zephyr/kernel/include/ksched.h
Andy Ross 1acd8c2996 kernel: Scheduler rewrite
This replaces the existing scheduler (but not priority handling)
implementation with a somewhat simpler one.  Behavior as to thread
selection does not change.  New features:

+ Unifies SMP and uniprocessing selection code (with the sole
  exception of the "cache" trick not being possible in SMP).

+ The old static multi-queue implementation is gone and has been
  replaced with a build-time choice of either a "dumb" list
  implementation (faster and significantly smaller for apps with only
  a few threads) or a balanced tree queue which scales well to
  arbitrary numbers of threads and priority levels.  This is
  controlled via the CONFIG_SCHED_DUMB kconfig variable.

+ The balanced tree implementation is usable symmetrically for the
  wait_q abstraction, fixing a scalability glitch Zephyr had when many
  threads were waiting on a single object.  This can be selected via
  CONFIG_WAITQ_FAST.

Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2018-05-19 07:00:55 +03:00

308 lines
7.4 KiB
C

/*
* Copyright (c) 2016-2017 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef _ksched__h_
#define _ksched__h_
#include <kernel_structs.h>
#ifdef CONFIG_KERNEL_EVENT_LOGGER
#include <logging/kernel_event_logger.h>
#endif /* CONFIG_KERNEL_EVENT_LOGGER */
#ifdef CONFIG_MULTITHREADING
#define _VALID_PRIO(prio, entry_point) \
(((prio) == K_IDLE_PRIO && _is_idle_thread(entry_point)) || \
(_is_prio_higher_or_equal((prio), \
K_LOWEST_APPLICATION_THREAD_PRIO) && \
_is_prio_lower_or_equal((prio), \
K_HIGHEST_APPLICATION_THREAD_PRIO)))
#define _ASSERT_VALID_PRIO(prio, entry_point) do { \
__ASSERT(_VALID_PRIO((prio), (entry_point)), \
"invalid priority (%d); allowed range: %d to %d", \
(prio), \
K_LOWEST_APPLICATION_THREAD_PRIO, \
K_HIGHEST_APPLICATION_THREAD_PRIO); \
} while ((0))
#else
#define _VALID_PRIO(prio, entry_point) ((prio) == -1)
#define _ASSERT_VALID_PRIO(prio, entry_point) __ASSERT((prio) == -1, "")
#endif
void _sched_init(void);
void _add_thread_to_ready_q(struct k_thread *thread);
void _move_thread_to_end_of_prio_q(struct k_thread *thread);
void _remove_thread_from_ready_q(struct k_thread *thread);
int _is_thread_time_slicing(struct k_thread *thread);
void _unpend_thread_no_timeout(struct k_thread *thread);
int _pend_current_thread(int key, _wait_q_t *wait_q, s32_t timeout);
void _pend_thread(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout);
int _reschedule(int key);
struct k_thread *_unpend_first_thread(_wait_q_t *wait_q);
void _unpend_thread(struct k_thread *thread);
int _unpend_all(_wait_q_t *wait_q);
void _thread_priority_set(struct k_thread *thread, int prio);
void *_get_next_switch_handle(void *interrupted);
struct k_thread *_find_first_thread_to_unpend(_wait_q_t *wait_q,
struct k_thread *from);
void idle(void *a, void *b, void *c);
/* find which one is the next thread to run */
/* must be called with interrupts locked */
#ifdef CONFIG_SMP
extern struct k_thread *_get_next_ready_thread(void);
#else
static ALWAYS_INLINE struct k_thread *_get_next_ready_thread(void)
{
return _ready_q.cache;
}
#endif
static inline int _is_idle_thread(void *entry_point)
{
return entry_point == idle;
}
static inline int _is_thread_pending(struct k_thread *thread)
{
return !!(thread->base.thread_state & _THREAD_PENDING);
}
static inline int _is_thread_prevented_from_running(struct k_thread *thread)
{
u8_t state = thread->base.thread_state;
return state & (_THREAD_PENDING | _THREAD_PRESTART | _THREAD_DEAD |
_THREAD_DUMMY | _THREAD_SUSPENDED);
}
static inline int _is_thread_timeout_active(struct k_thread *thread)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
return thread->base.timeout.delta_ticks_from_prev != _INACTIVE;
#else
return 0;
#endif
}
static inline int _is_thread_ready(struct k_thread *thread)
{
return !(_is_thread_prevented_from_running(thread) ||
_is_thread_timeout_active(thread));
}
static inline int _has_thread_started(struct k_thread *thread)
{
return !(thread->base.thread_state & _THREAD_PRESTART);
}
static inline int _is_thread_state_set(struct k_thread *thread, u32_t state)
{
return !!(thread->base.thread_state & state);
}
static inline int _is_thread_polling(struct k_thread *thread)
