zephyr/drivers/flash/soc_flash_nrf.c
Vinayak Kariappa Chettimada eb2a64989b drivers: flash: nrf: Fix flash operation timeout
Fix flash operation timeout due to incorrect use of
secondary ticker to abort any radio in use. Ticker id 0
is reserved for split controller's pipeline preempt timeout.
Using the same ticker id caused the secondary ticker to
not be started if controller is using the same ticker id
for pipeline preempt timeout.

Fixes #26333.

Signed-off-by: Vinayak Kariappa Chettimada <vich@nordicsemi.no>
2020-07-09 07:17:41 -04:00

684 lines
17 KiB
C

/*
* Copyright (c) 2017-2018 Nordic Semiconductor ASA
* Copyright (c) 2016 Linaro Limited
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <kernel.h>
#include <device.h>
#include <init.h>
#include <soc.h>
#include <drivers/flash.h>
#include <string.h>
#include <nrfx_nvmc.h>
#if DT_NODE_HAS_STATUS(DT_INST(0, nordic_nrf51_flash_controller), okay)
#define DT_DRV_COMPAT nordic_nrf51_flash_controller
#elif DT_NODE_HAS_STATUS(DT_INST(0, nordic_nrf52_flash_controller), okay)
#define DT_DRV_COMPAT nordic_nrf52_flash_controller
#elif DT_NODE_HAS_STATUS(DT_INST(0, nordic_nrf53_flash_controller), okay)
#define DT_DRV_COMPAT nordic_nrf53_flash_controller
#elif DT_NODE_HAS_STATUS(DT_INST(0, nordic_nrf91_flash_controller), okay)
#define DT_DRV_COMPAT nordic_nrf91_flash_controller
#else
#error No matching compatible for soc_flash_nrf.c
#endif
#define SOC_NV_FLASH_NODE DT_INST(0, soc_nv_flash)
#if defined(CONFIG_SOC_FLASH_NRF_RADIO_SYNC)
#include <sys/__assert.h>
#include <bluetooth/hci.h>
#include "controller/hal/ticker.h"
#include "controller/ticker/ticker.h"
#include "controller/include/ll.h"
#define FLASH_RADIO_ABORT_DELAY_US 1500
#define FLASH_RADIO_WORK_DELAY_US 200
#define FLASH_INTERVAL_ERASE (FLASH_RADIO_ABORT_DELAY_US + \
FLASH_RADIO_WORK_DELAY_US + \
FLASH_SLOT_ERASE)
#define FLASH_SLOT_WRITE (FLASH_INTERVAL_WRITE - \
FLASH_RADIO_ABORT_DELAY_US - \
FLASH_RADIO_WORK_DELAY_US)
#define FLASH_INTERVAL_WRITE 7500
#if defined(CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE)
/* The timeout is multiplied by 1.5 because switching tasks may take
* significant portion of time.
*/
#define FLASH_TIMEOUT_MS ((FLASH_PAGE_ERASE_MAX_TIME_US) * \
(FLASH_PAGE_MAX_CNT) / 1000 * 15 / 10)
#define FLASH_SLOT_ERASE (MAX(CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE_MS * 1000, \
7500))
#else
#define FLASH_TIMEOUT_MS ((FLASH_PAGE_ERASE_MAX_TIME_US) * \
(FLASH_PAGE_MAX_CNT) / 1000)
#define FLASH_SLOT_ERASE FLASH_PAGE_ERASE_MAX_TIME_US
#endif /* CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE */
#endif /* CONFIG_SOC_FLASH_NRF_RADIO_SYNC */
#define FLASH_OP_DONE (0) /* 0 for compliance with the driver API. */
#define FLASH_OP_ONGOING (-1)
struct flash_context {
uint32_t data_addr; /* Address of data to write. */
uint32_t flash_addr; /* Address of flash to write or erase. */
uint32_t len; /* Size off data to write or erase [B]. */
#if defined(CONFIG_SOC_FLASH_NRF_RADIO_SYNC)
uint8_t enable_time_limit; /* execution limited to timeslot. */
uint32_t interval; /* timeslot interval. */
uint32_t slot; /* timeslot length. */
#endif /* CONFIG_SOC_FLASH_NRF_RADIO_SYNC */
#if defined(CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE)
uint32_t flash_addr_next;
#endif /* CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE */
}; /*< Context type for f. @ref write_op @ref erase_op */
#if defined(CONFIG_SOC_FLASH_NRF_RADIO_SYNC)
typedef int (*flash_op_handler_t) (void *context);
struct flash_op_desc {
flash_op_handler_t handler;
struct flash_context *context; /* [in,out] */
int result;
};
/* semaphore for synchronization of flash operations */
static struct k_sem sem_sync;
static int write_op(void *context); /* instance of flash_op_handler_t */
static int write_in_timeslice(off_t addr, const void *data, size_t len);
static int erase_op(void *context); /* instance of flash_op_handler_t */
static int erase_in_timeslice(uint32_t addr, uint32_t size);
#endif /* CONFIG_SOC_FLASH_NRF_RADIO_SYNC */
static const struct flash_parameters flash_nrf_parameters = {
#if IS_ENABLED(CONFIG_SOC_FLASH_NRF_EMULATE_ONE_BYTE_WRITE_ACCESS)
.write_block_size = 1,
#else
.write_block_size = 4,
#endif
.erase_value = 0xff,
