zephyr/drivers/spi/spi_mcux_flexcomm.c
Kumar Gala a1b77fd589 zephyr: replace zephyr integer types with C99 types
git grep -l 'u\(8\|16\|32\|64\)_t' | \
		xargs sed -i "s/u\(8\|16\|32\|64\)_t/uint\1_t/g"
	git grep -l 's\(8\|16\|32\|64\)_t' | \
		xargs sed -i "s/s\(8\|16\|32\|64\)_t/int\1_t/g"

Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
2020-06-08 08:23:57 -05:00

299 lines
8 KiB
C

/*
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright (c) 2017,2019, NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_lpc_spi
#include <errno.h>
#include <drivers/spi.h>
#include <fsl_spi.h>
#include <logging/log.h>
LOG_MODULE_REGISTER(spi_mcux_flexcomm, CONFIG_SPI_LOG_LEVEL);
#include "spi_context.h"
#define SPI_CHIP_SELECT_COUNT 4
#define SPI_MAX_DATA_WIDTH 16
struct spi_mcux_config {
SPI_Type *base;
void (*irq_config_func)(struct device *dev);
};
struct spi_mcux_data {
spi_master_handle_t handle;
struct spi_context ctx;
size_t transfer_len;
};
static void spi_mcux_transfer_next_packet(struct device *dev)
{
const struct spi_mcux_config *config = dev->config_info;
struct spi_mcux_data *data = dev->driver_data;
SPI_Type *base = config->base;
struct spi_context *ctx = &data->ctx;
spi_transfer_t transfer;
status_t status;
if ((ctx->tx_len == 0) && (ctx->rx_len == 0)) {
/* nothing left to rx or tx, we're done! */
spi_context_cs_control(&data->ctx, false);
spi_context_complete(&data->ctx, 0);
return;
}
if (ctx->tx_len == 0) {
/* rx only, nothing to tx */
transfer.txData = NULL;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->rx_len;
transfer.configFlags = kSPI_FrameAssert;
} else if (ctx->rx_len == 0) {
/* tx only, nothing to rx */
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = NULL;
transfer.dataSize = ctx->tx_len;
transfer.configFlags = kSPI_FrameAssert;
} else if (ctx->tx_len == ctx->rx_len) {
/* rx and tx are the same length */
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->tx_len;
transfer.configFlags = kSPI_FrameAssert;
} else if (ctx->tx_len > ctx->rx_len) {
/* Break up the tx into multiple transfers so we don't have to
* rx into a longer intermediate buffer. Leave chip select
* active between transfers.
*/
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->rx_len;
transfer.configFlags = 0;
} else {
/* Break up the rx into multiple transfers so we don't have to
* tx from a longer intermediate buffer. Leave chip select
* active between transfers.
*/
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->tx_len;
transfer.configFlags = 0;
}
if (ctx->tx_count <= 1 && ctx->rx_count <= 1) {
transfer.configFlags = kSPI_FrameAssert;
}
data->transfer_len = transfer.dataSize;
status = SPI_MasterTransferNonBlocking(base, &data->handle, &transfer);
if (status != kStatus_Success) {
LOG_ERR("Transfer could not start");
}
}
static void spi_mcux_isr(void *arg)
{
struct device *dev = (struct device *)arg;
const struct spi_mcux_config *config = dev->config_info;
struct spi_mcux_data *data = dev->driver_data;
SPI_Type *base = config->base;
SPI_MasterTransferHandleIRQ(base, &data->handle);
}
static void spi_mcux_master_transfer_callback(SPI_Type *base,
spi_master_handle_t *handle, status_t status, void *userData)
{
struct device *dev = userData;
struct spi_mcux_data *data = dev->driver_data;
spi_context_update_tx(&data->ctx, 1, data->transfer_len);
spi_context_update_rx(&data->ctx, 1, data->transfer_len);
spi_mcux_transfer_next_packet(dev);
}
static int spi_mcux_configure(struct device *dev,
const struct spi_config *spi_cfg)
{
const struct spi_mcux_config *config = dev->config_info;
struct spi_mcux_data *data = dev->driver_data;
SPI_Type *base = config->base;
spi_master_config_t master_config;
uint32_t clock_freq;
uint32_t word_size;
if (spi_context_configured(&data->ctx, spi_cfg)) {
