zephyr/kernel/sys_clock.c
Andy Ross 1c08aefe56 kernel/timeoutq: Uninline the timeout methods
There was no good reason to have these rather large functions in a
header.  Put them into sys_clock.c for now, pending rework to the
system.

Now the API is clearly visible in a small header.

Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2018-10-16 15:03:10 -04:00

617 lines
15 KiB
C

/* system clock support */
/*
* Copyright (c) 1997-2015 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel_structs.h>
#include <toolchain.h>
#include <linker/sections.h>
#include <wait_q.h>
#include <drivers/system_timer.h>
#include <syscall_handler.h>
#ifdef CONFIG_SYS_CLOCK_EXISTS
#ifdef _NON_OPTIMIZED_TICKS_PER_SEC
#warning "non-optimized system clock frequency chosen: performance may suffer"
#endif
#endif
#ifdef CONFIG_SYS_CLOCK_EXISTS
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
int z_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
#endif
#else
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
int z_clock_hw_cycles_per_sec;
#endif
#endif
/* Note that this value is 64 bits, and thus non-atomic on almost all
* Zephyr archtictures. And of course it's routinely updated inside
* timer interrupts. Access to it must be locked.
*/
static volatile u64_t tick_count;
u64_t z_last_tick_announced;
#ifdef CONFIG_TICKLESS_KERNEL
/*
* If this flag is set, system clock will run continuously even if
* there are no timer events programmed. This allows using the
* system clock to track passage of time without interruption.
* To save power, this should be turned on only when required.
*/
int _sys_clock_always_on = 1;
static u32_t next_ts;
#endif
static void _handle_expired_timeouts(sys_dlist_t *expired);
u32_t z_tick_get_32(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
return (u32_t)z_clock_uptime();
#else
return (u32_t)tick_count;
#endif
}
u32_t _impl_k_uptime_get_32(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
__ASSERT(_sys_clock_always_on,
"Call k_enable_sys_clock_always_on to use clock API");
#endif
return __ticks_to_ms(z_tick_get_32());
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_uptime_get_32)
{
#ifdef CONFIG_TICKLESS_KERNEL
Z_OOPS(Z_SYSCALL_VERIFY(_sys_clock_always_on));
#endif
return _impl_k_uptime_get_32();
}
#endif
s64_t z_tick_get(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
return z_clock_uptime();
#else
unsigned int key = irq_lock();
s64_t ret = tick_count;
irq_unlock(key);
return ret;
#endif
}
void z_tick_set(s64_t val)
{
unsigned int key = irq_lock();
tick_count = val;
irq_unlock(key);
}
s64_t _impl_k_uptime_get(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
__ASSERT(_sys_clock_always_on,
"Call k_enable_sys_clock_always_on to use clock API");
#endif
return __ticks_to_ms(z_tick_get());
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_uptime_get, ret_p)
{
u64_t *ret = (u64_t *)ret_p;
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(ret, sizeof(*ret)));
*ret = _impl_k_uptime_get();
return 0;
}
#endif
s64_t k_uptime_delta(s64_t *reftime)
{
s64_t uptime, delta;
uptime = k_uptime_get();
delta = uptime - *reftime;
*reftime = uptime;
return delta;
}
u32_t k_uptime_delta_32(s64_t *reftime)
{
return (u32_t)k_uptime_delta(reftime);
}
/* handle the expired timeouts in the nano timeout queue */
#ifdef CONFIG_SYS_CLOCK_EXISTS
/*
* Handle timeouts by dequeuing the expired ones from _timeout_q and queue
* them on a local one, then doing the real handling from that queue. This
* allows going through the second queue without needing to have the
* interrupts locked since it is a local queue. Each expired timeout is marked
* as _EXPIRED so that an ISR preempting us and releasing an object on which
* a thread was timing out and expired will not give the object to that thread.
*
* Always called from interrupt level, and always only from the system clock
* interrupt.
