_mode mode, void *esf, int signal)
{
/* Save BP/Trace handler registers */
gdb_arch_regs_from_esf(&gdb_regs, (NANO_ESF *)esf);
valid_registers = 1;
if (mode == GDB_EXC_TRACE) {
/* Check if GDB did request a step */
if (gdb_debug_status != SINGLE_STEP) {
return;
}
/* No longer pending trace mode exception */
gdb_debug_status = DEBUGGING;
disable_trace_mode();
}
event_is_pending = 1;
cpu_stop_signal = signal;
/* Enter stop mode agent control loop */
control_loop();
/* Restore BP handler registers */
gdb_arch_regs_to_esf(&gdb_regs, (NANO_ESF *)esf);
/* Resume system if not handling a single step */
RESUME_SYSTEM();
}
static int set_instruction(void *addr, gdb_instr_t *instr, size_t size)
{
if (_mem_safe_write_to_text_section(addr, (char *)instr, size) < 0) {
return -EFAULT;
}
sys_cache_flush((vaddr_t) addr, size);
return 0;
}
#endif /* GDB_ARCH_HAS_RUNCONTROL */
static inline void setup_singlestep_if_non_steppable_instruction(void)
{
#ifdef GDB_ARCH_CAN_STEP
if (gdb_debug_status == SINGLE_STEP) {
if (!GDB_ARCH_CAN_STEP(&gdb_regs)) {
gdb_debug_status = DEBUGGING;
event_is_pending = 1;
cpu_stop_signal = GDB_SIG_TRAP;
}
}
#endif
}
static inline int handle_single_stepping(void)
{
#ifdef GDB_ARCH_HAS_RUNCONTROL
setup_singlestep_if_non_steppable_instruction();
if (gdb_debug_status == SINGLE_STEP) {
enter_trace_mode();
return 1;
}
#endif
return 0;
}
/**
* @brief GDB control loop
*
* The CPU control loop is an active wait loop used to stop CPU activity.
*
* It must be called with interrupts locked.
*
* It loops while waiting for debug events which can be:
*
* - System resumed: gdb_debug_status != NOT_DEBUGGING
* The control loop must be exited.
*
* - Single step request: gdb_debug_status == SINGLE_STEP
* Notify client that CPU is already stopped.
* This is done by setting event_is_pending = 1.
* event_is_pending will be handled by next get_packet().
*
* @return n/a
*/
static void control_loop(void)
{
char ch;
UNINSTALL_BREAKPOINTS();
/* Flush input buffer */
while (uart_poll_in(uart_console_dev, &ch) == 0) {
if (ch == GDB_STOP_CHAR) {
gdb_debug_status = DEBUGGING;
cpu_stop_signal = GDB_SIG_INT;
event_is_pending = 1;
break;
}
}
while (gdb_debug_status != NOT_DEBUGGING) {
#ifdef GDB_ARCH_HAS_REMOTE_SERIAL_EXT_USING_NOTIF_PACKETS
/*
* Check if system has been stopped to handle a notification
* packet: If a notification is pending (notif_pkt_pending),
* but no stop signal has been set.
*/
if ((cpu_stop_signal == GDB_SIG_NULL) && notif_pkt_pending) {
handle_notification();
/* Mark packet notification as done */
notif_pkt_pending = 0;
break;
}
#endif
unsigned char *packet = get_packet(gdb_buffer, GDB_BUF_SIZE);
if (packet) {
protocol_parse(packet);
}
if (handle_single_stepping()) {
return;
}
}
}
/**
* @brief handle a system stop request
*
* The purpose of this routine is to handle a stop request issued by remote
* debug client. It is called when receiving a break char.
*
* It indicates that a GDB event is pending (the answer to stop request) and
* transfer control from the runtime system to the stop mode agent. The event
* will be posted by this control loop.
