zephyr/drivers/can/can_stm32.c
Henrik Brix Andersen 085ee2b0b8 drivers: can: stm32: remove can_get_max_filters() support for now
Remove support for the optional API function can_get_max_filters() from
the STM32 bxCAN driver for now.

The function returns the Kconfig value for the maximum number of filters
but the true number of supported filters may be different due to the
filter nature of the STM32 bxCAN driver implementation.

Signed-off-by: Henrik Brix Andersen <hebad@vestas.com>
2022-04-19 11:47:40 +02:00

1295 lines
34 KiB
C

/*
* Copyright (c) 2018 Alexander Wachter
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <drivers/can/transceiver.h>
#include <drivers/clock_control/stm32_clock_control.h>
#include <drivers/clock_control.h>
#include <drivers/pinctrl.h>
#include <sys/util.h>
#include <string.h>
#include <kernel.h>
#include <soc.h>
#include <errno.h>
#include <stdbool.h>
#include <drivers/can.h>
#include <logging/log.h>
#include "can_stm32.h"
LOG_MODULE_REGISTER(can_stm32, CONFIG_CAN_LOG_LEVEL);
#define CAN_INIT_TIMEOUT (10 * sys_clock_hw_cycles_per_sec() / MSEC_PER_SEC)
#if DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(can1), st_stm32_can, okay) && \
DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(can2), st_stm32_can, okay)
#error Simultaneous use of CAN_1 and CAN_2 not supported yet
#endif
#define DT_DRV_COMPAT st_stm32_can
#define SP_IS_SET(inst) DT_INST_NODE_HAS_PROP(inst, sample_point) ||
/* Macro to exclude the sample point algorithm from compilation if not used
* Without the macro, the algorithm would always waste ROM
*/
#define USE_SP_ALGO (DT_INST_FOREACH_STATUS_OKAY(SP_IS_SET) 0)
#define SP_AND_TIMING_NOT_SET(inst) \
(!DT_INST_NODE_HAS_PROP(inst, sample_point) && \
!(DT_INST_NODE_HAS_PROP(inst, prop_seg) && \
DT_INST_NODE_HAS_PROP(inst, phase_seg1) && \
DT_INST_NODE_HAS_PROP(inst, phase_seg2))) ||
#if DT_INST_FOREACH_STATUS_OKAY(SP_AND_TIMING_NOT_SET) 0
#error You must either set a sampling-point or timings (phase-seg* and prop-seg)
#endif
/*
* Translation tables
* filter_in_bank[enum can_filter_type] = number of filters in bank for this type
* reg_demand[enum can_filter_type] = how many registers are used for this type
*/
static const uint8_t filter_in_bank[] = {2, 4, 1, 2};
static const uint8_t reg_demand[] = {2, 1, 4, 2};
static void can_stm32_signal_tx_complete(const struct device *dev, struct can_mailbox *mb)
{
if (mb->tx_callback) {
mb->tx_callback(dev, mb->error, mb->callback_arg);
} else {
k_sem_give(&mb->tx_int_sem);
}
}
static void can_stm32_get_msg_fifo(CAN_FIFOMailBox_TypeDef *mbox,
struct zcan_frame *frame)
{
if (mbox->RIR & CAN_RI0R_IDE) {
frame->id = mbox->RIR >> CAN_RI0R_EXID_Pos;
frame->id_type = CAN_EXTENDED_IDENTIFIER;
} else {
frame->id = mbox->RIR >> CAN_RI0R_STID_Pos;
frame->id_type = CAN_STANDARD_IDENTIFIER;
}
frame->rtr = mbox->RIR & CAN_RI0R_RTR ? CAN_REMOTEREQUEST : CAN_DATAFRAME;
frame->dlc = mbox->RDTR & (CAN_RDT0R_DLC >> CAN_RDT0R_DLC_Pos);
frame->data_32[0] = mbox->RDLR;
frame->data_32[1] = mbox->RDHR;
#ifdef CONFIG_CAN_RX_TIMESTAMP
frame->timestamp = ((mbox->RDTR & CAN_RDT0R_TIME) >> CAN_RDT0R_TIME_Pos);
#endif
}
static inline void can_stm32_rx_isr_handler(const struct device *dev)
{
struct can_stm32_data *data = dev->data;
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
CAN_FIFOMailBox_TypeDef *mbox;
int filter_match_index;
struct zcan_frame frame;
can_rx_callback_t callback;
while (can->RF0R & CAN_RF0R_FMP0) {
mbox = &can->sFIFOMailBox[0];
filter_match_index = ((mbox->RDTR & CAN_RDT0R_FMI)
>> CAN_RDT0R_FMI_Pos);
if (filter_match_index >= CONFIG_CAN_MAX_FILTER) {
break;
}
LOG_DBG("Message on filter index %d", filter_match_index);
can_stm32_get_msg_fifo(mbox, &frame);
callback = data->rx_cb[filter_match_index];
if (callback) {
callback(dev, &frame, data->cb_arg[filter_match_index]);
}
/* Release message */
can->RF0R |= CAN_RF0R_RFOM0;
}
if (can->RF0R & CAN_RF0R_FOVR0) {
