zephyr/drivers/pcie/endpoint/pcie_ep_bcm_iproc.c
Abhishek Shah 11972a48c2 drivers: pcie: ep: iproc: Add reset callback support
Add support to register callback function for each PCIe reset.
These callback functions are executed from corresponding
PCIe reset interrupt handler if registered.

Signed-off-by: Shivaraj Shetty <shivaraj.shetty@broadcom.com>
Signed-off-by: Abhishek Shah <abhishek.shah@broadcom.com>
2020-06-22 12:44:54 +02:00

490 lines
13 KiB
C

/*
* Copyright 2020 Broadcom
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <drivers/pcie/endpoint/pcie_ep.h>
#define LOG_LEVEL CONFIG_PCIE_EP_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(iproc_pcie);
#include <soc.h>
#include "pcie_ep_bcm_iproc.h"
#include "pcie_ep_bcm_iproc_regs.h"
#define DT_DRV_COMPAT brcm_iproc_pcie_ep
/* Helper macro to read 64-bit data using two 32-bit data read */
#define sys_read64(addr) (((uint64_t)(sys_read32(addr + 4)) << 32) | \
sys_read32(addr))
static int iproc_pcie_conf_read(struct device *dev, uint32_t offset,
uint32_t *data)
{
const struct iproc_pcie_ep_config *cfg = dev->config_info;
/* Write offset to Configuration Indirect Address register */
pcie_write32(offset, &cfg->base->paxb_config_ind_addr);
/* Read data from Configuration Indirect Data register */
*data = pcie_read32(&cfg->base->paxb_config_ind_data);
return 0;
}
static void iproc_pcie_conf_write(struct device *dev, uint32_t offset,
uint32_t data)
{
const struct iproc_pcie_ep_config *cfg = dev->config_info;
/* Write offset to Configuration Indirect Address register */
pcie_write32(offset, &cfg->base->paxb_config_ind_addr);
/* Write data to Configuration Indirect Data register */
pcie_write32(data, &cfg->base->paxb_config_ind_data);
}
static int iproc_pcie_map_addr(struct device *dev, uint64_t pcie_addr,
uint64_t *mapped_addr, uint32_t size,
enum pcie_ob_mem_type ob_mem_type)
{
const struct iproc_pcie_ep_config *cfg = dev->config_info;
struct iproc_pcie_ep_ctx *ctx = dev->driver_data;
uint64_t pcie_ob_base, pcie_ob_size, pcie_addr_start, offset;
uint32_t mapped_size;
enum pcie_outbound_map idx;
k_spinlock_key_t key;
int ret;
key = k_spin_lock(&ctx->ob_map_lock);
/* We support 2 outbound windows,
* one in highmem region and another in lowmem region
*/
if ((ob_mem_type == PCIE_OB_HIGHMEM ||
ob_mem_type == PCIE_OB_ANYMEM) && !ctx->highmem_in_use) {
idx = PCIE_MAP_HIGHMEM_IDX;
pcie_ob_base = cfg->map_high_base;
pcie_ob_size = cfg->map_high_size;
} else if ((ob_mem_type == PCIE_OB_LOWMEM ||
ob_mem_type == PCIE_OB_ANYMEM) && !ctx->lowmem_in_use) {
idx = PCIE_MAP_LOWMEM_IDX;
pcie_ob_base = cfg->map_low_base;
pcie_ob_size = cfg->map_low_size;
} else {
ret = -EBUSY;
goto out;
}
/* check if the selected OB window supports size we want to map */
if (size > pcie_ob_size) {
ret = -ENOTSUP;
goto out;
}
/* Host PCIe address should be aligned to outbound window size */
pcie_addr_start = pcie_addr & ~(pcie_ob_size - 1);
/* Program OARR with PCIe outbound address */
pcie_write32(((pcie_ob_base & ~(pcie_ob_size - 1)) | PAXB_OARR_VALID),
&cfg->base->paxb_oarr[idx].lower);
pcie_write32(pcie_ob_base >> 32, &cfg->base->paxb_oarr[idx].upper);
/* Program OMAP with Host PCIe address */
pcie_write32((uint32_t)pcie_addr_start,
&cfg->base->paxb_omap[idx].lower);
pcie_write32((uint32_t)(pcie_addr_start >> 32),
&cfg->base->paxb_omap[idx].upper);
/* Mark usage of outbound window */
if (idx == PCIE_MAP_HIGHMEM_IDX) {
ctx->highmem_in_use = true;
} else {
ctx->lowmem_in_use = true;
}
/* offset holds extra size mapped due to alignment requirement */
offset = pcie_addr - pcie_addr_start;
*mapped_addr = pcie_ob_base + offset;
mapped_size = pcie_ob_size - offset;
ret = ((mapped_size >= size) ? size : mapped_size);
out:
k_spin_unlock(&ctx->ob_map_lock, key);
return ret;
}
static void iproc_pcie_unmap_addr(struct device *dev, uint64_t mapped_addr)
{
struct iproc_pcie_ep_ctx *ctx = dev->driver_data;
k_spinlock_key_t key;
key = k_spin_lock(&ctx->ob_map_lock);
/*
* When doing Host writes using PCIe outbound window, it is seen
* that before the writes gets completed using the existing outbound
* window mapping, next mapping is overwriting it, causing few bytes
* write failure with former mapping.
