zephyr/drivers/gpio/gpio_nrfx.c
Andrzej Głąbek 414c773c48 drivers: gpio_nrfx: Replace atomic_set_bit_to() with atomic_and()
A call to atomic_set_bit_to() was used for clearing bits in an atomic_t
variable that stores information about allocated GPIOTE channels.
This caused an issue to be reported by Coverity, as the function treats
its first parameter as an array and it was provided with a pointer to
a singleton.
This commit replaces that call with atomic_and(), to prevent the issue
from being reported and for consistency with the way bits are set for
allocated GPIOTE channels (what is done with a call to atomic_or()).

Signed-off-by: Andrzej Głąbek <andrzej.glabek@nordicsemi.no>
2020-07-06 16:47:03 +02:00

513 lines
13 KiB
C

/*
* Copyright (c) 2018, Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <drivers/gpio.h>
#include <hal/nrf_gpio.h>
#include <hal/nrf_gpiote.h>
#include "gpio_utils.h"
/* Mask holding information about which channels are allocated. */
static atomic_t gpiote_alloc_mask;
struct gpio_nrfx_data {
/* gpio_driver_data needs to be first */
struct gpio_driver_data common;
sys_slist_t callbacks;
/* Mask holding information about which pins have been configured to
* trigger interrupts using gpio_nrfx_config function.
*/
uint32_t pin_int_en;
uint32_t int_active_level;
uint32_t trig_edge;
uint32_t double_edge;
};
struct gpio_nrfx_cfg {
/* gpio_driver_config needs to be first */
struct gpio_driver_config common;
NRF_GPIO_Type *port;
uint8_t port_num;
};
static inline struct gpio_nrfx_data *get_port_data(struct device *port)
{
return port->driver_data;
}
static inline const struct gpio_nrfx_cfg *get_port_cfg(struct device *port)
{
return port->config_info;
}
static int gpiote_channel_alloc(atomic_t *mask, uint32_t abs_pin,
nrf_gpiote_polarity_t polarity)
{
for (uint8_t channel = 0; channel < GPIOTE_CH_NUM; ++channel) {
atomic_val_t prev = atomic_or(mask, BIT(channel));
if ((prev & BIT(channel)) == 0) {
nrf_gpiote_event_t evt =
offsetof(NRF_GPIOTE_Type, EVENTS_IN[channel]);
nrf_gpiote_event_configure(NRF_GPIOTE, channel, abs_pin,
polarity);
nrf_gpiote_event_clear(NRF_GPIOTE, evt);
nrf_gpiote_event_enable(NRF_GPIOTE, channel);
nrf_gpiote_int_enable(NRF_GPIOTE, BIT(channel));
return 0;
}
}
return -ENODEV;
}
/* Function checks if given pin does not have already enabled GPIOTE event and
* disables it.
*/
static void gpiote_pin_cleanup(atomic_t *mask, uint32_t abs_pin)
{
uint32_t intenset = nrf_gpiote_int_enable_check(NRF_GPIOTE,
NRF_GPIOTE_INT_IN_MASK);
for (size_t i = 0; i < GPIOTE_CH_NUM; i++) {
if ((nrf_gpiote_event_pin_get(NRF_GPIOTE, i) == abs_pin)
&& (intenset & BIT(i))) {
(void)atomic_and(mask, ~BIT(i));
nrf_gpiote_event_disable(NRF_GPIOTE, i);
nrf_gpiote_int_disable(NRF_GPIOTE, BIT(i));
return;
}
}
}
static inline uint32_t sense_for_pin(const struct gpio_nrfx_data *data,
uint32_t pin)
{
if ((BIT(pin) & data->int_active_level) != 0U) {
return NRF_GPIO_PIN_SENSE_HIGH;
}
return NRF_GPIO_PIN_SENSE_LOW;
}
static int gpiote_pin_int_cfg(struct device *port, uint32_t pin)
{
struct gpio_nrfx_data *data = get_port_data(port);
const struct gpio_nrfx_cfg *cfg = get_port_cfg(port);
uint32_t abs_pin = NRF_GPIO_PIN_MAP(cfg->port_num, pin);
int res = 0;
gpiote_pin_cleanup(&gpiote_alloc_mask, abs_pin);
nrf_gpio_cfg_sense_set(abs_pin, NRF_GPIO_PIN_NOSENSE);
/* Pins trigger interrupts only if pin has been configured to do so */
if (data->pin_int_en & BIT(pin)) {
if (data->trig_edge & BIT(pin)) {
/* For edge triggering we use GPIOTE channels. */
nrf_gpiote_polarity_t pol;
if (data->double_edge & BIT(pin)) {