LOG_ERR("RX FIFO Overflow");
}
}
static int can_stm32_get_state(const struct device *dev, enum can_state *state,
struct can_bus_err_cnt *err_cnt)
{
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
if (state != NULL) {
if (can->ESR & CAN_ESR_BOFF) {
*state = CAN_BUS_OFF;
} else if (can->ESR & CAN_ESR_EPVF) {
*state = CAN_ERROR_PASSIVE;
} else if (can->ESR & CAN_ESR_EWGF) {
*state = CAN_ERROR_WARNING;
} else {
*state = CAN_ERROR_ACTIVE;
}
}
if (err_cnt != NULL) {
err_cnt->tx_err_cnt =
((can->ESR & CAN_ESR_TEC) >> CAN_ESR_TEC_Pos);
err_cnt->rx_err_cnt =
((can->ESR & CAN_ESR_REC) >> CAN_ESR_REC_Pos);
}
return 0;
}
static inline void can_stm32_bus_state_change_isr(const struct device *dev)
{
struct can_stm32_data *data = dev->data;
struct can_bus_err_cnt err_cnt;
enum can_state state;
const can_state_change_callback_t cb = data->state_change_cb;
void *state_change_cb_data = data->state_change_cb_data;
#ifdef CONFIG_CAN_STATS
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
switch (can->ESR & CAN_ESR_LEC) {
case (CAN_ESR_LEC_0):
CAN_STATS_STUFF_ERROR_INC(dev);
break;
case (CAN_ESR_LEC_1):
CAN_STATS_FORM_ERROR_INC(dev);
break;
case (CAN_ESR_LEC_1 | CAN_ESR_LEC_0):
CAN_STATS_ACK_ERROR_INC(dev);
break;
case (CAN_ESR_LEC_2):
CAN_STATS_BIT1_ERROR_INC(dev);
break;
case (CAN_ESR_LEC_2 | CAN_ESR_LEC_0):
CAN_STATS_BIT0_ERROR_INC(dev);
break;
case (CAN_ESR_LEC_2 | CAN_ESR_LEC_1):
CAN_STATS_CRC_ERROR_INC(dev);
break;
default:
break;
}
/* Clear last error code flag */
can->ESR |= CAN_ESR_LEC;
#endif /* CONFIG_CAN_STATS */
(void)can_stm32_get_state(dev, &state, &err_cnt);
if (state != data->state) {
data->state = state;
if (cb != NULL) {
cb(dev, state, err_cnt, state_change_cb_data);
}
}
}
static inline void can_stm32_tx_isr_handler(const struct device *dev)
{
struct can_stm32_data *data = dev->data;
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
uint32_t bus_off;
bus_off = can->ESR & CAN_ESR_BOFF;
if ((can->TSR & CAN_TSR_RQCP0) | bus_off) {
data->mb0.error =
can->TSR & CAN_TSR_TXOK0 ? 0 :
can->TSR & CAN_TSR_TERR0 ? -EIO :
can->TSR & CAN_TSR_ALST0 ? -EBUSY :
bus_off ? -ENETDOWN :
-EIO;
/* clear the request. */
can->TSR |= CAN_TSR_RQCP0;
can_stm32_signal_tx_complete(dev, &data->mb0);
}
if ((can->TSR & CAN_TSR_RQCP1) | bus_off) {
data->mb1.error =
can->TSR & CAN_TSR_TXOK1 ? 0 :
can->TSR & CAN_TSR_TERR1 ? -EIO :
can->TSR & CAN_TSR_ALST1 ? -EBUSY :
bus_off ? -ENETDOWN :
-EIO;
/* clear the request. */
can->TSR |= CAN_TSR_RQCP1;
can_stm32_signal_tx_complete(dev, &data->mb1);
}
if ((can->TSR & CAN_TSR_RQCP2) | bus_off) {
data->mb2.error =
can->TSR & CAN_TSR_TXOK2 ? 0 :
can->TSR & CAN_TSR_TERR2 ? -EIO :
can->TSR & CAN_TSR_ALST2 ? -EBUSY :
bus_off ? -ENETDOWN :
-EIO;
/* clear the request. */
can->TSR |= CAN_TSR_RQCP2;
can_stm32_signal_tx_complete(dev, &data->mb2);
}
if (can->TSR & CAN_TSR_TME) {
k_sem_give(&data->tx_int_sem);
}
}
#ifdef CONFIG_SOC_SERIES_STM32F0X
static void can_stm32_isr(const struct device *dev)
{
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
can_stm32_tx_isr_handler(dev);
can_stm32_rx_isr_handler(dev);
if (can->MSR & CAN_MSR_ERRI) {
can_stm32_bus_state_change_isr(dev);
can->MSR |= CAN_MSR_ERRI;
}
}
#else
static void can_stm32_rx_isr(const struct device *dev)
{
can_stm32_rx_isr_handler(dev);
}
static void can_stm32_tx_isr(const struct device *dev)
{
can_stm32_tx_isr_handler(dev);
}
static void can_stm32_state_change_isr(const struct device *dev)
{
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
/* Signal bus-off to waiting tx */
if (can->MSR & CAN_MSR_ERRI) {
can_stm32_tx_isr_handler(dev);
can_stm32_bus_state_change_isr(dev);
can->MSR |= CAN_MSR_ERRI;
}
}
#endif
static int can_enter_init_mode(CAN_TypeDef *can)
{
uint32_t start_time;
can->MCR |= CAN_MCR_INRQ;
start_time = k_cycle_get_32();
while ((can->MSR & CAN_MSR_INAK) == 0U) {
if (k_cycle_get_32() - start_time > CAN_INIT_TIMEOUT) {
can->MCR &= ~CAN_MCR_INRQ;
return -EAGAIN;
}
}
return 0;
