Currently it is assumed that Zephyr CPU numbers match their hartid value one for one. This assumption was relied upon to efficiently retrieve the current CPU's `struct _cpu` pointer. People are starting to have systems with a mix of different usage for each CPU and such assumption may no longer be true. Let's completely decouple the hartid from the Zephyr CPU number by stuffing each CPU's `struct _cpu` pointer in their respective scratch register instead. `arch_curr_cpu()` becomes more efficient as well. Since the scratch register was previously used to store userspace's exception stack pointer, that is now moved into `struct _cpu_arch` which implied minor user space entry code cleanup and rationalization. Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
626 lines
16 KiB
ArmAsm
626 lines
16 KiB
ArmAsm
/*
|
|
* Copyright (c) 2016 Jean-Paul Etienne <fractalclone@gmail.com>
|
|
* Copyright (c) 2018 Foundries.io Ltd
|
|
* Copyright (c) 2020 BayLibre, SAS
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <zephyr/toolchain.h>
|
|
#include <zephyr/linker/sections.h>
|
|
#include <offsets_short.h>
|
|
#include <zephyr/arch/cpu.h>
|
|
#include <zephyr/sys/util.h>
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/syscall.h>
|
|
#include <zephyr/arch/riscv/csr.h>
|
|
#include <zephyr/arch/riscv/syscall.h>
|
|
#include "asm_macros.inc"
|
|
|
|
#ifdef CONFIG_RISCV_SOC_HAS_ISR_STACKING
|
|
#include <soc_isr_stacking.h>
|
|
#endif
|
|
|
|
/* Convenience macros for loading/storing register states. */
|
|
|
|
#define DO_FP_CALLER_SAVED(op, reg) \
|
|
op ft0, __z_arch_esf_t_ft0_OFFSET(reg) ;\
|
|
op ft1, __z_arch_esf_t_ft1_OFFSET(reg) ;\
|
|
op ft2, __z_arch_esf_t_ft2_OFFSET(reg) ;\
|
|
op ft3, __z_arch_esf_t_ft3_OFFSET(reg) ;\
|
|
op ft4, __z_arch_esf_t_ft4_OFFSET(reg) ;\
|
|
op ft5, __z_arch_esf_t_ft5_OFFSET(reg) ;\
|
|
op ft6, __z_arch_esf_t_ft6_OFFSET(reg) ;\
|
|
op ft7, __z_arch_esf_t_ft7_OFFSET(reg) ;\
|
|
op ft8, __z_arch_esf_t_ft8_OFFSET(reg) ;\
|
|
op ft9, __z_arch_esf_t_ft9_OFFSET(reg) ;\
|
|
op ft10, __z_arch_esf_t_ft10_OFFSET(reg) ;\
|
|
op ft11, __z_arch_esf_t_ft11_OFFSET(reg) ;\
|
|
op fa0, __z_arch_esf_t_fa0_OFFSET(reg) ;\
|
|
op fa1, __z_arch_esf_t_fa1_OFFSET(reg) ;\
|
|
op fa2, __z_arch_esf_t_fa2_OFFSET(reg) ;\
|
|
op fa3, __z_arch_esf_t_fa3_OFFSET(reg) ;\
|
|
op fa4, __z_arch_esf_t_fa4_OFFSET(reg) ;\
|
|
op fa5, __z_arch_esf_t_fa5_OFFSET(reg) ;\
|
|
op fa6, __z_arch_esf_t_fa6_OFFSET(reg) ;\
|
|
op fa7, __z_arch_esf_t_fa7_OFFSET(reg) ;
|
|
|
|
#define DO_CALLER_SAVED(op) \
|
|
RV_E( op t0, __z_arch_esf_t_t0_OFFSET(sp) );\
|
|