pol = NRF_GPIOTE_POLARITY_TOGGLE;
} else if ((data->int_active_level & BIT(pin)) != 0U) {
pol = NRF_GPIOTE_POLARITY_LOTOHI;
} else {
pol = NRF_GPIOTE_POLARITY_HITOLO;
}
res = gpiote_channel_alloc(&gpiote_alloc_mask,
abs_pin, pol);
} else {
/* For level triggering we use sense mechanism. */
uint32_t sense = sense_for_pin(data, pin);
nrf_gpio_cfg_sense_set(abs_pin, sense);
}
}
return res;
}
static int gpio_nrfx_config(struct device *port,
gpio_pin_t pin, gpio_flags_t flags)
{
NRF_GPIO_Type *reg = get_port_cfg(port)->port;
nrf_gpio_pin_pull_t pull;
nrf_gpio_pin_drive_t drive;
nrf_gpio_pin_dir_t dir;
nrf_gpio_pin_input_t input;
switch (flags & (GPIO_DS_LOW_MASK | GPIO_DS_HIGH_MASK |
GPIO_OPEN_DRAIN)) {
case GPIO_DS_DFLT_LOW | GPIO_DS_DFLT_HIGH:
drive = NRF_GPIO_PIN_S0S1;
break;
case GPIO_DS_DFLT_LOW | GPIO_DS_ALT_HIGH:
drive = NRF_GPIO_PIN_S0H1;
break;
case GPIO_DS_DFLT_LOW | GPIO_OPEN_DRAIN:
drive = NRF_GPIO_PIN_S0D1;
break;
case GPIO_DS_ALT_LOW | GPIO_DS_DFLT_HIGH:
drive = NRF_GPIO_PIN_H0S1;
break;
case GPIO_DS_ALT_LOW | GPIO_DS_ALT_HIGH:
drive = NRF_GPIO_PIN_H0H1;
break;
case GPIO_DS_ALT_LOW | GPIO_OPEN_DRAIN:
drive = NRF_GPIO_PIN_H0D1;
break;
case GPIO_DS_DFLT_HIGH | GPIO_OPEN_SOURCE:
drive = NRF_GPIO_PIN_D0S1;
break;
case GPIO_DS_ALT_HIGH | GPIO_OPEN_SOURCE:
drive = NRF_GPIO_PIN_D0H1;
break;
default:
return -EINVAL;
}
if ((flags & GPIO_PULL_UP) != 0) {
pull = NRF_GPIO_PIN_PULLUP;
} else if ((flags & GPIO_PULL_DOWN) != 0) {
pull = NRF_GPIO_PIN_PULLDOWN;
} else {
pull = NRF_GPIO_PIN_NOPULL;
}
dir = ((flags & GPIO_OUTPUT) != 0)
? NRF_GPIO_PIN_DIR_OUTPUT
: NRF_GPIO_PIN_DIR_INPUT;
input = ((flags & GPIO_INPUT) != 0)
? NRF_GPIO_PIN_INPUT_CONNECT
: NRF_GPIO_PIN_INPUT_DISCONNECT;
if ((flags & GPIO_OUTPUT) != 0) {
if ((flags & GPIO_OUTPUT_INIT_HIGH) != 0) {
nrf_gpio_port_out_set(reg, BIT(pin));
} else if ((flags & GPIO_OUTPUT_INIT_LOW) != 0) {
nrf_gpio_port_out_clear(reg, BIT(pin));
}
}
nrf_gpio_cfg(NRF_GPIO_PIN_MAP(get_port_cfg(port)->port_num, pin),
dir, input, pull, drive, NRF_GPIO_PIN_NOSENSE);
return 0;
}
static int gpio_nrfx_port_get_raw(struct device *port, uint32_t *value)
{
NRF_GPIO_Type *reg = get_port_cfg(port)->port;
*value = nrf_gpio_port_in_read(reg);
return 0;
}
static int gpio_nrfx_port_set_masked_raw(struct device *port, uint32_t mask,
uint32_t value)
{
NRF_GPIO_Type *reg = get_port_cfg(port)->port;
uint32_t value_tmp;
value_tmp = nrf_gpio_port_out_read(reg) & ~mask;
nrf_gpio_port_out_write(reg, value_tmp | (mask & value));
return 0;
}
static int gpio_nrfx_port_set_bits_raw(struct device *port, uint32_t mask)
{
NRF_GPIO_Type *reg = get_port_cfg(port)->port;
nrf_gpio_port_out_set(reg, mask);
return 0;
}
static int gpio_nrfx_port_clear_bits_raw(struct device *port, uint32_t mask)
{
NRF_GPIO_Type *reg = get_port_cfg(port)->port;
nrf_gpio_port_out_clear(reg, mask);
return 0;
}
static int gpio_nrfx_port_toggle_bits(struct device *port, uint32_t mask)
{
NRF_GPIO_Type *reg = get_port_cfg(port)->port;
uint32_t value;
value = nrf_gpio_port_out_read(reg);
nrf_gpio_port_out_write(reg, value ^ mask);
return 0;
}
static int gpio_nrfx_pin_interrupt_configure(struct device *port,
gpio_pin_t pin, enum gpio_int_mode mode,
enum gpio_int_trig trig)
{
struct gpio_nrfx_data *data = get_port_data(port);
uint32_t abs_pin = NRF_GPIO_PIN_MAP(get_port_cfg(port)->port_num, pin);
if ((mode == GPIO_INT_MODE_EDGE) &&
(nrf_gpio_pin_dir_get(abs_pin) == NRF_GPIO_PIN_DIR_OUTPUT)) {
/*
* The pin's output value as specified in the GPIO will be
* ignored as long as the pin is controlled by GPIOTE.