}
static int can_leave_init_mode(CAN_TypeDef *can)
{
uint32_t start_time;
can->MCR &= ~CAN_MCR_INRQ;
start_time = k_cycle_get_32();
while ((can->MSR & CAN_MSR_INAK) != 0U) {
if (k_cycle_get_32() - start_time > CAN_INIT_TIMEOUT) {
return -EAGAIN;
}
}
return 0;
}
static int can_leave_sleep_mode(CAN_TypeDef *can)
{
uint32_t start_time;
can->MCR &= ~CAN_MCR_SLEEP;
start_time = k_cycle_get_32();
while ((can->MSR & CAN_MSR_SLAK) != 0) {
if (k_cycle_get_32() - start_time > CAN_INIT_TIMEOUT) {
return -EAGAIN;
}
}
return 0;
}
static int can_stm32_set_mode(const struct device *dev, enum can_mode mode)
{
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
struct can_stm32_data *data = dev->data;
int ret;
LOG_DBG("Set mode %d", mode);
k_mutex_lock(&data->inst_mutex, K_FOREVER);
if (cfg->phy != NULL) {
ret = can_transceiver_enable(cfg->phy);
if (ret != 0) {
LOG_ERR("failed to enable CAN transceiver (err %d)", ret);
goto done;
}
}
ret = can_enter_init_mode(can);
if (ret) {
LOG_ERR("Failed to enter init mode");
goto done;
}
switch (mode) {
case CAN_NORMAL_MODE:
can->BTR &= ~(CAN_BTR_LBKM | CAN_BTR_SILM);
break;
case CAN_LOOPBACK_MODE:
can->BTR &= ~(CAN_BTR_SILM);
can->BTR |= CAN_BTR_LBKM;
break;
case CAN_SILENT_MODE:
can->BTR &= ~(CAN_BTR_LBKM);
can->BTR |= CAN_BTR_SILM;
break;
case CAN_SILENT_LOOPBACK_MODE:
can->BTR |= CAN_BTR_LBKM | CAN_BTR_SILM;
break;
default:
break;
}
done:
ret = can_leave_init_mode(can);
if (ret) {
LOG_ERR("Failed to leave init mode");
if (cfg->phy != NULL) {
/* Attempt to disable the CAN transceiver in case of error */
(void)can_transceiver_disable(cfg->phy);
}
}
k_mutex_unlock(&data->inst_mutex);
return ret;
}
static int can_stm32_set_timing(const struct device *dev,
const struct can_timing *timing,
const struct can_timing *timing_data)
{
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
struct can_stm32_data *data = dev->data;
int ret = -EIO;
ARG_UNUSED(timing_data);
k_mutex_lock(&data->inst_mutex, K_FOREVER);
ret = can_enter_init_mode(can);
if (ret) {
LOG_ERR("Failed to enter init mode");
goto done;
}
can->BTR = (can->BTR & ~(CAN_BTR_BRP_Msk | CAN_BTR_TS1_Msk | CAN_BTR_TS2_Msk)) |
(((timing->phase_seg1 - 1) << CAN_BTR_TS1_Pos) & CAN_BTR_TS1_Msk) |
(((timing->phase_seg2 - 1) << CAN_BTR_TS2_Pos) & CAN_BTR_TS2_Msk) |
(((timing->prescaler - 1) << CAN_BTR_BRP_Pos) & CAN_BTR_BRP_Msk);
if (timing->sjw != CAN_SJW_NO_CHANGE) {
can->BTR = (can->BTR & ~CAN_BTR_SJW_Msk) |
(((timing->sjw - 1) << CAN_BTR_SJW_Pos) & CAN_BTR_SJW_Msk);
}
ret = can_leave_init_mode(can);
if (ret) {
LOG_ERR("Failed to leave init mode");
} else {
ret = 0;
}
done:
k_mutex_unlock(&data->inst_mutex);
return ret;
}
static int can_stm32_get_core_clock(const struct device *dev, uint32_t *rate)
{
const struct can_stm32_config *cfg = dev->config;
const struct device *clock;
int ret;
clock = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
ret = clock_control_get_rate(clock,
(clock_control_subsys_t *) &cfg->pclken,
rate);
if (ret != 0) {
LOG_ERR("Failed call clock_control_get_rate: return [%d]", ret);
return -EIO;
}
return 0;
}
static int can_stm32_get_max_bitrate(const struct device *dev, uint32_t *max_bitrate)
{
const struct can_stm32_config *config = dev->config;
*max_bitrate = config->max_bitrate;
return 0;
}
static int can_stm32_init(const struct device *dev)
{
const struct can_stm32_config *cfg = dev->config;
struct can_stm32_data *data = dev->data;
CAN_TypeDef *can = cfg->can;
struct can_timing timing;
#if DT_NODE_HAS_STATUS(DT_NODELABEL(can2), okay)
CAN_TypeDef *master_can = cfg->master_can;
#endif
const struct device *clock;
int ret;
k_mutex_init(&data->inst_mutex);
k_sem_init(&data->tx_int_sem, 0, 1);
k_sem_init(&data->mb0.tx_int_sem, 0, 1);
k_sem_init(&data->mb1.tx_int_sem, 0, 1);
k_sem_init(&data->mb2.tx_int_sem, 0, 1);
data->mb0.tx_callback = NULL;
data->mb1.tx_callback = NULL;
data->mb2.tx_callback = NULL;
data->state_change_cb = NULL;
data->state_change_cb_data = NULL;