RV_E( op t1, __z_arch_esf_t_t1_OFFSET(sp) );\
|
|
RV_E( op t2, __z_arch_esf_t_t2_OFFSET(sp) );\
|
|
RV_I( op t3, __z_arch_esf_t_t3_OFFSET(sp) );\
|
|
RV_I( op t4, __z_arch_esf_t_t4_OFFSET(sp) );\
|
|
RV_I( op t5, __z_arch_esf_t_t5_OFFSET(sp) );\
|
|
RV_I( op t6, __z_arch_esf_t_t6_OFFSET(sp) );\
|
|
RV_E( op a0, __z_arch_esf_t_a0_OFFSET(sp) );\
|
|
RV_E( op a1, __z_arch_esf_t_a1_OFFSET(sp) );\
|
|
RV_E( op a2, __z_arch_esf_t_a2_OFFSET(sp) );\
|
|
RV_E( op a3, __z_arch_esf_t_a3_OFFSET(sp) );\
|
|
RV_E( op a4, __z_arch_esf_t_a4_OFFSET(sp) );\
|
|
RV_E( op a5, __z_arch_esf_t_a5_OFFSET(sp) );\
|
|
RV_I( op a6, __z_arch_esf_t_a6_OFFSET(sp) );\
|
|
RV_I( op a7, __z_arch_esf_t_a7_OFFSET(sp) );\
|
|
RV_E( op ra, __z_arch_esf_t_ra_OFFSET(sp) )
|
|
|
|
.macro get_current_cpu dst
|
|
#if defined(CONFIG_SMP) || defined(CONFIG_USERSPACE)
|
|
csrr \dst, mscratch
|
|
#else
|
|
la \dst, _kernel + ___kernel_t_cpus_OFFSET
|
|
#endif
|
|
.endm
|
|
|
|
/* imports */
|
|
GDATA(_sw_isr_table)
|
|
GTEXT(__soc_is_irq)
|
|
GTEXT(__soc_handle_irq)
|
|
GTEXT(_Fault)
|
|
#ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE
|
|
GTEXT(__soc_save_context)
|
|
GTEXT(__soc_restore_context)
|
|
#endif /* CONFIG_RISCV_SOC_CONTEXT_SAVE */
|
|
|
|
GTEXT(z_riscv_fatal_error)
|
|
GTEXT(z_get_next_switch_handle)
|
|
GTEXT(z_riscv_switch)
|
|
GTEXT(z_riscv_thread_start)
|
|
|
|
#ifdef CONFIG_TRACING
|
|
GTEXT(sys_trace_isr_enter)
|
|
GTEXT(sys_trace_isr_exit)
|
|
#endif
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
GDATA(_k_syscall_table)
|
|
#endif
|
|
|
|
/* exports */
|
|
GTEXT(_isr_wrapper)
|
|
|
|
/* use ABI name of registers for the sake of simplicity */
|
|
|
|
/*
|
|
* Generic architecture-level IRQ handling, along with callouts to
|
|
* SoC-specific routines.
|
|
*
|
|
* Architecture level IRQ handling includes basic context save/restore
|
|
* of standard registers and calling ISRs registered at Zephyr's driver
|
|
* level.
|
|
*
|
|
* Since RISC-V does not completely prescribe IRQ handling behavior,
|
|
* implementations vary (some implementations also deviate from
|
|
* what standard behavior is defined). Hence, the arch level code expects
|
|
* the following functions to be provided at the SOC level:
|
|
*
|
|
* - __soc_is_irq: decide if we're handling an interrupt or an exception
|
|
* - __soc_handle_irq: handle SoC-specific details for a pending IRQ
|
|
* (e.g. clear a pending bit in a SoC-specific register)
|
|
*
|
|
* If CONFIG_RISCV_SOC_CONTEXT_SAVE=y, calls to SoC-level context save/restore
|
|
* routines are also made here. For details, see the Kconfig help text.