* Pin with output enabled cannot be used as an edge interrupt
* source.
*/
return -ENOTSUP;
}
WRITE_BIT(data->pin_int_en, pin, mode != GPIO_INT_MODE_DISABLED);
WRITE_BIT(data->trig_edge, pin, mode == GPIO_INT_MODE_EDGE);
WRITE_BIT(data->double_edge, pin, trig == GPIO_INT_TRIG_BOTH);
WRITE_BIT(data->int_active_level, pin, trig == GPIO_INT_TRIG_HIGH);
return gpiote_pin_int_cfg(port, pin);
}
static int gpio_nrfx_manage_callback(struct device *port,
struct gpio_callback *callback,
bool set)
{
return gpio_manage_callback(&get_port_data(port)->callbacks,
callback, set);
}
static const struct gpio_driver_api gpio_nrfx_drv_api_funcs = {
.pin_configure = gpio_nrfx_config,
.port_get_raw = gpio_nrfx_port_get_raw,
.port_set_masked_raw = gpio_nrfx_port_set_masked_raw,
.port_set_bits_raw = gpio_nrfx_port_set_bits_raw,
.port_clear_bits_raw = gpio_nrfx_port_clear_bits_raw,
.port_toggle_bits = gpio_nrfx_port_toggle_bits,
.pin_interrupt_configure = gpio_nrfx_pin_interrupt_configure,
.manage_callback = gpio_nrfx_manage_callback,
};
static inline uint32_t get_level_pins(struct device *port)
{
struct gpio_nrfx_data *data = get_port_data(port);
/* Take into consideration only pins that were configured to
* trigger interrupts.
*/
uint32_t out = data->pin_int_en;
/* Exclude pins that trigger interrupts by edge. */
out &= ~data->trig_edge & ~data->double_edge;
/* The sequence above assumes that the sense field will be
* configured only for these pins. If anybody's modifying
* PIN_CNF directly it won't work.
*/
return out;
}
static void cfg_level_pins(struct device *port)
{
const struct gpio_nrfx_data *data = get_port_data(port);
const struct gpio_nrfx_cfg *cfg = get_port_cfg(port);
uint32_t pin = 0U;
uint32_t bit = 1U << pin;
uint32_t level_pins = get_level_pins(port);
/* Configure sense detection on all pins that use it. */
while (level_pins) {
if (level_pins & bit) {
uint32_t abs_pin = NRF_GPIO_PIN_MAP(cfg->port_num, pin);
uint32_t sense = sense_for_pin(data, pin);
nrf_gpio_cfg_sense_set(abs_pin, sense);
level_pins &= ~bit;
}
++pin;
bit <<= 1;
}
}
/**
* @brief Function for getting pins that triggered level interrupt.
*
* @param port Pointer to GPIO port device.
*
* @return Bitmask where 1 marks pin as trigger source.
*/
static uint32_t check_level_trigger_pins(struct device *port)
{
struct gpio_nrfx_data *data = get_port_data(port);
const struct gpio_nrfx_cfg *cfg = get_port_cfg(port);
uint32_t level_pins = get_level_pins(port);
uint32_t port_in = nrf_gpio_port_in_read(cfg->port);
/* Extract which pins have logic level same as interrupt trigger level.
*/
uint32_t pin_states = ~(port_in ^ data->int_active_level);
/* Discard pins that aren't configured for level. */
uint32_t out = pin_states & level_pins;
/* Disable sense detection on all pins that use it, whether
* they appear to have triggered or not. This ensures
* nobody's requesting DETECT.