data->filter_usage = (1ULL << CAN_MAX_NUMBER_OF_FILTERS) - 1ULL;
(void)memset(data->rx_cb, 0, sizeof(data->rx_cb));
(void)memset(data->cb_arg, 0, sizeof(data->cb_arg));
if (cfg->phy != NULL) {
if (!device_is_ready(cfg->phy)) {
LOG_ERR("CAN transceiver not ready");
return -ENODEV;
}
}
clock = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
ret = clock_control_on(clock, (clock_control_subsys_t *) &cfg->pclken);
if (ret != 0) {
LOG_ERR("HAL_CAN_Init clock control on failed: %d", ret);
return -EIO;
}
/* Configure dt provided device signals when available */
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
LOG_ERR("CAN pinctrl setup failed (%d)", ret);
return ret;
}
ret = can_leave_sleep_mode(can);
if (ret) {
LOG_ERR("Failed to exit sleep mode");
return ret;
}
ret = can_enter_init_mode(can);
if (ret) {
LOG_ERR("Failed to enter init mode");
return ret;
}
#if DT_NODE_HAS_STATUS(DT_NODELABEL(can2), okay)
master_can->FMR &= ~CAN_FMR_CAN2SB; /* Assign all filters to CAN2 */
#endif
can->MCR &= ~CAN_MCR_TTCM & ~CAN_MCR_ABOM & ~CAN_MCR_AWUM &
~CAN_MCR_NART & ~CAN_MCR_RFLM & ~CAN_MCR_TXFP;
#ifdef CONFIG_CAN_RX_TIMESTAMP
can->MCR |= CAN_MCR_TTCM;
#endif
#ifdef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
can->MCR |= CAN_MCR_ABOM;
#endif
if (cfg->one_shot) {
can->MCR |= CAN_MCR_NART;
}
timing.sjw = cfg->sjw;
if (cfg->sample_point && USE_SP_ALGO) {
ret = can_calc_timing(dev, &timing, cfg->bus_speed,
cfg->sample_point);
if (ret == -EINVAL) {
LOG_ERR("Can't find timing for given param");
return -EIO;
}
LOG_DBG("Presc: %d, TS1: %d, TS2: %d",
timing.prescaler, timing.phase_seg1, timing.phase_seg2);
LOG_DBG("Sample-point err : %d", ret);
} else {
timing.prop_seg = 0;
timing.phase_seg1 = cfg->prop_ts1;
timing.phase_seg2 = cfg->ts2;
ret = can_calc_prescaler(dev, &timing, cfg->bus_speed);
if (ret) {
LOG_WRN("Bitrate error: %d", ret);
}
}
ret = can_stm32_set_timing(dev, &timing, NULL);
if (ret) {
return ret;
}
ret = can_stm32_set_mode(dev, CAN_NORMAL_MODE);
if (ret) {
return ret;
}
(void)can_stm32_get_state(dev, &data->state, NULL);
cfg->config_irq(can);
can->IER |= CAN_IER_TMEIE;
LOG_INF("Init of %s done", dev->name);
return 0;
}
static void can_stm32_set_state_change_callback(const struct device *dev,
can_state_change_callback_t cb,
void *user_data)
{
struct can_stm32_data *data = dev->data;
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
data->state_change_cb = cb;
data->state_change_cb_data = user_data;
if (cb == NULL) {
can->IER &= ~(CAN_IER_BOFIE | CAN_IER_EPVIE | CAN_IER_EWGIE);
} else {
can->IER |= CAN_IER_BOFIE | CAN_IER_EPVIE | CAN_IER_EWGIE;
}
}
#ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
static int can_stm32_recover(const struct device *dev, k_timeout_t timeout)
{
const struct can_stm32_config *cfg = dev->config;
struct can_stm32_data *data = dev->data;
CAN_TypeDef *can = cfg->can;
int ret = -EAGAIN;
int64_t start_time;
if (!(can->ESR & CAN_ESR_BOFF)) {
return 0;
}
if (k_mutex_lock(&data->inst_mutex, K_FOREVER)) {
return -EAGAIN;
}
ret = can_enter_init_mode(can);
if (ret) {
goto done;
}
can_leave_init_mode(can);
start_time = k_uptime_ticks();
while (can->ESR & CAN_ESR_BOFF) {
if (!K_TIMEOUT_EQ(timeout, K_FOREVER) &&
k_uptime_ticks() - start_time >= timeout.ticks) {
goto done;
}
}
ret = 0;
done:
k_mutex_unlock(&data->inst_mutex);
return ret;
}
#endif /* CONFIG_CAN_AUTO_BUS_OFF_RECOVERY */
static int can_stm32_send(const struct device *dev, const struct zcan_frame *frame,
k_timeout_t timeout, can_tx_callback_t callback,
void *user_data)
{
const struct can_stm32_config *cfg = dev->config;
struct can_stm32_data *data = dev->data;
CAN_TypeDef *can = cfg->can;
uint32_t transmit_status_register = can->TSR;
CAN_TxMailBox_TypeDef *mailbox = NULL;
struct can_mailbox *mb = NULL;
LOG_DBG("Sending %d bytes on %s. "
"Id: 0x%x, "
"ID type: %s, "
"Remote Frame: %s"
, frame->dlc, dev->name
, frame->id
, frame->id_type == CAN_STANDARD_IDENTIFIER ?