|
|
*/
|
|
|
|
/*
|
|
* Handler called upon each exception/interrupt/fault
|
|
*/
|
|
SECTION_FUNC(exception.entry, _isr_wrapper)
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
/* retrieve address of _current_cpu preserving s0 */
|
|
csrrw s0, mscratch, s0
|
|
|
|
/* preserve t0 and t1 temporarily */
|
|
sr t0, _curr_cpu_arch_user_exc_tmp0(s0)
|
|
sr t1, _curr_cpu_arch_user_exc_tmp1(s0)
|
|
|
|
/* determine if we come from user space */
|
|
csrr t0, mstatus
|
|
li t1, MSTATUS_MPP
|
|
and t0, t0, t1
|
|
bnez t0, 1f
|
|
|
|
/* in user space we were: switch to our privileged stack */
|
|
mv t0, sp
|
|
lr sp, _curr_cpu_arch_user_exc_sp(s0)
|
|
|
|
/* Save user stack value. Coming from user space, we know this
|
|
* can't overflow the privileged stack. The esf will be allocated
|
|
* later but it is safe to store our saved user sp here. */
|
|
sr t0, (-__z_arch_esf_t_SIZEOF + __z_arch_esf_t_sp_OFFSET)(sp)
|
|
|
|
/* Make sure tls pointer is sane */
|
|
lr t0, ___cpu_t_current_OFFSET(s0)
|
|
lr tp, _thread_offset_to_tls(t0)
|
|
|
|
/* Clear our per-thread usermode flag */
|
|
lui t0, %tprel_hi(is_user_mode)
|
|
add t0, t0, tp, %tprel_add(is_user_mode)
|
|
sb zero, %tprel_lo(is_user_mode)(t0)
|
|
1:
|
|
/* retrieve original t0/t1 values */
|
|
lr t0, _curr_cpu_arch_user_exc_tmp0(s0)
|
|
lr t1, _curr_cpu_arch_user_exc_tmp1(s0)
|
|
|
|
/* retrieve original s0 and restore _current_cpu in mscratch */
|
|
csrrw s0, mscratch, s0
|
|
#endif
|
|
|
|
#ifdef CONFIG_RISCV_SOC_HAS_ISR_STACKING
|
|
SOC_ISR_SW_STACKING
|
|
#else
|
|
/* Save caller-saved registers on current thread stack. */
|
|
addi sp, sp, -__z_arch_esf_t_SIZEOF
|
|
DO_CALLER_SAVED(sr) ;
|
|
#endif /* CONFIG_RISCV_SOC_HAS_ISR_STACKING */
|
|
|
|
/* Save s0 in the esf and load it with &_current_cpu. */
|
|
sr s0, __z_arch_esf_t_s0_OFFSET(sp)
|
|
get_current_cpu s0
|
|
|
|
/* Save MEPC register */
|
|
csrr t0, mepc
|
|
sr t0, __z_arch_esf_t_mepc_OFFSET(sp)
|
|
|
|
/* Save MSTATUS register */
|
|
csrr t2, mstatus
|
|
sr t2, __z_arch_esf_t_mstatus_OFFSET(sp)
|
|
|
|
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
|
|
/* Assess whether floating-point registers need to be saved. */
|
|
li t1, MSTATUS_FS_INIT
|
|
and t0, t2, t1
|
|
beqz t0, skip_store_fp_caller_saved
|
|
DO_FP_CALLER_SAVED(fsr, sp)
|
|
skip_store_fp_caller_saved:
|
|
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
|
|
|
|
#ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE
|
|
/* Handle context saving at SOC level. */
|
|
addi a0, sp, __z_arch_esf_t_soc_context_OFFSET
|
|
jal ra, __soc_save_context
|
|
#endif /* CONFIG_RISCV_SOC_CONTEXT_SAVE */
|
|
|
|
/*
|
|
* Check if exception is the result of an interrupt or not.
|
|
* (SOC dependent). Following the RISC-V architecture spec, the MSB
|
|
* of the mcause register is used to indicate whether an exception
|
|
* is the result of an interrupt or an exception/fault. But for some
|
|
* SOCs (like pulpino or riscv-qemu), the MSB is never set to indicate
|
|
* interrupt. Hence, check for interrupt/exception via the __soc_is_irq
|
|
* function (that needs to be implemented by each SOC). The result is
|
|
* returned via register a0 (1: interrupt, 0 exception)
|
|
*/
|
|
jal ra, __soc_is_irq
|
|
|
|
/* If a0 != 0, jump to is_interrupt */
|
|
bnez a0, is_interrupt
|
|
|
|
/*
|
|
* If the exception is the result of an ECALL, check whether to
|
|
* perform a context-switch or an IRQ offload. Otherwise call _Fault
|
|
* to report the exception.
