Adds the driver to utilize the I2C/TWI interface on Atmel SAM3 family processors for I2C communication. Note that this currently only supports master mode. Limited testing has been done using the Fujitsu FRAM sample app. Change-Id: Ibdb8277e47dd9450b49a66a95421eb1ffb1c4eb4 Signed-off-by: Daniel Leung <daniel.leung@intel.com>
617 lines
16 KiB
C
617 lines
16 KiB
C
/*
|
|
* Copyright (c) 2016 Intel Corporation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/**
|
|
* @file I2C/TWI Controller driver for Atmel SAM3 family processor
|
|
*
|
|
* Notes on this driver:
|
|
* 1. The controller does not have a documented way to
|
|
* issue RESTART when changing transfer direction as master.
|
|
*
|
|
* Datasheet said about using the internal address register
|
|
* (IADR) to write 3 bytes before reading. This limits
|
|
* the number of bytes to write before a read. Also,
|
|
* this was documented under 7-bit addressing, and nothing
|
|
* about this with 10-bit addressing.
|
|
*
|
|
* Experiments show that STOP has to be issued or the controller
|
|
* hangs forever. This was tested with reading and writing
|
|
* the Fujitsu I2C-based FRAM MB85RC256V.
|
|
*/
|
|
|
|
#include <nanokernel.h>
|
|
|
|
#include <board.h>
|
|
#include <i2c.h>
|
|
|
|
#include <misc/util.h>
|
|
|
|
#include "i2c_atmel_sam3.h"
|
|
|
|
|
|
#ifndef CONFIG_I2C_DEBUG
|
|
#define DBG(...) { ; }
|
|
#else
|
|
#if defined(CONFIG_STDOUT_CONSOLE)
|
|
#include <stdio.h>
|
|
#define DBG printf
|
|
#else
|
|
#define DBG printk
|
|
#endif /* CONFIG_STDOUT_CONSOLE */
|
|
#endif /* CONFIG_I2C_DEBUG */
|
|
|
|
|
|
/* for use with dev_data->state */
|
|
#define STATE_READY 0
|
|
#define STATE_BUSY (1 << 0)
|
|
#define STATE_TX (1 << 1)
|
|
#define STATE_RX (1 << 2)
|
|
#define STATE_ERR (1 << 3)
|
|
|
|
|
|
typedef void (*config_func_t)(struct device *port);
|
|
|
|
|
|
struct i2c_sam3_dev_config {
|
|
volatile struct __twi *port;
|
|
|
|
config_func_t config_func;
|
|
};
|
|
|
|
struct i2c_sam3_dev_data {
|
|
device_sync_call_t sync;
|
|
union dev_config dev_config;
|
|
|
|
volatile uint32_t state;
|
|
|
|
uint8_t *xfr_buf;
|
|
uint32_t xfr_len;
|
|
uint32_t xfr_flags;
|
|
};
|
|
|
|
|
|
/**
|
|
* Calculate clock dividers for TWI controllers.
|
|
*
|
|
* @param dev Device struct
|
|
* @return Value used for TWI_CWGR register.
|
|
*/
|
|
static uint32_t clk_div_calc(struct device *dev)
|
|
{
|
|
#if (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 84000000)
|
|
|
|
/* Use pre-calculated clock dividers when the SoC is running at
|
|
* 84 MHz. This saves execution time and ROM space.
|
|
*/
|
|
struct i2c_sam3_dev_data * const dev_data = dev->driver_data;
|
|
|
|
switch ((dev_data->dev_config.bits.speed)) {
|
|
case I2C_SPEED_STANDARD:
|
|
/* CKDIV = 1
|
|
* CHDIV = CLDIV = 208 = 0xD0
|
|
*/
|
|
return 0x0001D0D0;
|
|
case I2C_SPEED_FAST:
|
|
/* CKDIV = 0
|
|
* CHDIV = CLDIV = 101 = 0x65
|
|
*/
|
|
return 0x00006565;
|
|
default:
|
|
/* Return 0 as error */
|
|
return 0;
|
|
}
|
|
|
|
#else /* !(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 84000000) */
|
|
|
|
/* Need to calcualte the clock dividers if the SoC is running at
|
|
* other frequencies.