*
* To safeguard outbound window mapping, perform PCIe read in unmap,
* which ensures that all PCIe writes before the read
* are completed with this window.
*/
sys_read8(mapped_addr);
if (mapped_addr >> 32) {
ctx->highmem_in_use = false;
} else {
ctx->lowmem_in_use = false;
}
k_spin_unlock(&ctx->ob_map_lock, key);
}
static int iproc_pcie_generate_msi(struct device *dev, const uint32_t msi_num)
{
int ret = 0;
#ifdef CONFIG_PCIE_EP_BCM_IPROC_V2
uint64_t addr;
uint32_t data;
iproc_pcie_conf_read(dev, MSI_ADDR_H, &data);
addr = ((uint64_t)data) << 32;
iproc_pcie_conf_read(dev, MSI_ADDR_L, &data);
addr = addr | data;
if (data == 0) {
/*
* This is mostly the case where the test is being run
* from device before host driver sets up MSI.
* Returning zero instead of error because of this.
*/
LOG_WRN("MSI is not setup, skipping MSI");
return 0;
}
iproc_pcie_conf_read(dev, MSI_DATA, &data);
data |= msi_num;
ret = pcie_ep_xfer_data_memcpy(dev, addr,
(uintptr_t *)&data, sizeof(data),
PCIE_OB_LOWMEM, DEVICE_TO_HOST);
#else
const struct iproc_pcie_ep_config *cfg = dev->config_info;
pcie_write32(msi_num, &cfg->base->paxb_pcie_sys_msi_req);
#endif
return ret;
}
static int iproc_pcie_generate_msix(struct device *dev, const uint32_t msix_num)
{
uint64_t addr;
uint32_t data, msix_offset;
int ret;
msix_offset = MSIX_TABLE_BASE + (msix_num * MSIX_TABLE_ENTRY_SIZE);
addr = sys_read64(msix_offset);
if (addr == 0) {
/*
* This is mostly the case where the test is being run
* from device before host driver has setup MSIX table.
* Returning zero instead of error because of this.
*/
LOG_WRN("MSIX table is not setup, skipping MSIX\n");
return 0;
}
data = sys_read32(msix_offset + MSIX_TBL_DATA_OFF);
ret = pcie_ep_xfer_data_memcpy(dev, addr,
(uintptr_t *)&data, sizeof(data),
PCIE_OB_LOWMEM, DEVICE_TO_HOST);
return ret;
}
static int iproc_pcie_raise_irq(struct device *dev,
enum pci_ep_irq_type irq_type,
uint32_t irq_num)
{
struct iproc_pcie_ep_ctx *ctx = dev->driver_data;
k_spinlock_key_t key;
int ret;
key = k_spin_lock(&ctx->raise_irq_lock);
switch (irq_type) {
case PCIE_EP_IRQ_MSI:
ret = iproc_pcie_generate_msi(dev, irq_num);
break;
case PCIE_EP_IRQ_MSIX:
ret = iproc_pcie_generate_msix(dev, irq_num);
break;
case PCIE_EP_IRQ_LEGACY:
ret = -ENOTSUP;
break;
default:
LOG_ERR("Unknown IRQ type\n");
ret = -EINVAL;
}
k_spin_unlock(&ctx->raise_irq_lock, key);
return ret;
}
static int iproc_pcie_register_reset_cb(struct device *dev,
enum pcie_reset reset,
pcie_ep_reset_callback_t cb, void *arg)
{
struct iproc_pcie_ep_ctx *ctx = dev->driver_data;
if (reset < PCIE_PERST || reset >= PCIE_RESET_MAX)
return -EINVAL;
LOG_DBG("Registering the callback for reset %d", reset);
ctx->reset_cb[reset] = cb;
ctx->reset_data[reset] = arg;
return 0;
}
#if DT_INST_IRQ_HAS_NAME(0, perst)
static void iproc_pcie_perst(void *arg)
{
struct device *dev = arg;
struct iproc_pcie_ep_ctx *ctx = dev->driver_data;
void *reset_data;
uint32_t data;
data = sys_read32(CRMU_MCU_EXTRA_EVENT_STATUS);
if (data & PCIE0_PERST_INTR) {
LOG_DBG("PERST interrupt [0x%x]", data);
sys_write32(PCIE0_PERST_INTR, CRMU_MCU_EXTRA_EVENT_CLEAR);
if (ctx->reset_cb[PCIE_PERST] != NULL) {
reset_data = ctx->reset_data[PCIE_PERST];
ctx->reset_cb[PCIE_PERST](reset_data);
}
}
}
#endif
#if DT_INST_IRQ_HAS_NAME(0, perst_inband)
static void iproc_pcie_hot_reset(void *arg)
{
struct device *dev = arg;
struct iproc_pcie_ep_ctx *ctx = dev->driver_data;
void *reset_data;