|
|
*/
|
|
csrr t0, mcause
|
|
li t2, SOC_MCAUSE_EXP_MASK
|
|
and t0, t0, t2
|
|
|
|
/*
|
|
* If mcause == SOC_MCAUSE_ECALL_EXP, handle system call from
|
|
* kernel thread.
|
|
*/
|
|
li t1, SOC_MCAUSE_ECALL_EXP
|
|
beq t0, t1, is_kernel_syscall
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
/*
|
|
* If mcause == SOC_MCAUSE_USER_ECALL_EXP, handle system call
|
|
* for user mode thread.
|
|
*/
|
|
li t1, SOC_MCAUSE_USER_ECALL_EXP
|
|
beq t0, t1, is_user_syscall
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
/*
|
|
* Call _Fault to handle exception.
|
|
* Stack pointer is pointing to a z_arch_esf_t structure, pass it
|
|
* to _Fault (via register a0).
|
|
* If _Fault shall return, set return address to
|
|
* no_reschedule to restore stack.
|
|
*/
|
|
mv a0, sp
|
|
la ra, no_reschedule
|
|
tail _Fault
|
|
|
|
is_kernel_syscall:
|
|
/*
|
|
* A syscall is the result of an ecall instruction, in which case the
|
|
* MEPC will contain the address of the ecall instruction.
|
|
* Increment saved MEPC by 4 to prevent triggering the same ecall
|
|
* again upon exiting the ISR.
|
|
*
|
|
* It's safe to always increment by 4, even with compressed
|
|
* instructions, because the ecall instruction is always 4 bytes.
|
|
*/
|
|
lr t0, __z_arch_esf_t_mepc_OFFSET(sp)
|
|
addi t0, t0, 4
|
|
sr t0, __z_arch_esf_t_mepc_OFFSET(sp)
|
|
|
|
#ifdef CONFIG_PMP_STACK_GUARD
|
|
/* Re-activate PMP for m-mode */
|
|
li t1, MSTATUS_MPP
|
|
csrc mstatus, t1
|
|
li t1, MSTATUS_MPRV
|
|
csrs mstatus, t1
|
|
#endif
|
|
|
|
/* Determine what to do. Operation code is in t0. */
|
|
lr t0, __z_arch_esf_t_t0_OFFSET(sp)
|
|
|
|
.if RV_ECALL_RUNTIME_EXCEPT != 0; .err; .endif
|
|
beqz t0, do_fault
|
|
|
|
#if defined(CONFIG_IRQ_OFFLOAD)
|
|
li t1, RV_ECALL_IRQ_OFFLOAD
|
|
beq t0, t1, do_irq_offload
|
|
#endif
|
|
|
|
#ifdef CONFIG_RISCV_ALWAYS_SWITCH_THROUGH_ECALL
|
|
li t1, RV_ECALL_SCHEDULE
|
|
bne t0, t1, skip_schedule
|
|
lr a0, __z_arch_esf_t_a0_OFFSET(sp)
|
|
lr a1, __z_arch_esf_t_a1_OFFSET(sp)
|
|
j reschedule
|
|
skip_schedule:
|
|
#endif
|
|
|
|
/* default fault code is K_ERR_KERNEL_OOPS */
|
|
li a0, 3
|
|
j 1f
|
|
|
|
do_fault:
|
|
/* Handle RV_ECALL_RUNTIME_EXCEPT. Retrieve reason in a0, esf in A1. */
|
|
lr a0, __z_arch_esf_t_a0_OFFSET(sp)
|
|
1: mv a1, sp
|
|
tail z_riscv_fatal_error
|
|
|
|
#if defined(CONFIG_IRQ_OFFLOAD)
|
|
do_irq_offload:
|
|
/*
|
|
* Retrieve provided routine and argument from the stack.
|
|
* Routine pointer is in saved a0, argument in saved a1
|
|
* so we load them with a1/a0 (reversed).