"standard" : "extended"
, frame->rtr == CAN_DATAFRAME ? "no" : "yes");
__ASSERT(frame->dlc == 0U || frame->data != NULL, "Dataptr is null");
if (frame->dlc > CAN_MAX_DLC) {
LOG_ERR("DLC of %d exceeds maximum (%d)", frame->dlc, CAN_MAX_DLC);
return -EINVAL;
}
if (can->ESR & CAN_ESR_BOFF) {
return -ENETDOWN;
}
k_mutex_lock(&data->inst_mutex, K_FOREVER);
while (!(transmit_status_register & CAN_TSR_TME)) {
k_mutex_unlock(&data->inst_mutex);
LOG_DBG("Transmit buffer full");
if (k_sem_take(&data->tx_int_sem, timeout)) {
return -EAGAIN;
}
k_mutex_lock(&data->inst_mutex, K_FOREVER);
transmit_status_register = can->TSR;
}
if (transmit_status_register & CAN_TSR_TME0) {
LOG_DBG("Using mailbox 0");
mailbox = &can->sTxMailBox[0];
mb = &(data->mb0);
} else if (transmit_status_register & CAN_TSR_TME1) {
LOG_DBG("Using mailbox 1");
mailbox = &can->sTxMailBox[1];
mb = &data->mb1;
} else if (transmit_status_register & CAN_TSR_TME2) {
LOG_DBG("Using mailbox 2");
mailbox = &can->sTxMailBox[2];
mb = &data->mb2;
}
mb->tx_callback = callback;
mb->callback_arg = user_data;
k_sem_reset(&mb->tx_int_sem);
/* mailbox identifier register setup */
mailbox->TIR &= CAN_TI0R_TXRQ;
if (frame->id_type == CAN_STANDARD_IDENTIFIER) {
mailbox->TIR |= (frame->id << CAN_TI0R_STID_Pos);
} else {
mailbox->TIR |= (frame->id << CAN_TI0R_EXID_Pos)
| CAN_TI0R_IDE;
}
if (frame->rtr == CAN_REMOTEREQUEST) {
mailbox->TIR |= CAN_TI1R_RTR;
}
mailbox->TDTR = (mailbox->TDTR & ~CAN_TDT1R_DLC) |
((frame->dlc & 0xF) << CAN_TDT1R_DLC_Pos);
mailbox->TDLR = frame->data_32[0];
mailbox->TDHR = frame->data_32[1];
mailbox->TIR |= CAN_TI0R_TXRQ;
k_mutex_unlock(&data->inst_mutex);
if (callback == NULL) {
k_sem_take(&mb->tx_int_sem, K_FOREVER);
return mb->error;
}
return 0;
}
static inline int can_stm32_check_free(void **arr, int start, int end)
{
int i;
for (i = start; i <= end; i++) {
if (arr[i] != NULL) {
return 0;
}
}
return 1;
}
static int can_stm32_shift_arr(void **arr, int start, int count)
{
void **start_ptr = arr + start;
size_t cnt;
if (start > CONFIG_CAN_MAX_FILTER) {
return -ENOSPC;
}
if (count > 0) {
void *move_dest;
/* Check if nothing used will be overwritten */
if (!can_stm32_check_free(arr, CONFIG_CAN_MAX_FILTER - count,
CONFIG_CAN_MAX_FILTER - 1)) {
return -ENOSPC;
}
/* No need to shift. Destination is already outside the arr*/
if ((start + count) >= CONFIG_CAN_MAX_FILTER) {
return 0;
}
cnt = (CONFIG_CAN_MAX_FILTER - start - count) * sizeof(void *);
move_dest = start_ptr + count;
memmove(move_dest, start_ptr, cnt);
(void)memset(start_ptr, 0, count * sizeof(void *));
} else if (count < 0) {
count = -count;
if (start - count < 0) {
return -ENOSPC;
}
cnt = (CONFIG_CAN_MAX_FILTER - start) * sizeof(void *);
memmove(start_ptr - count, start_ptr, cnt);
(void)memset(arr + CONFIG_CAN_MAX_FILTER - count, 0,
count * sizeof(void *));
}
return 0;
}
static enum can_filter_type can_stm32_get_filter_type(int bank_nr, uint32_t mode_reg,
uint32_t scale_reg)
{
uint32_t mode_masked = (mode_reg >> bank_nr) & 0x01;
uint32_t scale_masked = (scale_reg >> bank_nr) & 0x01;
enum can_filter_type type = (scale_masked << 1) | mode_masked;
return type;
}
static int can_calc_filter_index(int filter_id, uint32_t mode_reg, uint32_t scale_reg)
{
int filter_bank = filter_id / 4;
int cnt = 0;
uint32_t mode_masked, scale_masked;
enum can_filter_type filter_type;
/*count filters in the banks before */
for (int i = 0; i < filter_bank; i++) {
filter_type = can_stm32_get_filter_type(i, mode_reg, scale_reg);
cnt += filter_in_bank[filter_type];
}
/* plus the filters in the same bank */
mode_masked = mode_reg & (1U << filter_bank);
scale_masked = scale_reg & (1U << filter_bank);
cnt += (!scale_masked && mode_masked) ? filter_id & 0x03 :
(filter_id & 0x03) >> 1;
return cnt;
}
static void can_stm32_set_filter_bank(int filter_id,
CAN_FilterRegister_TypeDef *filter_reg,
enum can_filter_type filter_type,
uint32_t id, uint32_t mask)
{
switch (filter_type) {
case CAN_FILTER_STANDARD:
switch (filter_id & 0x03) {
case 0:
filter_reg->FR1 = (filter_reg->FR1 & 0xFFFF0000) | id;
break;
case 1:
filter_reg->FR1 = (filter_reg->FR1 & 0x0000FFFF)
| (id << 16);
break;
case 2:
filter_reg->FR2 = (filter_reg->FR2 & 0xFFFF0000) | id;