|
|
*/
|
|
|
|
struct i2c_sam3_dev_data * const dev_data = dev->driver_data;
|
|
uint32_t i2c_clk;
|
|
uint32_t cldiv, ckdiv;
|
|
|
|
/* The T(low) and T(high) are used to calculate CLDIV and CHDIV.
|
|
* Since we treat both clock low and clock high to have same period,
|
|
* the I2C clock frequency used for calculation has to be doubled.
|
|
*/
|
|
switch ((dev_data->dev_config.bits.speed)) {
|
|
case I2C_SPEED_STANDARD:
|
|
i2c_clk = 100000 * 2;
|
|
break;
|
|
case I2C_SPEED_FAST:
|
|
i2c_clk = 400000 * 2;
|
|
break;
|
|
default:
|
|
/* Return 0 as error */
|
|
return 0;
|
|
}
|
|
|
|
cldiv = (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) / i2c_clk - 4;
|
|
ckdiv = 0;
|
|
while (cldiv > 255) {
|
|
ckdiv++;
|
|
cldiv /= 2;
|
|
}
|
|
|
|
return ((ckdiv << TWI_CWGR_CKDIV_POS) + (cldiv << TWI_CWGR_CHDIV_POS)
|
|
+ (cldiv << TWI_CWGR_CLDIV_POS));
|
|
|
|
#endif /* CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 84000000 */
|
|
}
|
|
|
|
static int i2c_sam3_runtime_configure(struct device *dev, uint32_t config)
|
|
{
|
|
struct i2c_sam3_dev_config * const cfg = dev->config->config_info;
|
|
struct i2c_sam3_dev_data * const dev_data = dev->driver_data;
|
|
uint32_t reg;
|
|
uint32_t clk;
|
|
|
|
dev_data->dev_config.raw = config;
|
|
reg = 0;
|
|
|
|
/* Currently support master mode only */
|
|
if (dev_data->dev_config.bits.is_slave_read) {
|
|
return DEV_INVALID_CONF;
|
|
}
|
|
|
|
/* Calculate clock dividers */
|
|
clk = clk_div_calc(dev);
|
|
if (!clk) {
|
|
return DEV_INVALID_CONF;
|
|
}
|
|
|
|
/* Disable controller first before changing anything */
|
|
cfg->port->cr = TWI_CR_MSDIS | TWI_CR_SVDIS;
|
|
|
|
/* Setup clock wavefore generator */
|
|
cfg->port->cwgr = clk;
|
|
|
|
return DEV_OK;
|
|
}
|
|
|
|
static void i2c_sam3_isr(void *arg)
|
|
{
|
|
struct device * const dev = (struct device *)arg;
|
|
struct i2c_sam3_dev_config *const cfg = dev->config->config_info;
|
|
struct i2c_sam3_dev_data * const dev_data = dev->driver_data;
|
|
|
|
/* Disable all interrupts so they can be processed
|
|
* before ISR is called again.
|
|
*/
|
|
cfg->port->idr = TWI_IRQ_DISABLE;
|
|
|
|
device_sync_call_complete(&dev_data->sync);
|
|
}
|
|
|
|
/* This should be used ONLY IF <bits> are the only bits of concern.
|
|
* This is because reading from status register will clear certain
|
|
* bits, and thus status might be ignored afterwards.