|
|
*/
|
|
lr a1, __z_arch_esf_t_a0_OFFSET(sp)
|
|
lr a0, __z_arch_esf_t_a1_OFFSET(sp)
|
|
|
|
/* Increment _current_cpu->nested */
|
|
lw t1, ___cpu_t_nested_OFFSET(s0)
|
|
addi t2, t1, 1
|
|
sw t2, ___cpu_t_nested_OFFSET(s0)
|
|
bnez t1, 1f
|
|
|
|
/* Switch to interrupt stack */
|
|
mv t0, sp
|
|
lr sp, ___cpu_t_irq_stack_OFFSET(s0)
|
|
|
|
/* Save thread stack pointer on interrupt stack */
|
|
addi sp, sp, -16
|
|
sr t0, 0(sp)
|
|
1:
|
|
/* Execute provided routine (argument is in a0 already). */
|
|
jalr ra, a1, 0
|
|
|
|
/* Leave through the regular IRQ exit path */
|
|
j irq_done
|
|
#endif /* CONFIG_IRQ_OFFLOAD */
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
is_user_syscall:
|
|
|
|
#ifdef CONFIG_PMP_STACK_GUARD
|
|
/*
|
|
* We came from userspace and need to reconfigure the
|
|
* PMP for kernel mode stack guard.
|
|
*/
|
|
lr a0, ___cpu_t_current_OFFSET(s0)
|
|
call z_riscv_pmp_stackguard_enable
|
|
#endif
|
|
|
|
/* It is safe to re-enable IRQs now */
|
|
csrs mstatus, MSTATUS_IEN
|
|
|
|
/*
|
|
* Same as for is_kernel_syscall: increment saved MEPC by 4 to
|
|
* prevent triggering the same ecall again upon exiting the ISR.
|
|
*/
|
|
lr t1, __z_arch_esf_t_mepc_OFFSET(sp)
|
|
addi t1, t1, 4
|
|
sr t1, __z_arch_esf_t_mepc_OFFSET(sp)
|
|
|
|
/* Restore argument registers from user stack */
|
|
lr a0, __z_arch_esf_t_a0_OFFSET(sp)
|
|
lr a1, __z_arch_esf_t_a1_OFFSET(sp)
|
|
lr a2, __z_arch_esf_t_a2_OFFSET(sp)
|
|
lr a3, __z_arch_esf_t_a3_OFFSET(sp)
|
|
lr a4, __z_arch_esf_t_a4_OFFSET(sp)
|
|
lr a5, __z_arch_esf_t_a5_OFFSET(sp)
|
|
lr t0, __z_arch_esf_t_t0_OFFSET(sp)
|
|
#if defined(CONFIG_RISCV_ISA_RV32E)
|
|
/* Stack alignment for RV32E is 4 bytes */
|
|
addi sp, sp, -4
|
|
mv t1, sp
|
|
sw t1, 0(sp)
|
|
#else
|
|
mv a6, sp
|
|
#endif /* CONFIG_RISCV_ISA_RV32E */
|
|
|
|
/* validate syscall limit */
|
|
li t1, K_SYSCALL_LIMIT
|
|
bltu t0, t1, valid_syscall_id
|
|
|
|
/* bad syscall id. Set arg1 to bad id and set call_id to SYSCALL_BAD */
|
|
mv a0, t0
|
|
li t0, K_SYSCALL_BAD
|
|
|
|
valid_syscall_id:
|
|
|
|
la t2, _k_syscall_table
|
|
|
|
slli t1, t0, RV_REGSHIFT # Determine offset from indice value
|
|
add t2, t2, t1 # Table addr + offset = function addr
|
|
lr t2, 0(t2) # Load function address
|
|
|
|
/* Execute syscall function */
|
|
jalr ra, t2, 0
|
|
|
|
#if defined(CONFIG_RISCV_ISA_RV32E)
|
|
addi sp, sp, 4
|
|
#endif /* CONFIG_RISCV_ISA_RV32E */
|
|
|
|
/* Update a0 (return value) on the stack */
|
|
sr a0, __z_arch_esf_t_a0_OFFSET(sp)
|
|
|
|
/* Disable IRQs again before leaving */
|
|
csrc mstatus, MSTATUS_IEN
|
|
j might_have_rescheduled
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
is_interrupt:
|
|
|
|
#ifdef CONFIG_PMP_STACK_GUARD
|
|
#ifdef CONFIG_USERSPACE
|
|
/*
|
|
* If we came from userspace then we need to reconfigure the
|
|
* PMP for kernel mode stack guard.