break;
case 3:
filter_reg->FR2 = (filter_reg->FR2 & 0x0000FFFF)
| (id << 16);
break;
}
break;
case CAN_FILTER_STANDARD_MASKED:
switch (filter_id & 0x02) {
case 0:
filter_reg->FR1 = id | (mask << 16);
break;
case 2:
filter_reg->FR2 = id | (mask << 16);
break;
}
break;
case CAN_FILTER_EXTENDED:
switch (filter_id & 0x02) {
case 0:
filter_reg->FR1 = id;
break;
case 2:
filter_reg->FR2 = id;
break;
}
break;
case CAN_FILTER_EXTENDED_MASKED:
filter_reg->FR1 = id;
filter_reg->FR2 = mask;
break;
}
}
static inline void can_stm32_set_mode_scale(enum can_filter_type filter_type,
uint32_t *mode_reg, uint32_t *scale_reg,
int bank_nr)
{
uint32_t mode_reg_bit = (filter_type & 0x01) << bank_nr;
uint32_t scale_reg_bit = (filter_type >> 1) << bank_nr;
*mode_reg &= ~(1 << bank_nr);
*mode_reg |= mode_reg_bit;
*scale_reg &= ~(1 << bank_nr);
*scale_reg |= scale_reg_bit;
}
static inline uint32_t can_generate_std_mask(const struct zcan_filter *filter)
{
return (filter->id_mask << CAN_FIRX_STD_ID_POS) |
(filter->rtr_mask << CAN_FIRX_STD_RTR_POS) |
(1U << CAN_FIRX_STD_IDE_POS);
}
static inline uint32_t can_generate_ext_mask(const struct zcan_filter *filter)
{
return (filter->id_mask << CAN_FIRX_EXT_EXT_ID_POS) |
(filter->rtr_mask << CAN_FIRX_EXT_RTR_POS) |
(1U << CAN_FIRX_EXT_IDE_POS);
}
static inline uint32_t can_generate_std_id(const struct zcan_filter *filter)
{
return (filter->id << CAN_FIRX_STD_ID_POS) |
(filter->rtr << CAN_FIRX_STD_RTR_POS);
}
static inline uint32_t can_generate_ext_id(const struct zcan_filter *filter)
{
return (filter->id << CAN_FIRX_EXT_EXT_ID_POS) |
(filter->rtr << CAN_FIRX_EXT_RTR_POS) |
(1U << CAN_FIRX_EXT_IDE_POS);
}
static inline int can_stm32_set_filter(const struct zcan_filter *filter,
struct can_stm32_data *device_data,
CAN_TypeDef *can,
int *filter_index)
{
uint32_t mask = 0U;
uint32_t id = 0U;
int filter_id = 0;
int filter_index_new = -ENOSPC;
int bank_nr;
uint32_t bank_bit;
int register_demand;
enum can_filter_type filter_type;
enum can_filter_type bank_mode;
if (filter->id_type == CAN_STANDARD_IDENTIFIER) {
id = can_generate_std_id(filter);
filter_type = CAN_FILTER_STANDARD;
if (filter->id_mask != CAN_STD_ID_MASK) {
mask = can_generate_std_mask(filter);
filter_type = CAN_FILTER_STANDARD_MASKED;
}
} else {
id = can_generate_ext_id(filter);
filter_type = CAN_FILTER_EXTENDED;
if (filter->id_mask != CAN_EXT_ID_MASK) {
mask = can_generate_ext_mask(filter);
filter_type = CAN_FILTER_EXTENDED_MASKED;
}
}
register_demand = reg_demand[filter_type];
LOG_DBG("Setting filter ID: 0x%x, mask: 0x%x", filter->id,
filter->id_mask);
LOG_DBG("Filter type: %s ID %s mask (%d)",
(filter_type == CAN_FILTER_STANDARD ||
filter_type == CAN_FILTER_STANDARD_MASKED) ?
"standard" : "extended",
(filter_type == CAN_FILTER_STANDARD_MASKED ||
filter_type == CAN_FILTER_EXTENDED_MASKED) ?
"with" : "without",
filter_type);
do {
uint64_t usage_shifted = (device_data->filter_usage >> filter_id);
uint64_t usage_demand_mask = (1ULL << register_demand) - 1;
bool bank_is_empty;
bank_nr = filter_id / 4;
bank_bit = (1U << bank_nr);
bank_mode = can_stm32_get_filter_type(bank_nr, can->FM1R,
can->FS1R);
bank_is_empty = CAN_BANK_IS_EMPTY(device_data->filter_usage,
bank_nr);
if (!bank_is_empty && bank_mode != filter_type) {
filter_id = (bank_nr + 1) * 4;
} else if (usage_shifted & usage_demand_mask) {
device_data->filter_usage &=
~(usage_demand_mask << filter_id);
break;
} else {
filter_id += register_demand;
}
if (!usage_shifted) {
LOG_INF("No free filter bank found");
return -ENOSPC;
}
} while (filter_id < CAN_MAX_NUMBER_OF_FILTERS);
/* set the filter init mode */
can->FMR |= CAN_FMR_FINIT;
can->FA1R &= ~bank_bit;
/* TODO fifo balancing */
if (filter_type != bank_mode) {
int shift_width, start_index;
int res;
uint32_t mode_reg = can->FM1R;
uint32_t scale_reg = can->FS1R;
can_stm32_set_mode_scale(filter_type, &mode_reg, &scale_reg,
bank_nr);
shift_width = filter_in_bank[filter_type] - filter_in_bank[bank_mode];
filter_index_new = can_calc_filter_index(filter_id, mode_reg,
scale_reg);
start_index = filter_index_new + filter_in_bank[bank_mode];
if (shift_width && start_index <= CAN_MAX_NUMBER_OF_FILTERS) {
res = can_stm32_shift_arr((void **)device_data->rx_cb,