|
|
*/
|
|
static inline void sr_bits_set_wait(struct device *dev, uint32_t bits)
|
|
{
|
|
struct i2c_sam3_dev_config *const cfg = dev->config->config_info;
|
|
|
|
while (!(cfg->port->sr & bits)) {
|
|
/* loop till <bits> are set */
|
|
};
|
|
}
|
|
|
|
/* Clear the status registers from previous transfers */
|
|
static inline void status_reg_clear(struct device *dev)
|
|
{
|
|
struct i2c_sam3_dev_config *const cfg = dev->config->config_info;
|
|
uint32_t stat_reg;
|
|
|
|
do {
|
|
stat_reg = cfg->port->sr;
|
|
|
|
/* ignore these */
|
|
stat_reg &= ~(TWI_IRQ_PDC | TWI_IRQ_TXRDY | TWI_IRQ_TXCOMP
|
|
| TWI_IRQ_SVREAD);
|
|
|
|
if (stat_reg & TWI_IRQ_OVRE) {
|
|
continue;
|
|
}
|
|
|
|
if (stat_reg & TWI_IRQ_NACK) {
|
|
continue;
|
|
}
|
|
|
|
if (stat_reg & TWI_IRQ_RXRDY) {
|
|
stat_reg = cfg->port->rhr;
|
|
}
|
|
} while (stat_reg);
|
|
}
|
|
|
|
static inline void transfer_setup(struct device *dev, uint16_t slave_address)
|
|
{
|
|
struct i2c_sam3_dev_config *const cfg = dev->config->config_info;
|
|
struct i2c_sam3_dev_data * const dev_data = dev->driver_data;
|
|
uint32_t mmr;
|
|
uint32_t iadr;
|
|
|
|
/* Set slave address */
|
|
if (dev_data->dev_config.bits.use_10_bit_addr) {
|
|
/* 10-bit slave addressing:
|
|
* first two bits goes to MMR/DADR, other 8 to IADR.
|
|
*
|
|
* 0x78 is the 0b11110xx bit prefix.
|
|
*/
|
|
mmr = 0x78 | ((slave_address >> 8) & 0x03);
|
|
mmr <<= TWI_MMR_DADR_POS;
|
|
mmr |= TWI_MMR_IADRSZ_1_BYTE;
|
|
|
|
iadr = slave_address & 0xFF;
|
|
} else {
|
|
/* 7-bit slave addressing */
|
|
mmr = (slave_address << TWI_MMR_DADR_POS) & TWI_MMR_DADR_MASK;
|
|
|
|
iadr = 0;
|
|
}
|
|
|
|
cfg->port->mmr = mmr;
|
|
cfg->port->iadr = iadr;
|
|
}
|
|
|
|
static inline void msg_write(struct device *dev)
|
|
{
|
|
struct i2c_sam3_dev_config *const cfg = dev->config->config_info;
|
|
struct i2c_sam3_dev_data * const dev_data = dev->driver_data;
|
|
|
|
/* To write to slave */
|
|
cfg->port->mmr &= ~TWI_MMR_MREAD;
|
|
|
|
/* Setup PDC to do DMA transfer */
|
|
cfg->port->pdc.ptcr = PDC_PTCR_TXTDIS | PDC_PTCR_RXTDIS;
|
|
cfg->port->pdc.tpr = (uint32_t)dev_data->xfr_buf;
|
|
cfg->port->pdc.tcr = dev_data->xfr_len;
|
|
|
|
/* Enable TX related interrupts.
|
|
* TXRDY is used by PDC so we don't want to interfere.
|
|
*/
|
|
cfg->port->ier = TWI_IRQ_ENDTX | TWI_IRQ_NACK;
|
|
|
|
/* Start DMA transfer for TX */
|
|
cfg->port->pdc.ptcr = PDC_PTCR_TXTEN;
|
|
|
|
/* Wait till transfer is done or error occurs */
|
|
device_sync_call_wait(&dev_data->sync);
|
|
|
|
/* Check for error */
|
|
if (cfg->port->sr & TWI_IRQ_NACK) {
|
|
dev_data->state |= STATE_ERR;
|
|
return;
|
|
}
|
|
|
|
/* STOP if needed */
|
|
if (dev_data->xfr_flags & I2C_MSG_STOP) {
|
|
cfg->port->cr = TWI_CR_STOP;
|
|
|
|
/* Wait for TXCOMP if sending STOP.
|
|
* The transfer is done and the controller just needs to
|
|
* 'send' the STOP bit. So wait should be very short.
|
|
*/
|
|
sr_bits_set_wait(dev, TWI_IRQ_TXCOMP);
|
|
} else {
|
|
/* If no STOP, just wait for TX buffer to clear.
|
|
* At this point, this should take no time.