|
|
*/
|
|
lr t0, __z_arch_esf_t_mstatus_OFFSET(sp)
|
|
li t1, MSTATUS_MPP
|
|
and t0, t0, t1
|
|
bnez t0, 1f
|
|
lr a0, ___cpu_t_current_OFFSET(s0)
|
|
call z_riscv_pmp_stackguard_enable
|
|
j 2f
|
|
#endif /* CONFIG_USERSPACE */
|
|
1: /* Re-activate PMP for m-mode */
|
|
li t1, MSTATUS_MPP
|
|
csrc mstatus, t1
|
|
li t1, MSTATUS_MPRV
|
|
csrs mstatus, t1
|
|
2:
|
|
#endif
|
|
|
|
/* Increment _current_cpu->nested */
|
|
lw t1, ___cpu_t_nested_OFFSET(s0)
|
|
addi t2, t1, 1
|
|
sw t2, ___cpu_t_nested_OFFSET(s0)
|
|
bnez t1, on_irq_stack
|
|
|
|
/* Switch to interrupt stack */
|
|
mv t0, sp
|
|
lr sp, ___cpu_t_irq_stack_OFFSET(s0)
|
|
|
|
/*
|
|
* Save thread stack pointer on interrupt stack
|
|
* In RISC-V, stack pointer needs to be 16-byte aligned
|
|
*/
|
|
addi sp, sp, -16
|
|
sr t0, 0(sp)
|
|
|
|
on_irq_stack:
|
|
|
|
#ifdef CONFIG_TRACING_ISR
|
|
call sys_trace_isr_enter
|
|
#endif
|
|
|
|
/* Get IRQ causing interrupt */
|
|
csrr a0, mcause
|
|
li t0, SOC_MCAUSE_EXP_MASK
|
|
and a0, a0, t0
|
|
|
|
/*
|
|
* Clear pending IRQ generating the interrupt at SOC level
|
|
* Pass IRQ number to __soc_handle_irq via register a0
|
|
*/
|
|
jal ra, __soc_handle_irq
|
|
|
|
/*
|
|
* Call corresponding registered function in _sw_isr_table.
|
|
* (table is 2-word wide, we should shift index accordingly)
|
|
*/
|
|
la t0, _sw_isr_table
|
|
slli a0, a0, (RV_REGSHIFT + 1)
|
|
add t0, t0, a0
|
|
|
|
/* Load argument in a0 register */
|
|
lr a0, 0(t0)
|
|
|
|
/* Load ISR function address in register t1 */
|
|
lr t1, RV_REGSIZE(t0)
|
|
|
|
/* Call ISR function */
|
|
jalr ra, t1, 0
|
|
|
|
#ifdef CONFIG_TRACING_ISR
|
|
call sys_trace_isr_exit
|
|
#endif
|
|
|
|
irq_done:
|
|
/* Decrement _current_cpu->nested */
|
|
lw t2, ___cpu_t_nested_OFFSET(s0)
|
|
addi t2, t2, -1
|
|
sw t2, ___cpu_t_nested_OFFSET(s0)
|
|
bnez t2, no_reschedule
|
|
|
|
/* nested count is back to 0: Return to thread stack */
|
|
lr sp, 0(sp)
|
|
|
|
#ifdef CONFIG_STACK_SENTINEL
|
|
call z_check_stack_sentinel
|
|
#endif
|
|
|
|
check_reschedule:
|
|
|
|
/* Get pointer to current thread on this CPU */
|
|
lr a1, ___cpu_t_current_OFFSET(s0)
|
|
|
|
/*
|
|
* Get next thread to schedule with z_get_next_switch_handle().
|
|
* We pass it a NULL as we didn't save the whole thread context yet.
|
|
* If no scheduling is necessary then NULL will be returned.