start_index,
shift_width);
res |= can_stm32_shift_arr(device_data->cb_arg,
start_index,
shift_width);
if (filter_index_new >= CONFIG_CAN_MAX_FILTER || res) {
LOG_INF("No space for a new filter!");
filter_id = -ENOSPC;
goto done;
}
}
can->FM1R = mode_reg;
can->FS1R = scale_reg;
} else {
filter_index_new = can_calc_filter_index(filter_id, can->FM1R,
can->FS1R);
if (filter_index_new >= CAN_MAX_NUMBER_OF_FILTERS) {
filter_id = -ENOSPC;
goto done;
}
}
can_stm32_set_filter_bank(filter_id, &can->sFilterRegister[bank_nr],
filter_type, id, mask);
done:
can->FA1R |= bank_bit;
can->FMR &= ~(CAN_FMR_FINIT);
LOG_DBG("Filter set! Filter number: %d (index %d)",
filter_id, filter_index_new);
*filter_index = filter_index_new;
return filter_id;
}
static inline int can_stm32_add_rx_filter_unlocked(const struct device *dev,
can_rx_callback_t cb,
void *cb_arg,
const struct zcan_filter *filter)
{
const struct can_stm32_config *cfg = dev->config;
struct can_stm32_data *data = dev->data;
CAN_TypeDef *can = cfg->master_can;
int filter_index = 0;
int filter_id;
filter_id = can_stm32_set_filter(filter, data, can, &filter_index);
if (filter_id != -ENOSPC) {
data->rx_cb[filter_index] = cb;
data->cb_arg[filter_index] = cb_arg;
}
return filter_id;
}
static int can_stm32_add_rx_filter(const struct device *dev, can_rx_callback_t cb,
void *cb_arg,
const struct zcan_filter *filter)
{
struct can_stm32_data *data = dev->data;
int filter_id;
k_mutex_lock(&data->inst_mutex, K_FOREVER);
filter_id = can_stm32_add_rx_filter_unlocked(dev, cb, cb_arg, filter);
k_mutex_unlock(&data->inst_mutex);
return filter_id;
}
static void can_stm32_remove_rx_filter(const struct device *dev, int filter_id)
{
const struct can_stm32_config *cfg = dev->config;
struct can_stm32_data *data = dev->data;
CAN_TypeDef *can = cfg->master_can;
int bank_nr;
int filter_index;
uint32_t bank_bit;
uint32_t mode_reg;
uint32_t scale_reg;
enum can_filter_type type;
uint32_t reset_mask;
__ASSERT_NO_MSG(filter_id >= 0 && filter_id < CAN_MAX_NUMBER_OF_FILTERS);
k_mutex_lock(&data->inst_mutex, K_FOREVER);
bank_nr = filter_id / 4;
bank_bit = (1U << bank_nr);
mode_reg = can->FM1R;
scale_reg = can->FS1R;
filter_index = can_calc_filter_index(filter_id, mode_reg, scale_reg);
type = can_stm32_get_filter_type(bank_nr, mode_reg, scale_reg);
LOG_DBG("Detach filter number %d (index %d), type %d", filter_id,
filter_index,
type);
reset_mask = ((1 << (reg_demand[type])) - 1) << filter_id;
data->filter_usage |= reset_mask;
can->FMR |= CAN_FMR_FINIT;
can->FA1R &= ~bank_bit;
can_stm32_set_filter_bank(filter_id, &can->sFilterRegister[bank_nr],
type, 0, 0xFFFFFFFF);
if (!CAN_BANK_IS_EMPTY(data->filter_usage, bank_nr)) {
can->FA1R |= bank_bit;
} else {
LOG_DBG("Bank number %d is empty -> deactivate", bank_nr);
}
can->FMR &= ~(CAN_FMR_FINIT);
data->rx_cb[filter_index] = NULL;
data->cb_arg[filter_index] = NULL;
k_mutex_unlock(&data->inst_mutex);
}
static const struct can_driver_api can_api_funcs = {
.set_mode = can_stm32_set_mode,
.set_timing = can_stm32_set_timing,
.send = can_stm32_send,
.add_rx_filter = can_stm32_add_rx_filter,
.remove_rx_filter = can_stm32_remove_rx_filter,
.get_state = can_stm32_get_state,
#ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
.recover = can_stm32_recover,
#endif
.set_state_change_callback = can_stm32_set_state_change_callback,
.get_core_clock = can_stm32_get_core_clock,
.get_max_bitrate = can_stm32_get_max_bitrate,
.timing_min = {
.sjw = 0x1,
.prop_seg = 0x00,
.phase_seg1 = 0x01,
.phase_seg2 = 0x01,
.prescaler = 0x01
},
.timing_max = {
.sjw = 0x07,
.prop_seg = 0x00,
.phase_seg1 = 0x0F,
.phase_seg2 = 0x07,
.prescaler = 0x400
}
};
#if DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(can1), st_stm32_can, okay)
static void config_can_1_irq(CAN_TypeDef *can);
PINCTRL_DT_DEFINE(DT_NODELABEL(can1));
static const struct can_stm32_config can_stm32_cfg_1 = {
.can = (CAN_TypeDef *)DT_REG_ADDR(DT_NODELABEL(can1)),
.master_can = (CAN_TypeDef *)DT_REG_ADDR(DT_NODELABEL(can1)),
.bus_speed = DT_PROP(DT_NODELABEL(can1), bus_speed),
.sample_point = DT_PROP_OR(DT_NODELABEL(can1), sample_point, 0),
.sjw = DT_PROP_OR(DT_NODELABEL(can1), sjw, 1),
.prop_ts1 = DT_PROP_OR(DT_NODELABEL(can1), prop_seg, 0) +