*/
static inline void handle_timeouts(s32_t ticks)
{
sys_dlist_t expired;
unsigned int key;
/* init before locking interrupts */
sys_dlist_init(&expired);
key = irq_lock();
sys_dnode_t *next = sys_dlist_peek_head(&_timeout_q);
struct _timeout *timeout = (struct _timeout *)next;
K_DEBUG("head: %p, delta: %d\n",
timeout, timeout ? timeout->delta_ticks_from_prev : -2112);
if (next == NULL) {
irq_unlock(key);
return;
}
/*
* Dequeue all expired timeouts from _timeout_q, relieving irq lock
* pressure between each of them, allowing handling of higher priority
* interrupts. We know that no new timeout will be prepended in front
* of a timeout which delta is 0, since timeouts of 0 ticks are
* prohibited.
*/
while (next != NULL) {
/*
* In the case where ticks number is greater than the first
* timeout delta of the list, the lag produced by this initial
* difference must also be applied to others timeouts in list
* until it was entirely consumed.
*/
s32_t tmp = timeout->delta_ticks_from_prev;
if (timeout->delta_ticks_from_prev < ticks) {
timeout->delta_ticks_from_prev = 0;
} else {
timeout->delta_ticks_from_prev -= ticks;
}
ticks -= tmp;
next = sys_dlist_peek_next(&_timeout_q, next);
if (timeout->delta_ticks_from_prev == 0) {
sys_dnode_t *node = &timeout->node;
sys_dlist_remove(node);
/*
* Reverse the order that that were queued in the
* timeout_q: timeouts expiring on the same ticks are
* queued in the reverse order, time-wise, that they are
* added to shorten the amount of time with interrupts
* locked while walking the timeout_q. By reversing the
* order _again_ when building the expired queue, they
* end up being processed in the same order they were
* added, time-wise.
*/
sys_dlist_prepend(&expired, node);
timeout->delta_ticks_from_prev = _EXPIRED;
} else {
break;
}
irq_unlock(key);
key = irq_lock();
timeout = (struct _timeout *)next;
}
irq_unlock(key);
_handle_expired_timeouts(&expired);
}
#else
#define handle_timeouts(ticks) do { } while (false)
#endif
#ifdef CONFIG_TIMESLICING
s32_t _time_slice_elapsed;
s32_t _time_slice_duration;
int _time_slice_prio_ceiling;
/*
* Always called from interrupt level, and always only from the system clock
* interrupt, thus:
* - _current does not have to be protected, since it only changes at thread
* level or when exiting a non-nested interrupt
* - _time_slice_elapsed does not have to be protected, since it can only change
* in this function and at thread level
* - _time_slice_duration does not have to be protected, since it can only
* change at thread level
*/
static void handle_time_slicing(s32_t ticks)
{
#ifdef CONFIG_TICKLESS_KERNEL
next_ts = 0;
#endif
if (!_is_thread_time_slicing(_current)) {
return;
}
_time_slice_elapsed += ticks;
if (_time_slice_elapsed >= _time_slice_duration) {
unsigned int key;
_time_slice_elapsed = 0;
key = irq_lock();
_move_thread_to_end_of_prio_q(_current);
irq_unlock(key);
}
#ifdef CONFIG_TICKLESS_KERNEL
next_ts = _time_slice_duration - _time_slice_elapsed;
#endif
}
#else
#define handle_time_slicing(ticks) do { } while (false)
#endif
/**
*
* @brief Announce ticks to the kernel
*
* This function is only to be called by the system clock timer driver when a
* tick is to be announced to the kernel. It takes care of dequeuing the
* timers that have expired and wake up the threads pending on them.
*
* @return N/A
*/
void z_clock_announce(s32_t ticks)
{
z_last_tick_announced += ticks;
#ifdef CONFIG_SMP
/* sys_clock timekeeping happens only on the main CPU */
if (_arch_curr_cpu()->id) {
return;
}
#endif
#ifndef CONFIG_TICKLESS_KERNEL
unsigned int key;
K_DEBUG("ticks: %d\n", ticks);
key = irq_lock();
tick_count += ticks;
irq_unlock(key);
#endif
handle_timeouts(ticks);
/* time slicing is basically handled like just yet another timeout */
handle_time_slicing(ticks);
#ifdef CONFIG_TICKLESS_KERNEL
u32_t next_to = _get_next_timeout_expiry();
next_to = next_to == K_FOREVER ? 0 : next_to;
next_to = !next_to || (next_ts
&& next_to) > next_ts ? next_ts : next_to;
if (next_to) {
/* Clears current program if next_to = 0 and remaining > 0 */
int dt = next_to ? next_to : (_sys_clock_always_on ? INT_MAX : K_FOREVER);
z_clock_set_timeout(dt, false);
}
#endif
}
int k_enable_sys_clock_always_on(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
int prev_status = _sys_clock_always_on;
_sys_clock_always_on = 1;
_enable_sys_clock();
return prev_status;
#else
return -ENOTSUP;
#endif
}
void k_disable_sys_clock_always_on(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
_sys_clock_always_on = 0;
#endif
}
extern u64_t z_last_tick_announced;
/* initialize the timeouts part of k_thread when enabled in the kernel */
void _init_timeout(struct _timeout *t, _timeout_func_t func)
{
/*
* Must be initialized here and when dequeueing a timeout so that code
* not dealing with timeouts does not have to handle this, such as when
* waiting forever on a semaphore.