|
|
*/
|
|
sr_bits_set_wait(dev, TWI_IRQ_TXRDY);
|
|
}
|
|
|
|
/* Disable PDC */
|
|
cfg->port->pdc.ptcr = PDC_PTCR_TXTDIS;
|
|
}
|
|
|
|
static inline void msg_read(struct device *dev)
|
|
{
|
|
struct i2c_sam3_dev_config *const cfg = dev->config->config_info;
|
|
struct i2c_sam3_dev_data * const dev_data = dev->driver_data;
|
|
uint32_t stat_reg;
|
|
uint32_t ctrl_reg;
|
|
uint32_t last_len;
|
|
|
|
/* To read from slave */
|
|
cfg->port->mmr |= TWI_MMR_MREAD;
|
|
|
|
/* START bit in control register needs to be set to start
|
|
* reading from slave. If the previous message is also read,
|
|
* there is no need to set the START bit again.
|
|
*/
|
|
ctrl_reg = 0;
|
|
if (dev_data->xfr_flags & I2C_MSG_RESTART) {
|
|
ctrl_reg = TWI_CR_START;
|
|
}
|
|
/* If there is only one byte to read, need to send STOP also. */
|
|
if ((dev_data->xfr_len == 1)
|
|
&& (dev_data->xfr_flags & I2C_MSG_STOP)) {
|
|
ctrl_reg |= TWI_CR_STOP;
|
|
}
|
|
cfg->port->cr = ctrl_reg;
|
|
|
|
/* Note that this is entirely possible to do the last byte without
|
|
* going through DMA. But that requires another block of code to
|
|
* setup the transfer and test for RXRDY bit (and other). So do it
|
|
* this way to save a few bytes of code space.
|
|
*/
|
|
while (dev_data->xfr_len > 0) {
|
|
/* Setup PDC to do DMA transfer. */
|
|
cfg->port->pdc.ptcr = PDC_PTCR_TXTDIS | PDC_PTCR_RXTDIS;
|
|
cfg->port->pdc.rpr = (uint32_t)dev_data->xfr_buf;
|
|
|
|
/* Note that we need to set the STOP bit before reading
|
|
* last byte from RHR. So we need to process the last byte
|
|
* differently.
|
|
*/
|
|
if (dev_data->xfr_len > 1) {
|
|
last_len = dev_data->xfr_len - 1;
|
|
} else {
|
|
last_len = 1;
|
|
|
|
/* Set STOP bit for last byte */
|
|
cfg->port->cr = TWI_CR_STOP;
|
|
}
|
|
cfg->port->pdc.rcr = last_len;
|
|
|
|
/* Start DMA transfer for RX */
|
|
cfg->port->pdc.ptcr = PDC_PTCR_RXTEN;
|
|
|
|
/* Enable RX related interrupts
|
|
* RXRDY is used by PDC so we don't want to interfere.
|
|
*/
|
|
cfg->port->ier = TWI_IRQ_ENDRX | TWI_IRQ_NACK | TWI_IRQ_OVRE;
|
|
|
|
/* Wait till transfer is done or error occurs */
|
|
device_sync_call_wait(&dev_data->sync);
|
|
|
|
/* Check for errors */
|
|
stat_reg = cfg->port->sr;
|
|
if ((stat_reg & TWI_IRQ_NACK) || (stat_reg & TWI_IRQ_OVRE)) {
|
|
dev_data->state |= STATE_ERR;
|
|
return;
|
|
}
|
|
|
|
/* no more bytes to send */
|
|
if (dev_data->xfr_len == 0) {
|
|
break;
|
|
}
|
|
|
|
dev_data->xfr_buf += last_len;
|
|
dev_data->xfr_len -= last_len;
|
|
}
|
|
|
|
/* Disable PDC */
|
|
cfg->port->pdc.ptcr = PDC_PTCR_RXTDIS;
|
|
|
|
/* TXCOMP is kind of misleading here. This bit is set when THR/RHR
|
|
* and all shift registers are empty, and STOP (or NACK) is detected.
|
|
* So we wait here.