*
* @return n/a
*/
static void handle_system_stop(NANO_ISF *regs, int signal)
{
int key = irq_lock();
gdb_debug_status = DEBUGGING;
if (signal != 0) {
cpu_stop_signal = signal;
} else {
cpu_stop_signal = GDB_SIG_INT; /* Stopped by a command */
}
/* Save registers */
if (regs == GDB_INVALID_REG_SET) {
valid_registers = 0;
} else {
if (!regs) {
regs = sys_debug_current_isf_get();
}
gdb_arch_regs_from_isf(&gdb_regs, regs);
valid_registers = 1;
}
/* A GDB event is pending */
event_is_pending = 1;
/* Transfer control to the control loop */
control_loop();
/* Load registers */
if (valid_registers) {
gdb_arch_regs_to_isf(&gdb_regs, regs);
}
/* Resume system if not a single step request */
RESUME_SYSTEM();
irq_unlock(key);
}
/**
* @brief wrapper to send a character to console
*
* This routine is a specific wrapper to send a character to console.
* If the GDB Server is started, this routine intercepts the data and transfer
* it to the connected debug clients using a GDB notification packet.
*
* @return n/a
*/
static UART_CONSOLE_OUT_DEBUG_HOOK_SIG(gdb_console_out)
{
#ifdef GDB_ARCH_HAS_REMOTE_SERIAL_EXT_USING_NOTIF_PACKETS
/*
* If remote debug client is connected, then transfer data to remote
* client. Otherwise, discard this character.
*/
if (client_is_connected) {
write_to_console(&c, 1);
return UART_CONSOLE_DEBUG_HOOK_HANDLED;
}
#endif
return !UART_CONSOLE_DEBUG_HOOK_HANDLED;
}
#ifdef CONFIG_GDB_SERVER_INTERRUPT_DRIVEN
static int console_irq_input_hook(uint8_t ch)
{
if (ch == GDB_STOP_CHAR) {
(void)irq_lock();
handle_system_stop(NULL, 0);
return 1;
}
return 0;
}
#endif
void system_stop_here(void *regs)
{
int key = irq_lock();
handle_system_stop((NANO_ISF *) regs, GDB_SIG_STOP);
irq_unlock(key);
}
void _debug_fatal_hook(const NANO_ESF *esf)
{
struct gdb_reg_set regs;
gdb_arch_regs_from_esf(&regs, (NANO_ESF *) esf);
system_stop_here((void *)&regs);
gdb_arch_regs_to_esf(&regs, (NANO_ESF *) esf);
}
#ifdef CONFIG_GDB_SERVER_INTERRUPT_DRIVEN
static void init_interrupt_handling(void)
{
nano_fifo_init(&cmds_queue);
nano_fifo_init(&avail_queue);
uart_console_in_debug_hook_install(console_irq_input_hook);
uart_register_input(&avail_queue, &cmds_queue, NULL);
}
#else
#define init_interrupt_handling() do { } while ((0))
#endif
#ifdef CONFIG_MEM_SAFE_NUM_EXTRA_REGIONS
static void init_mem_safe_access(void)
{
(void)_mem_safe_region_add((void *)CONFIG_GDB_RAM_ADDRESS,
CONFIG_GDB_RAM_SIZE, SYS_MEM_SAFE_READ);
(void)_mem_safe_region_add((void *)CONFIG_GDB_RAM_ADDRESS,
CONFIG_GDB_RAM_SIZE, SYS_MEM_SAFE_WRITE);
}
#else
#define init_mem_safe_access() do { } while ((0))
#endif
static int init_gdb_server(struct device *unused)
{
static int gdb_is_initialized;
if (gdb_is_initialized) {
return -1;
}
gdb_arch_init();
uart_console_dev = device_get_binding(CONFIG_UART_CONSOLE_ON_DEV_NAME);
uart_console_out_debug_hook_install(gdb_console_out);
init_interrupt_handling();
init_mem_safe_access();
gdb_is_initialized = 1;
system_stop_here(GDB_INVALID_REG_SET);
return 0;
}
SYS_INIT(init_gdb_server, NANOKERNEL, 1);