*/
t->delta_ticks_from_prev = _INACTIVE;
/*
* Must be initialized here so that k_wakeup can
* verify the thread is not on a wait queue before aborting a timeout.
*/
t->wait_q = NULL;
/*
* Must be initialized here, so the _handle_one_timeout()
* routine can check if there is a thread waiting on this timeout
*/
t->thread = NULL;
/*
* Function must be initialized before being potentially called.
*/
t->func = func;
/*
* These are initialized when enqueing on the timeout queue:
*
* thread->timeout.node.next
* thread->timeout.node.prev
*/
}
void _init_thread_timeout(struct _thread_base *thread_base)
{
_init_timeout(&thread_base->timeout, NULL);
}
/* remove a thread timing out from kernel object's wait queue */
static inline void _unpend_thread_timing_out(struct k_thread *thread,
struct _timeout *timeout_obj)
{
if (timeout_obj->wait_q) {
_unpend_thread_no_timeout(thread);
thread->base.timeout.wait_q = NULL;
}
}
/*
* Handle one timeout from the expired timeout queue. Removes it from the wait
* queue it is on if waiting for an object; in this case, the return value is
* kept as -EAGAIN, set previously in _Swap().
*/
static inline void _handle_one_expired_timeout(struct _timeout *timeout)
{
struct k_thread *thread = timeout->thread;
unsigned int key = irq_lock();
timeout->delta_ticks_from_prev = _INACTIVE;
K_DEBUG("timeout %p\n", timeout);
if (thread) {
_unpend_thread_timing_out(thread, timeout);
_mark_thread_as_started(thread);
_ready_thread(thread);
irq_unlock(key);
} else {
irq_unlock(key);
if (timeout->func) {
timeout->func(timeout);
}
}
}
/*
* Loop over all expired timeouts and handle them one by one. Should be called
* with interrupts unlocked: interrupts will be locked on each interation only
* for the amount of time necessary.
*/
static void _handle_expired_timeouts(sys_dlist_t *expired)
{
struct _timeout *timeout, *next;
SYS_DLIST_FOR_EACH_CONTAINER_SAFE(expired, timeout, next, node) {
_handle_one_expired_timeout(timeout);
}
}
/* returns _INACTIVE if the timer is not active */
int _abort_timeout(struct _timeout *timeout)
{
if (timeout->delta_ticks_from_prev == _INACTIVE) {
return _INACTIVE;
}
if (!sys_dlist_is_tail(&_timeout_q, &timeout->node)) {
sys_dnode_t *next_node =
sys_dlist_peek_next(&_timeout_q, &timeout->node);
struct _timeout *next = (struct _timeout *)next_node;
next->delta_ticks_from_prev += timeout->delta_ticks_from_prev;
}
sys_dlist_remove(&timeout->node);
timeout->delta_ticks_from_prev = _INACTIVE;
return 0;
}
/* returns _INACTIVE if the timer has already expired */
int _abort_thread_timeout(struct k_thread *thread)
{
return _abort_timeout(&thread->base.timeout);
}
static inline void _dump_timeout(struct _timeout *timeout, int extra_tab)
{
#ifdef CONFIG_KERNEL_DEBUG
char *tab = extra_tab ? "\t" : "";
K_DEBUG("%stimeout %p, prev: %p, next: %p\n"
"%s\tthread: %p, wait_q: %p\n"
"%s\tticks remaining: %d\n"
"%s\tfunction: %p\n",
tab, timeout, timeout->node.prev, timeout->node.next,
tab, timeout->thread, timeout->wait_q,
tab, timeout->delta_ticks_from_prev,
tab, timeout->func);
#endif
}
static inline void _dump_timeout_q(void)
{
#ifdef CONFIG_KERNEL_DEBUG
struct _timeout *timeout;
K_DEBUG("_timeout_q: %p, head: %p, tail: %p\n",
&_timeout_q, _timeout_q.head, _timeout_q.tail);
SYS_DLIST_FOR_EACH_CONTAINER(&_timeout_q, timeout, node) {
_dump_timeout(timeout, 1);
}
#endif
}
/* find the closest deadline in the timeout queue */
s32_t _get_next_timeout_expiry(void)
{
struct _timeout *t = (struct _timeout *)
sys_dlist_peek_head(&_timeout_q);
return t ? t->delta_ticks_from_prev : K_FOREVER;
}
/*
* Add timeout to timeout queue. Record waiting thread and wait queue if any.