DT_PROP_OR(DT_NODELABEL(can1), phase_seg1, 0),
.ts2 = DT_PROP_OR(DT_NODELABEL(can1), phase_seg2, 0),
.one_shot = DT_PROP(DT_NODELABEL(can1), one_shot),
.pclken = {
.enr = DT_CLOCKS_CELL(DT_NODELABEL(can1), bits),
.bus = DT_CLOCKS_CELL(DT_NODELABEL(can1), bus),
},
.config_irq = config_can_1_irq,
.pcfg = PINCTRL_DT_DEV_CONFIG_GET(DT_NODELABEL(can1)),
.phy = DEVICE_DT_GET_OR_NULL(DT_PHANDLE(DT_NODELABEL(can1), phys)),
.max_bitrate = DT_CAN_TRANSCEIVER_MAX_BITRATE(DT_NODELABEL(can1), 1000000),
};
static struct can_stm32_data can_stm32_dev_data_1;
CAN_DEVICE_DT_DEFINE(DT_NODELABEL(can1), can_stm32_init, NULL,
&can_stm32_dev_data_1, &can_stm32_cfg_1,
POST_KERNEL, CONFIG_CAN_INIT_PRIORITY,
&can_api_funcs);
static void config_can_1_irq(CAN_TypeDef *can)
{
LOG_DBG("Enable CAN1 IRQ");
#ifdef CONFIG_SOC_SERIES_STM32F0X
IRQ_CONNECT(DT_IRQN(DT_NODELABEL(can1)),
DT_IRQ(DT_NODELABEL(can1), priority),
can_stm32_isr, DEVICE_DT_GET(DT_NODELABEL(can1)), 0);
irq_enable(DT_IRQN(DT_NODELABEL(can1)));
#else
IRQ_CONNECT(DT_IRQ_BY_NAME(DT_NODELABEL(can1), rx0, irq),
DT_IRQ_BY_NAME(DT_NODELABEL(can1), rx0, priority),
can_stm32_rx_isr, DEVICE_DT_GET(DT_NODELABEL(can1)), 0);
irq_enable(DT_IRQ_BY_NAME(DT_NODELABEL(can1), rx0, irq));
IRQ_CONNECT(DT_IRQ_BY_NAME(DT_NODELABEL(can1), tx, irq),
DT_IRQ_BY_NAME(DT_NODELABEL(can1), tx, priority),
can_stm32_tx_isr, DEVICE_DT_GET(DT_NODELABEL(can1)), 0);
irq_enable(DT_IRQ_BY_NAME(DT_NODELABEL(can1), tx, irq));
IRQ_CONNECT(DT_IRQ_BY_NAME(DT_NODELABEL(can1), sce, irq),
DT_IRQ_BY_NAME(DT_NODELABEL(can1), sce, priority),
can_stm32_state_change_isr,
DEVICE_DT_GET(DT_NODELABEL(can1)), 0);
irq_enable(DT_IRQ_BY_NAME(DT_NODELABEL(can1), sce, irq));
#endif
can->IER |= CAN_IER_TMEIE | CAN_IER_ERRIE | CAN_IER_FMPIE0 |
CAN_IER_FMPIE1 | CAN_IER_BOFIE;
#ifdef CONFIG_CAN_STATS
can->IER |= CAN_IER_LECIE;
#endif /* CONFIG_CAN_STATS */
}
#endif /* DT_NODE_HAS_STATUS(DT_NODELABEL(can1), okay) */
#if DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(can2), st_stm32_can, okay)
static void config_can_2_irq(CAN_TypeDef *can);
PINCTRL_DT_DEFINE(DT_NODELABEL(can2));
static const struct can_stm32_config can_stm32_cfg_2 = {
.can = (CAN_TypeDef *)DT_REG_ADDR(DT_NODELABEL(can2)),
.master_can = (CAN_TypeDef *)DT_PROP(DT_NODELABEL(can2),
master_can_reg),
.bus_speed = DT_PROP(DT_NODELABEL(can2), bus_speed),
.sample_point = DT_PROP_OR(DT_NODELABEL(can2), sample_point, 0),
.sjw = DT_PROP_OR(DT_NODELABEL(can2), sjw, 1),
.prop_ts1 = DT_PROP_OR(DT_NODELABEL(can2), prop_seg, 0) +
DT_PROP_OR(DT_NODELABEL(can2), phase_seg1, 0),
.ts2 = DT_PROP_OR(DT_NODELABEL(can2), phase_seg2, 0),
.one_shot = DT_PROP(DT_NODELABEL(can2), one_shot),
.pclken = {
.enr = DT_CLOCKS_CELL(DT_NODELABEL(can2), bits),
.bus = DT_CLOCKS_CELL(DT_NODELABEL(can2), bus),
},
.config_irq = config_can_2_irq,
.pcfg = PINCTRL_DT_DEV_CONFIG_GET(DT_NODELABEL(can2)),
.phy = DEVICE_DT_GET_OR_NULL(DT_PHANDLE(DT_NODELABEL(can2), phys)),
.max_bitrate = DT_CAN_TRANSCEIVER_MAX_BITRATE(DT_NODELABEL(can2), 1000000),
};
static struct can_stm32_data can_stm32_dev_data_2;
CAN_DEVICE_DT_DEFINE(DT_NODELABEL(can2), can_stm32_init, NULL,
&can_stm32_dev_data_2, &can_stm32_cfg_2,
POST_KERNEL, CONFIG_CAN_INIT_PRIORITY,
&can_api_funcs);
static void config_can_2_irq(CAN_TypeDef *can)
{
LOG_DBG("Enable CAN2 IRQ");
IRQ_CONNECT(DT_IRQ_BY_NAME(DT_NODELABEL(can2), rx0, irq),
DT_IRQ_BY_NAME(DT_NODELABEL(can2), rx0, priority),
can_stm32_rx_isr, DEVICE_DT_GET(DT_NODELABEL(can2)), 0);
irq_enable(DT_IRQ_BY_NAME(DT_NODELABEL(can2), rx0, irq));
IRQ_CONNECT(DT_IRQ_BY_NAME(DT_NODELABEL(can2), tx, irq),
DT_IRQ_BY_NAME(DT_NODELABEL(can2), tx, priority),
can_stm32_tx_isr, DEVICE_DT_GET(DT_NODELABEL(can2)), 0);
irq_enable(DT_IRQ_BY_NAME(DT_NODELABEL(can2), tx, irq));
IRQ_CONNECT(DT_IRQ_BY_NAME(DT_NODELABEL(can2), sce, irq),
DT_IRQ_BY_NAME(DT_NODELABEL(can2), sce, priority),
can_stm32_state_change_isr,
DEVICE_DT_GET(DT_NODELABEL(can2)), 0);
irq_enable(DT_IRQ_BY_NAME(DT_NODELABEL(can2), sce, irq));
can->IER |= CAN_IER_TMEIE | CAN_IER_ERRIE | CAN_IER_FMPIE0 |
CAN_IER_FMPIE1 | CAN_IER_BOFIE;
#ifdef CONFIG_CAN_STATS
can->IER |= CAN_IER_LECIE;
#endif /* CONFIG_CAN_STATS */
}
#endif /* DT_NODE_HAS_STATUS(DT_NODELABEL(can2), okay) */