uint32_t data;
data = sys_read32(CRMU_MCU_EXTRA_EVENT_STATUS);
if (data & PCIE0_PERST_INB_INTR) {
LOG_DBG("INBAND PERST interrupt [0x%x]", data);
sys_write32(PCIE0_PERST_INB_INTR, CRMU_MCU_EXTRA_EVENT_CLEAR);
if (ctx->reset_cb[PCIE_PERST_INB] != NULL) {
reset_data = ctx->reset_data[PCIE_PERST_INB];
ctx->reset_cb[PCIE_PERST_INB](reset_data);
}
}
}
#endif
#if DT_INST_IRQ_HAS_NAME(0, flr)
static void iproc_pcie_flr(void *arg)
{
struct device *dev = arg;
const struct iproc_pcie_ep_config *cfg = dev->config_info;
struct iproc_pcie_ep_ctx *ctx = dev->driver_data;
void *reset_data;
uint32_t data;
data = pcie_read32(&cfg->base->paxb_paxb_intr_status);
if (data & PCIE0_FLR_INTR) {
LOG_DBG("FLR interrupt[0x%x]", data);
pcie_write32(PCIE0_FLR_INTR, &cfg->base->paxb_paxb_intr_clear);
if (ctx->reset_cb[PCIE_FLR] != NULL) {
reset_data = ctx->reset_data[PCIE_FLR];
ctx->reset_cb[PCIE_FLR](reset_data);
}
} else {
/*
* Other interrupts like PAXB ECC Error interrupt
* could show up at the beginning which are harmless.
* So simply clearing those interrupts here
*/
LOG_DBG("PAXB interrupt[0x%x]", data);
pcie_write32(data, &cfg->base->paxb_paxb_intr_clear);
}
/* Clear FLR in Progress bit */
iproc_pcie_conf_read(dev, PCIE_DEV_CTRL_OFFSET, &data);
data |= FLR_IN_PROGRESS;
iproc_pcie_conf_write(dev, PCIE_DEV_CTRL_OFFSET, data);
}
#endif
DEVICE_DECLARE(iproc_pcie_ep_0);
static void iproc_pcie_reset_config(struct device *dev)
{
uint32_t data;
const struct iproc_pcie_ep_config *cfg = dev->config_info;
/* Clear any possible prior pending interrupts */
sys_write32(PCIE0_PERST_INTR | PCIE0_PERST_INB_INTR,
CRMU_MCU_EXTRA_EVENT_CLEAR);
pcie_write32(PCIE0_FLR_INTR, &cfg->base->paxb_paxb_intr_clear);
/* Enable PERST and Inband PERST interrupts */
data = sys_read32(PCIE_PERSTB_INTR_CTL_STS);
data |= (PCIE0_PERST_FE_INTR | PCIE0_PERST_INB_FE_INTR);
sys_write32(data, PCIE_PERSTB_INTR_CTL_STS);
data = sys_read32(CRMU_MCU_EXTRA_EVENT_MASK);
data &= ~(PCIE0_PERST_INTR | PCIE0_PERST_INB_INTR);
sys_write32(data, CRMU_MCU_EXTRA_EVENT_MASK);
/* Set auto clear FLR and auto clear CRS post FLR */
iproc_pcie_conf_read(dev, PCIE_TL_CTRL0_OFFSET, &data);
data |= (AUTO_CLR_CRS_POST_FLR | AUTO_CLR_FLR_AFTER_DELAY);
iproc_pcie_conf_write(dev, PCIE_TL_CTRL0_OFFSET, data);
/* Enable Function Level Reset */
data = pcie_read32(&cfg->base->paxb_paxb_intr_en);
data |= PCIE0_FLR_INTR;
pcie_write32(data, &cfg->base->paxb_paxb_intr_en);
#if DT_INST_IRQ_HAS_NAME(0, perst)
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, perst, irq),
DT_INST_IRQ_BY_NAME(0, perst, priority),
iproc_pcie_perst, DEVICE_GET(iproc_pcie_ep_0), 0);
irq_enable(DT_INST_IRQ_BY_NAME(0, perst, irq));
#endif
#if DT_INST_IRQ_HAS_NAME(0, perst_inband)
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, perst_inband, irq),
DT_INST_IRQ_BY_NAME(0, perst_inband, priority),
iproc_pcie_hot_reset, DEVICE_GET(iproc_pcie_ep_0), 0);
irq_enable(DT_INST_IRQ_BY_NAME(0, perst_inband, irq));
#endif
#if DT_INST_IRQ_HAS_NAME(0, flr)
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, flr, irq),
DT_INST_IRQ_BY_NAME(0, flr, priority),
iproc_pcie_flr, DEVICE_GET(iproc_pcie_ep_0), 0);
irq_enable(DT_INST_IRQ_BY_NAME(0, flr, irq));
#endif
}
#ifdef CONFIG_PCIE_EP_BCM_IPROC_INIT_CFG
static void iproc_pcie_msix_config(struct device *dev)
{
/*
* Configure capability of generating 16 messages,
* MSI-X Table offset 0x10000 on BAR2,
* MSI-X PBA offset 0x10800 on BAR2.