|
|
*/
|
|
sr_bits_set_wait(dev, TWI_IRQ_TXCOMP);
|
|
}
|
|
|
|
static int i2c_sam3_transfer(struct device *dev,
|
|
struct i2c_msg *msgs, uint8_t num_msgs,
|
|
uint16_t slave_address)
|
|
{
|
|
struct i2c_sam3_dev_config *const cfg = dev->config->config_info;
|
|
struct i2c_sam3_dev_data * const dev_data = dev->driver_data;
|
|
struct i2c_msg *cur_msg = msgs;
|
|
uint8_t msg_left = num_msgs;
|
|
uint32_t pflags = 0;
|
|
int ret = DEV_OK;
|
|
|
|
/* Why bother processing no messages */
|
|
if (!msgs || !num_msgs) {
|
|
return DEV_INVALID_OP;
|
|
}
|
|
|
|
/* Device is busy servicing another transfer */
|
|
if (dev_data->state & STATE_BUSY) {
|
|
return DEV_FAIL;
|
|
}
|
|
|
|
dev_data->state = STATE_BUSY;
|
|
|
|
/* Need to clear status from previous transfers */
|
|
status_reg_clear(dev);
|
|
|
|
/* Enable master */
|
|
cfg->port->cr = TWI_CR_MSEN | TWI_CR_SVDIS;
|
|
|
|
transfer_setup(dev, slave_address);
|
|
|
|
/* Process all messages one-by-one */
|
|
while (msg_left > 0) {
|
|
dev_data->xfr_buf = cur_msg->buf;
|
|
dev_data->xfr_len = cur_msg->len;
|
|
dev_data->xfr_flags = cur_msg->flags;
|
|
|
|
/* Send STOP if this is the last message */
|
|
if (msg_left == 1) {
|
|
dev_data->xfr_flags |= I2C_MSG_STOP;
|
|
}
|
|
|
|
/* The controller does not have a documented way to
|
|
* issue RESTART when changing transfer direction as master.
|
|
*
|
|
* Datasheet said about using the internal address register
|
|
* (IADR) to write 3 bytes before reading. This limits
|
|
* the number of bytes to write before a read. Also,
|
|
* this was documented under 7-bit addressing, and nothing
|
|
* about this with 10-bit addressing.
|
|
*
|
|
* Experiments show that STOP has to be issued or
|
|
* the controller hangs forever.
|
|
*/
|
|
if (msg_left > 1) {
|
|
if ((dev_data->xfr_flags & I2C_MSG_RW_MASK) !=
|
|
(cur_msg[1].flags & I2C_MSG_RW_MASK)) {
|
|
dev_data->xfr_flags |= I2C_MSG_STOP;
|
|
}
|
|
}
|
|
|
|
/* The RESTART flag is used to indicate whether to set
|
|
* the START bit in control register. This is used only
|
|
* when changing from write to read, as the START needs
|
|
* to be set to start receiving. This is also to avoid
|
|
* setting the START bit multiple time if we are doing
|
|
* multiple read messages in a roll.
|
|
*/
|
|
if ((dev_data->xfr_flags & I2C_MSG_RW_MASK) !=
|
|
(pflags & I2C_MSG_RW_MASK)) {
|
|
dev_data->xfr_flags |= I2C_MSG_RESTART;
|
|
}
|
|
|
|
dev_data->state &= ~(STATE_TX | STATE_RX);
|
|
|
|
if ((dev_data->xfr_flags & I2C_MSG_RW_MASK) == I2C_MSG_WRITE) {
|
|
dev_data->state |= STATE_TX;
|
|
msg_write(dev);
|
|
} else {
|
|
dev_data->state |= STATE_RX;
|
|
msg_read(dev);
|
|
}
|
|
|
|
if (dev_data->state & STATE_ERR) {
|
|
/* Error encountered:
|
|
* Reset the controller and configure it again.