*/
uint32_t pin = 0U;
uint32_t bit = 1U << pin;
while (level_pins) {
if (level_pins & bit) {
uint32_t abs_pin = NRF_GPIO_PIN_MAP(cfg->port_num, pin);
nrf_gpio_cfg_sense_set(abs_pin, NRF_GPIO_PIN_NOSENSE);
level_pins &= ~bit;
}
++pin;
bit <<= 1;
}
return out;
}
static inline void fire_callbacks(struct device *port, uint32_t pins)
{
struct gpio_nrfx_data *data = get_port_data(port);
sys_slist_t *list = &data->callbacks;
gpio_fire_callbacks(list, port, pins);
}
#ifdef CONFIG_GPIO_NRF_P0
DEVICE_DECLARE(gpio_nrfx_p0);
#endif
#ifdef CONFIG_GPIO_NRF_P1
DEVICE_DECLARE(gpio_nrfx_p1);
#endif
static void gpiote_event_handler(void)
{
uint32_t fired_triggers[GPIO_COUNT] = {0};
bool port_event = nrf_gpiote_event_check(NRF_GPIOTE,
NRF_GPIOTE_EVENT_PORT);
if (port_event) {
#ifdef CONFIG_GPIO_NRF_P0
fired_triggers[0] =
check_level_trigger_pins(DEVICE_GET(gpio_nrfx_p0));
#endif
#ifdef CONFIG_GPIO_NRF_P1
fired_triggers[1] =
check_level_trigger_pins(DEVICE_GET(gpio_nrfx_p1));
#endif
/* Sense detect was disabled while checking pins so
* DETECT should be deasserted.
*/
nrf_gpiote_event_clear(NRF_GPIOTE, NRF_GPIOTE_EVENT_PORT);
}
/* Handle interrupt from GPIOTE channels. */
for (size_t i = 0; i < GPIOTE_CH_NUM; i++) {
nrf_gpiote_event_t evt =
offsetof(NRF_GPIOTE_Type, EVENTS_IN[i]);
if (nrf_gpiote_int_enable_check(NRF_GPIOTE, BIT(i)) &&
nrf_gpiote_event_check(NRF_GPIOTE, evt)) {
uint32_t abs_pin = nrf_gpiote_event_pin_get(NRF_GPIOTE, i);
/* Divide absolute pin number to port and pin parts. */
fired_triggers[abs_pin / 32U] |= BIT(abs_pin % 32);
nrf_gpiote_event_clear(NRF_GPIOTE, evt);
}
}
#ifdef CONFIG_GPIO_NRF_P0
if (fired_triggers[0]) {
fire_callbacks(DEVICE_GET(gpio_nrfx_p0), fired_triggers[0]);
}
#endif
#ifdef CONFIG_GPIO_NRF_P1
if (fired_triggers[1]) {
fire_callbacks(DEVICE_GET(gpio_nrfx_p1), fired_triggers[1]);
}
#endif
if (port_event) {
/* Reprogram sense to match current configuration.
* This may cause DETECT to be re-asserted.
*/
#ifdef CONFIG_GPIO_NRF_P0
cfg_level_pins(DEVICE_GET(gpio_nrfx_p0));
#endif
#ifdef CONFIG_GPIO_NRF_P1
cfg_level_pins(DEVICE_GET(gpio_nrfx_p1));
#endif
}
}
#define GPIOTE_NODE DT_INST(0, nordic_nrf_gpiote)
static int gpio_nrfx_init(struct device *port)
{
static bool gpio_initialized;
if (!gpio_initialized) {
gpio_initialized = true;
IRQ_CONNECT(DT_IRQN(GPIOTE_NODE), DT_IRQ(GPIOTE_NODE, priority),
gpiote_event_handler, NULL, 0);
irq_enable(DT_IRQN(GPIOTE_NODE));
nrf_gpiote_int_enable(NRF_GPIOTE, NRF_GPIOTE_INT_PORT_MASK);
}
return 0;
}
/*
* Device instantiation is done with node labels because 'port_num' is
* the peripheral number by SoC numbering. We therefore cannot use
* DT_INST APIs here without wider changes.
*/
#define GPIO(id) DT_NODELABEL(gpio##id)
#define GPIO_NRF_DEVICE(id) \
static const struct gpio_nrfx_cfg gpio_nrfx_p##id##_cfg = { \
.common = { \
.port_pin_mask = \
GPIO_PORT_PIN_MASK_FROM_DT_NODE(GPIO(id)), \
}, \
.port = NRF_P##id, \
.port_num = id \
}; \
\
static struct gpio_nrfx_data gpio_nrfx_p##id##_data; \
\
DEVICE_AND_API_INIT(gpio_nrfx_p##id, \
DT_LABEL(GPIO(id)), \
gpio_nrfx_init, \
&gpio_nrfx_p##id##_data, \
&gpio_nrfx_p##id##_cfg, \
POST_KERNEL, \
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, \
&gpio_nrfx_drv_api_funcs)
#ifdef CONFIG_GPIO_NRF_P0
GPIO_NRF_DEVICE(0);
#endif
#ifdef CONFIG_GPIO_NRF_P1
GPIO_NRF_DEVICE(1);
#endif