{
return _is_thread_state_set(thread, _THREAD_POLLING);
}
static inline int _is_thread_queued(struct k_thread *thread)
{
return _is_thread_state_set(thread, _THREAD_QUEUED);
}
static inline void _mark_thread_as_suspended(struct k_thread *thread)
{
thread->base.thread_state |= _THREAD_SUSPENDED;
}
static inline void _mark_thread_as_not_suspended(struct k_thread *thread)
{
thread->base.thread_state &= ~_THREAD_SUSPENDED;
}
static inline void _mark_thread_as_started(struct k_thread *thread)
{
thread->base.thread_state &= ~_THREAD_PRESTART;
}
static inline void _mark_thread_as_pending(struct k_thread *thread)
{
thread->base.thread_state |= _THREAD_PENDING;
}
static inline void _mark_thread_as_not_pending(struct k_thread *thread)
{
thread->base.thread_state &= ~_THREAD_PENDING;
}
static inline void _set_thread_states(struct k_thread *thread, u32_t states)
{
thread->base.thread_state |= states;
}
static inline void _reset_thread_states(struct k_thread *thread,
u32_t states)
{
thread->base.thread_state &= ~states;
}
static inline void _mark_thread_as_polling(struct k_thread *thread)
{
_set_thread_states(thread, _THREAD_POLLING);
}
static inline void _mark_thread_as_not_polling(struct k_thread *thread)
{
_reset_thread_states(thread, _THREAD_POLLING);
}
static inline void _mark_thread_as_queued(struct k_thread *thread)
{
_set_thread_states(thread, _THREAD_QUEUED);
}
static inline void _mark_thread_as_not_queued(struct k_thread *thread)
{
_reset_thread_states(thread, _THREAD_QUEUED);
}
static inline int _is_under_prio_ceiling(int prio)
{
return prio >= CONFIG_PRIORITY_CEILING;
}
static inline int _get_new_prio_with_ceiling(int prio)
{
return _is_under_prio_ceiling(prio) ? prio : CONFIG_PRIORITY_CEILING;
}
static inline int _is_prio1_higher_than_or_equal_to_prio2(int prio1, int prio2)
{
return prio1 <= prio2;
}
static inline int _is_prio_higher_or_equal(int prio1, int prio2)
{
return _is_prio1_higher_than_or_equal_to_prio2(prio1, prio2);
}
static inline int _is_prio1_lower_than_or_equal_to_prio2(int prio1, int prio2)
{
return prio1 >= prio2;
}
static inline int _is_prio1_higher_than_prio2(int prio1, int prio2)
{
return prio1 < prio2;
}
static inline int _is_prio_higher(int prio, int test_prio)
{
return _is_prio1_higher_than_prio2(prio, test_prio);
}
static inline int _is_prio_lower_or_equal(int prio1, int prio2)
{
return _is_prio1_lower_than_or_equal_to_prio2(prio1, prio2);
}
static inline int _is_t1_higher_prio_than_t2(struct k_thread *t1,
struct k_thread *t2)
{
return _is_prio1_higher_than_prio2(t1->base.prio, t2->base.prio);
}
static inline int _is_valid_prio(int prio, void *entry_point)
{
if (prio == K_IDLE_PRIO && _is_idle_thread(entry_point)) {
return 1;
}
if (!_is_prio_higher_or_equal(prio,
K_LOWEST_APPLICATION_THREAD_PRIO)) {
return 0;
}
if (!_is_prio_lower_or_equal(prio,
K_HIGHEST_APPLICATION_THREAD_PRIO)) {
return 0;
}
return 1;
}
static inline void _ready_thread(struct k_thread *thread)
{
if (_is_thread_ready(thread)) {
_add_thread_to_ready_q(thread);
}
#ifdef CONFIG_KERNEL_EVENT_LOGGER_THREAD
_sys_k_event_logger_thread_ready(thread);
#endif
}
static inline void _ready_one_thread(_wait_q_t *wq)
{
struct k_thread *th = _unpend_first_thread(wq);
if (th) {
_ready_thread(th);
}
}
static inline void _sched_lock(void)
{
#ifdef CONFIG_PREEMPT_ENABLED
__ASSERT(!_is_in_isr(), "");
__ASSERT(_current->base.sched_locked != 1, "");
--_current->base.sched_locked;
compiler_barrier();
K_DEBUG("scheduler locked (%p:%d)\n",
_current, _current->base.sched_locked);
#endif
}
static ALWAYS_INLINE void _sched_unlock_no_reschedule(void)
{
#ifdef CONFIG_PREEMPT_ENABLED
__ASSERT(!_is_in_isr(), "");
__ASSERT(_current->base.sched_locked != 0, "");
compiler_barrier();
++_current->base.sched_locked;
#endif
}
static ALWAYS_INLINE int _is_thread_timeout_expired(struct k_thread *thread)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
return thread->base.timeout.delta_ticks_from_prev == _EXPIRED;
#else
return 0;
#endif
}
static inline struct k_thread *_unpend1_no_timeout(_wait_q_t *wait_q)
{
struct k_thread *thread = _find_first_thread_to_unpend(wait_q, NULL);
if (thread) {
_unpend_thread_no_timeout(thread);
}
return thread;
}
#endif /* _ksched__h_ */