*/
iproc_pcie_conf_write(dev, MSIX_CONTROL, (MSIX_TABLE_SIZE - 1));
iproc_pcie_conf_write(dev, MSIX_TBL_OFF_BIR, MSIX_TBL_B2_10000);
iproc_pcie_conf_write(dev, MSIX_PBA_OFF_BIR, MSIX_PBA_B2_10800);
}
static void iproc_pcie_msi_config(struct device *dev)
{
uint32_t data;
/* Configure capability of generating 16 messages */
iproc_pcie_conf_read(dev, ID_VAL4_OFFSET, &data);
data = (data & ~(MSI_COUNT_MASK)) | (MSI_COUNT_VAL << MSI_COUNT_SHIFT);
iproc_pcie_conf_write(dev, ID_VAL4_OFFSET, data);
}
#endif
static int iproc_pcie_mode_check(const struct iproc_pcie_ep_config *cfg)
{
uint32_t data;
data = pcie_read32(&cfg->base->paxb_strap_status);
LOG_DBG("PAXB_STRAP_STATUS = 0x%08X\n", data);
if (data & PCIE_RC_MODE_MASK) {
return -ENOTSUP;
}
return 0;
}
static int iproc_pcie_ep_init(struct device *dev)
{
const struct iproc_pcie_ep_config *cfg = dev->config_info;
struct iproc_pcie_ep_ctx *ctx = dev->driver_data;
int ret;
uint32_t data;
ret = iproc_pcie_mode_check(cfg);
if (ret) {
LOG_ERR("ERROR: Only PCIe EP mode is supported\n");
goto err_out;
}
iproc_pcie_conf_read(dev, PCIE_LINK_STATUS_CONTROL, &data);
LOG_INF("PCIe linkup speed 0x%x\n", ((data >>
PCIE_LINKSPEED_SHIFT) & PCIE_LINKSPEED_MASK));
LOG_INF("PCIe linkup width 0x%x\n", ((data >>
PCIE_LINKWIDTH_SHIFT) & PCIE_LINKWIDTH_MASK));
#ifdef CONFIG_PCIE_EP_BCM_IPROC_INIT_CFG
iproc_pcie_msi_config(dev);
iproc_pcie_msix_config(dev);
#endif
iproc_pcie_reset_config(dev);
ctx->highmem_in_use = false;
ctx->lowmem_in_use = false;
LOG_INF("PCIe initialized successfully\n");
err_out:
return ret;
}
static struct iproc_pcie_ep_ctx iproc_pcie_ep_ctx_0;
static struct iproc_pcie_ep_config iproc_pcie_ep_config_0 = {
.id = 0,
.base = (struct iproc_pcie_reg *)DT_INST_REG_ADDR(0),
.reg_size = DT_INST_REG_SIZE(0),
.map_low_base = DT_INST_REG_ADDR_BY_NAME(0, map_lowmem),
.map_low_size = DT_INST_REG_SIZE_BY_NAME(0, map_lowmem),
.map_high_base = DT_INST_REG_ADDR_BY_NAME(0, map_highmem),
.map_high_size = DT_INST_REG_SIZE_BY_NAME(0, map_highmem),
};
static struct pcie_ep_driver_api iproc_pcie_ep_api = {
.conf_read = iproc_pcie_conf_read,
.conf_write = iproc_pcie_conf_write,
.map_addr = iproc_pcie_map_addr,
.unmap_addr = iproc_pcie_unmap_addr,
.raise_irq = iproc_pcie_raise_irq,
.register_reset_cb = iproc_pcie_register_reset_cb,
};
DEVICE_AND_API_INIT(iproc_pcie_ep_0, DT_INST_LABEL(0),
&iproc_pcie_ep_init, &iproc_pcie_ep_ctx_0,
&iproc_pcie_ep_config_0,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&iproc_pcie_ep_api);