|
|
*/
|
|
cfg->port->pdc.ptcr = PDC_PTCR_TXTDIS | PDC_PTCR_RXTDIS;
|
|
cfg->port->cr = TWI_CR_SWRST;
|
|
|
|
i2c_sam3_runtime_configure(dev,
|
|
dev_data->dev_config.raw);
|
|
|
|
ret = DEV_FAIL;
|
|
goto done;
|
|
}
|
|
|
|
cur_msg++;
|
|
msg_left--;
|
|
pflags = cur_msg->flags;
|
|
}
|
|
|
|
done:
|
|
dev_data->state = STATE_READY;
|
|
|
|
/* Disable master and slave after transfer is done */
|
|
cfg->port->cr = TWI_CR_MSDIS | TWI_CR_SVDIS;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int i2c_sam3_suspend(struct device *dev)
|
|
{
|
|
/* TODO - add this code */
|
|
return DEV_OK;
|
|
}
|
|
|
|
static int i2c_sam3_resume(struct device *dev)
|
|
{
|
|
/* TODO - add this code */
|
|
return DEV_OK;
|
|
}
|
|
|
|
static struct i2c_driver_api api_funcs = {
|
|
.configure = i2c_sam3_runtime_configure,
|
|
.transfer = i2c_sam3_transfer,
|
|
.suspend = i2c_sam3_suspend,
|
|
.resume = i2c_sam3_resume,
|
|
};
|
|
|
|
static int i2c_sam3_init(struct device *dev)
|
|
{
|
|
struct i2c_sam3_dev_config * const cfg = dev->config->config_info;
|
|
struct i2c_sam3_dev_data * const dev_data = dev->driver_data;
|
|
|
|
dev->driver_api = &api_funcs;
|
|
|
|
device_sync_call_init(&dev_data->sync);
|
|
|
|
/* Disable all interrupts */
|
|
cfg->port->idr = TWI_IRQ_DISABLE;
|
|
|
|
cfg->config_func(dev);
|
|
|
|
if (i2c_sam3_runtime_configure(dev, dev_data->dev_config.raw)
|
|
!= DEV_OK) {
|
|
DBG("I2C: Cannot set default configuration 0x%x\n",
|
|
dev_data->dev_config.raw);
|
|
return DEV_INVALID_CONF;
|
|
}
|
|
|
|
return DEV_OK;
|
|
}
|
|
|
|
#ifdef CONFIG_I2C_ATMEL_SAM3_0
|
|
|
|
static void config_func_0(struct device *port);
|
|
|
|
static struct i2c_sam3_dev_config dev_config_0 = {
|
|
.port = __TWI0,
|
|
.config_func = config_func_0,
|
|
};
|
|
|
|
static struct i2c_sam3_dev_data dev_data_0 = {
|
|
.dev_config.raw = CONFIG_I2C_ATMEL_SAM3_0_DEFAULT_CFG,
|
|
};
|
|
|
|
DEVICE_INIT(i2c_sam3_0, CONFIG_I2C_ATMEL_SAM3_0_NAME, &i2c_sam3_init,
|
|
&dev_data_0, &dev_config_0,
|
|
SECONDARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);
|
|
|
|
static void config_func_0(struct device *dev)
|
|
{
|
|
/* Enable clock for TWI0 controller */
|
|
__PMC->pcer0 = (1 << PID_TWI0);
|
|
|
|
IRQ_CONNECT(IRQ_TWI0, CONFIG_I2C_ATMEL_SAM3_0_INT_PRIORITY,
|
|
i2c_sam3_isr, DEVICE_GET(i2c_sam3_0), 0);
|
|
irq_enable(IRQ_TWI0);
|
|
}
|
|
|
|
#endif /* CONFIG_I2C_ATMEL_SAM3_0 */
|
|
|
|
#ifdef CONFIG_I2C_ATMEL_SAM3_1
|
|
|
|
static void config_func_1(struct device *port);
|
|
|
|
static struct i2c_sam3_dev_config dev_config_1 = {
|
|
.port = __TWI1,
|
|
.config_func = config_func_1,
|
|
};
|
|
|
|
static struct i2c_sam3_dev_data dev_data_1 = {
|
|
.dev_config.raw = CONFIG_I2C_ATMEL_SAM3_1_DEFAULT_CFG,
|
|
};
|
|
|
|
DEVICE_INIT(i2c_sam3_1, CONFIG_I2C_ATMEL_SAM3_1_NAME, &i2c_sam3_init,
|
|
&dev_data_1, &dev_config_1,
|
|
SECONDARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);
|
|
|
|
static void config_func_1(struct device *dev)
|
|
{
|
|
/* Enable clock for TWI0 controller */
|
|
__PMC->pcer0 = (1 << PID_TWI1);
|
|
|
|
IRQ_CONNECT(IRQ_TWI1, CONFIG_I2C_ATMEL_SAM3_1_INT_PRIORITY,
|
|
i2c_sam3_isr, DEVICE_GET(i2c_sam3_1), 0);
|
|
irq_enable(IRQ_TWI1);
|
|
}
|
|
|
|
#endif /* CONFIG_I2C_ATMEL_SAM3_1 */
|