/* This configuration is already in use */
return 0;
}
SPI_MasterGetDefaultConfig(&master_config);
if (spi_cfg->slave > SPI_CHIP_SELECT_COUNT) {
LOG_ERR("Slave %d is greater than %d",
spi_cfg->slave, SPI_CHIP_SELECT_COUNT);
return -EINVAL;
}
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
if (word_size > SPI_MAX_DATA_WIDTH) {
LOG_ERR("Word size %d is greater than %d",
word_size, SPI_MAX_DATA_WIDTH);
return -EINVAL;
}
master_config.sselNum = spi_cfg->slave;
master_config.sselPol = kSPI_SpolActiveAllLow;
master_config.dataWidth = word_size - 1;
master_config.polarity =
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL)
? kSPI_ClockPolarityActiveLow
: kSPI_ClockPolarityActiveHigh;
master_config.phase =
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA)
? kSPI_ClockPhaseSecondEdge
: kSPI_ClockPhaseFirstEdge;
master_config.direction =
(spi_cfg->operation & SPI_TRANSFER_LSB)
? kSPI_LsbFirst
: kSPI_MsbFirst;
master_config.baudRate_Bps = spi_cfg->frequency;
/* The clock frequency is hardcoded CPU's speed to allow SPI to
* function at high speeds. The core clock and flexcomm should
* use the same clock source.
*/
clock_freq = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
SPI_MasterInit(base, &master_config, clock_freq);
SPI_MasterTransferCreateHandle(base, &data->handle,
spi_mcux_master_transfer_callback, dev);
SPI_SetDummyData(base, 0);
data->ctx.config = spi_cfg;
spi_context_cs_configure(&data->ctx);
return 0;
}
static int transceive(struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
struct k_poll_signal *signal)
{
struct spi_mcux_data *data = dev->driver_data;
int ret;
spi_context_lock(&data->ctx, asynchronous, signal);
ret = spi_mcux_configure(dev, spi_cfg);
if (ret) {
goto out;
}
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(&data->ctx, true);
spi_mcux_transfer_next_packet(dev);
ret = spi_context_wait_for_completion(&data->ctx);
out:
spi_context_release(&data->ctx, ret);
return ret;
}
static int spi_mcux_transceive(struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_mcux_transceive_async(struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
struct k_poll_signal *async)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, async);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_mcux_release(struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_mcux_data *data = dev->driver_data;
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static int spi_mcux_init(struct device *dev)
{
const struct spi_mcux_config *config = dev->config_info;
struct spi_mcux_data *data = dev->driver_data;
config->irq_config_func(dev);
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct spi_driver_api spi_mcux_driver_api = {
.transceive = spi_mcux_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_mcux_transceive_async,
#endif
.release = spi_mcux_release,
};
#define SPI_MCUX_FLEXCOMM_DEVICE(id) \
static void spi_mcux_config_func_##id(struct device *dev); \
static const struct spi_mcux_config spi_mcux_config_##id = { \
.base = \
(SPI_Type *)DT_INST_REG_ADDR(id), \
.irq_config_func = spi_mcux_config_func_##id, \
}; \
static struct spi_mcux_data spi_mcux_data_##id = { \
SPI_CONTEXT_INIT_LOCK(spi_mcux_data_##id, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_mcux_data_##id, ctx), \
}; \
DEVICE_AND_API_INIT(spi_mcux_##id, \
DT_INST_LABEL(id), \
&spi_mcux_init, \
&spi_mcux_data_##id, \
&spi_mcux_config_##id, \
POST_KERNEL, \
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
&spi_mcux_driver_api); \
static void spi_mcux_config_func_##id(struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(id), \
DT_INST_IRQ(id, priority), \
spi_mcux_isr, DEVICE_GET(spi_mcux_##id), \
0); \
irq_enable(DT_INST_IRQN(id)); \
}
DT_INST_FOREACH_STATUS_OKAY(SPI_MCUX_FLEXCOMM_DEVICE)