*
* Cannot handle timeout == 0 and timeout == K_FOREVER.
*
* If the new timeout is expiring on the same system clock tick as other
* timeouts already present in the _timeout_q, it is be _prepended_ to these
* timeouts. This allows exiting the loop sooner, which is good, since
* interrupts are locked while trying to find the insert point. Note that the
* timeouts are then processed in the _reverse order_ if they expire on the
* same tick.
*
* This should not cause problems to applications, unless they really expect
* two timeouts queued very close to one another to expire in the same order
* they were queued. This could be changed at the cost of potential longer
* interrupt latency.
*
* Must be called with interrupts locked.
*/
void _add_timeout(struct k_thread *thread, struct _timeout *timeout,
_wait_q_t *wait_q, s32_t timeout_in_ticks)
{
__ASSERT(timeout_in_ticks >= 0, "");
timeout->delta_ticks_from_prev = timeout_in_ticks;
timeout->thread = thread;
timeout->wait_q = (sys_dlist_t *)wait_q;
K_DEBUG("before adding timeout %p\n", timeout);
_dump_timeout(timeout, 0);
_dump_timeout_q();
/* If timer is submitted to expire ASAP with
* timeout_in_ticks (duration) as zero value,
* then handle timeout immedately without going
* through timeout queue.
*/
if (!timeout_in_ticks) {
_handle_one_expired_timeout(timeout);
return;
}
s32_t *delta = &timeout->delta_ticks_from_prev;
struct _timeout *in_q;
#ifdef CONFIG_TICKLESS_KERNEL
/*
* If some time has already passed since timer was last
* programmed, then that time needs to be accounted when
* inserting the new timeout. We account for this
* by adding the already elapsed time to the new timeout.
* This is like adding this timout back in history.
*/
u32_t adjusted_timeout;
*delta += (int)(z_clock_uptime() - z_last_tick_announced);
adjusted_timeout = *delta;
#endif
SYS_DLIST_FOR_EACH_CONTAINER(&_timeout_q, in_q, node) {
if (*delta <= in_q->delta_ticks_from_prev) {
in_q->delta_ticks_from_prev -= *delta;
sys_dlist_insert_before(&_timeout_q, &in_q->node,
&timeout->node);
goto inserted;
}
*delta -= in_q->delta_ticks_from_prev;
}
sys_dlist_append(&_timeout_q, &timeout->node);
inserted:
K_DEBUG("after adding timeout %p\n", timeout);
_dump_timeout(timeout, 0);
_dump_timeout_q();
#ifdef CONFIG_TICKLESS_KERNEL
if (adjusted_timeout < _get_next_timeout_expiry()) {
z_clock_set_timeout(adjusted_timeout, false);
}
#endif
}
/*
* Put thread on timeout queue. Record wait queue if any.
*
* Cannot handle timeout == 0 and timeout == K_FOREVER.
*
* Must be called with interrupts locked.
*/
void _add_thread_timeout(struct k_thread *thread,
_wait_q_t *wait_q,
s32_t timeout_in_ticks)
{
_add_timeout(thread, &thread->base.timeout, wait_q, timeout_in_ticks);
}