|
|
*/
|
|
addi sp, sp, -16
|
|
sr a1, 0(sp)
|
|
mv a0, zero
|
|
call z_get_next_switch_handle
|
|
lr a1, 0(sp)
|
|
addi sp, sp, 16
|
|
beqz a0, no_reschedule
|
|
|
|
reschedule:
|
|
|
|
/*
|
|
* Perform context switch:
|
|
* a0 = new thread
|
|
* a1 = old thread
|
|
*/
|
|
call z_riscv_switch
|
|
|
|
z_riscv_thread_start:
|
|
might_have_rescheduled:
|
|
#ifdef CONFIG_SMP
|
|
/* reload s0 with &_current_cpu as it might have changed */
|
|
get_current_cpu s0
|
|
#endif
|
|
|
|
no_reschedule:
|
|
|
|
#ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE
|
|
/* Restore context at SOC level */
|
|
addi a0, sp, __z_arch_esf_t_soc_context_OFFSET
|
|
jal ra, __soc_restore_context
|
|
#endif /* CONFIG_RISCV_SOC_CONTEXT_SAVE */
|
|
|
|
/* Restore MEPC register */
|
|
lr t0, __z_arch_esf_t_mepc_OFFSET(sp)
|
|
csrw mepc, t0
|
|
|
|
/* Restore MSTATUS register */
|
|
lr t2, __z_arch_esf_t_mstatus_OFFSET(sp)
|
|
csrrw t0, mstatus, t2
|
|
|
|
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
|
|
/*
|
|
* Determine if we need to restore FP regs based on the previous
|
|
* (before the csr above) mstatus value available in t0.
|
|
*/
|
|
li t1, MSTATUS_FS_INIT
|
|
and t0, t0, t1
|
|
beqz t0, no_fp
|
|
|
|
/* make sure FP is enabled in the restored mstatus */
|
|
csrs mstatus, t1
|
|
DO_FP_CALLER_SAVED(flr, sp)
|
|
j 1f
|
|
|
|
no_fp: /* make sure this is reflected in the restored mstatus */
|
|
csrc mstatus, t1
|
|
1:
|
|
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
/*
|
|
* Check if we are returning to user mode. If so then we must
|
|
* set is_user_mode to true and preserve our kernel mode stack for
|
|
* the next exception to come.
|
|
*/
|
|
li t1, MSTATUS_MPP
|
|
and t0, t2, t1
|
|
bnez t0, 1f
|
|
|
|
#ifdef CONFIG_PMP_STACK_GUARD
|
|
/* Remove kernel stack guard and Reconfigure PMP for user mode */
|
|
lr a0, ___cpu_t_current_OFFSET(s0)
|
|
call z_riscv_pmp_usermode_enable
|
|
#endif
|
|
|
|
/* Set our per-thread usermode flag */
|
|
li t1, 1
|
|
lui t0, %tprel_hi(is_user_mode)
|
|
add t0, t0, tp, %tprel_add(is_user_mode)
|
|
sb t1, %tprel_lo(is_user_mode)(t0)
|
|
|
|
/* preserve stack pointer for next exception entry */
|
|
add t0, sp, __z_arch_esf_t_SIZEOF
|
|
sr t0, _curr_cpu_arch_user_exc_sp(s0)
|
|
|
|
j 2f
|
|
1:
|
|
/*
|
|
* We are returning to kernel mode. Store the stack pointer to
|
|
* be re-loaded further down.
|
|
*/
|
|
addi t0, sp, __z_arch_esf_t_SIZEOF
|
|
sr t0, __z_arch_esf_t_sp_OFFSET(sp)
|
|
2:
|
|
#endif
|
|
|
|
/* Restore s0 (it is no longer ours) */
|
|
lr s0, __z_arch_esf_t_s0_OFFSET(sp)
|
|
|
|
#ifdef CONFIG_RISCV_SOC_HAS_ISR_STACKING
|
|
SOC_ISR_SW_UNSTACKING
|
|
#else
|
|
/* Restore caller-saved registers from thread stack */
|
|
DO_CALLER_SAVED(lr)
|
|
#endif /* CONFIG_RISCV_SOC_HAS_ISR_STACKING */
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
/* retrieve saved stack pointer */
|
|
lr sp, __z_arch_esf_t_sp_OFFSET(sp)
|
|
#else
|
|
/* remove esf from the stack */
|
|
addi sp, sp, __z_arch_esf_t_SIZEOF
|
|
#endif
|
|
|
|
mret
|