};
#if defined(CONFIG_MULTITHREADING)
/* semaphore for locking flash resources (tickers) */
static struct k_sem sem_lock;
#define SYNC_INIT() k_sem_init(&sem_lock, 1, 1)
#define SYNC_LOCK() k_sem_take(&sem_lock, K_FOREVER)
#define SYNC_UNLOCK() k_sem_give(&sem_lock)
#else
#define SYNC_INIT()
#define SYNC_LOCK()
#define SYNC_UNLOCK()
#endif
static int write(off_t addr, const void *data, size_t len);
static int erase(uint32_t addr, uint32_t size);
static inline bool is_aligned_32(uint32_t data)
{
return (data & 0x3) ? false : true;
}
static inline bool is_regular_addr_valid(off_t addr, size_t len)
{
size_t flash_size = nrfx_nvmc_flash_size_get();
if (addr >= flash_size ||
addr < 0 ||
len > flash_size ||
(addr) + len > flash_size) {
return false;
}
return true;
}
static inline bool is_uicr_addr_valid(off_t addr, size_t len)
{
#ifdef CONFIG_SOC_FLASH_NRF_UICR
if (addr >= (off_t)NRF_UICR + sizeof(*NRF_UICR) ||
addr < (off_t)NRF_UICR ||
len > sizeof(*NRF_UICR) ||
addr + len > (off_t)NRF_UICR + sizeof(*NRF_UICR)) {
return false;
}
return true;
#else
return false;
#endif /* CONFIG_SOC_FLASH_NRF_UICR */
}
static void nvmc_wait_ready(void)
{
while (!nrfx_nvmc_write_done_check()) {
}
}
static int flash_nrf_read(struct device *dev, off_t addr,
void *data, size_t len)
{
if (is_regular_addr_valid(addr, len)) {
addr += DT_REG_ADDR(SOC_NV_FLASH_NODE);
} else if (!is_uicr_addr_valid(addr, len)) {
return -EINVAL;
}
if (!len) {
return 0;
}
memcpy(data, (void *)addr, len);
return 0;
}
static int flash_nrf_write(struct device *dev, off_t addr,
const void *data, size_t len)
{
int ret;
if (is_regular_addr_valid(addr, len)) {
addr += DT_REG_ADDR(SOC_NV_FLASH_NODE);
} else if (!is_uicr_addr_valid(addr, len)) {
return -EINVAL;
}
#if !IS_ENABLED(CONFIG_SOC_FLASH_NRF_EMULATE_ONE_BYTE_WRITE_ACCESS)
if (!is_aligned_32(addr) || (len % sizeof(uint32_t))) {
return -EINVAL;
}
#endif
if (!len) {
return 0;
}
SYNC_LOCK();
#if defined(CONFIG_SOC_FLASH_NRF_RADIO_SYNC)
if (ticker_is_initialized(0)) {
ret = write_in_timeslice(addr, data, len);
} else
#endif /* CONFIG_SOC_FLASH_NRF_RADIO_SYNC */
{
ret = write(addr, data, len);
}
SYNC_UNLOCK();
return ret;
}
static int flash_nrf_erase(struct device *dev, off_t addr, size_t size)
{
uint32_t pg_size = nrfx_nvmc_flash_page_size_get();
uint32_t n_pages = size / pg_size;
int ret;
if (is_regular_addr_valid(addr, size)) {
/* Erase can only be done per page */
if (((addr % pg_size) != 0) || ((size % pg_size) != 0)) {
return -EINVAL;
}
if (!n_pages) {
return 0;
}
addr += DT_REG_ADDR(SOC_NV_FLASH_NODE);
#ifdef CONFIG_SOC_FLASH_NRF_UICR
} else if (addr != (off_t)NRF_UICR || size != sizeof(*NRF_UICR)) {
return -EINVAL;
}
#else
} else {
return -EINVAL;
}
#endif /* CONFIG_SOC_FLASH_NRF_UICR */
SYNC_LOCK();
#if defined(CONFIG_SOC_FLASH_NRF_RADIO_SYNC)
if (ticker_is_initialized(0)) {
ret = erase_in_timeslice(addr, size);
} else
#endif /* CONFIG_SOC_FLASH_NRF_RADIO_SYNC */
{
ret = erase(addr, size);
}
SYNC_UNLOCK();
return ret;
}
static int flash_nrf_write_protection(struct device *dev, bool enable)
{
return 0;
}
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
static struct flash_pages_layout dev_layout;
static void flash_nrf_pages_layout(struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
*layout = &dev_layout;
*layout_size = 1;
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
static const struct flash_parameters *
flash_nrf_get_parameters(const struct device *dev)
{
ARG_UNUSED(dev);
return &flash_nrf_parameters;
}
static const struct flash_driver_api flash_nrf_api = {
.read = flash_nrf_read,
.write = flash_nrf_write,
.erase = flash_nrf_erase,
.write_protection = flash_nrf_write_protection,
.get_parameters = flash_nrf_get_parameters,
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
.page_layout = flash_nrf_pages_layout,
#endif
};
static int nrf_flash_init(struct device *dev)
{
SYNC_INIT();
#if defined(CONFIG_SOC_FLASH_NRF_RADIO_SYNC)
k_sem_init(&sem_sync, 0, 1);
#endif /* CONFIG_SOC_FLASH_NRF_RADIO_SYNC */
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
dev_layout.pages_count = nrfx_nvmc_flash_page_count_get();
dev_layout.pages_size = nrfx_nvmc_flash_page_size_get();
#endif
return 0;
}
DEVICE_AND_API_INIT(nrf_flash, DT_INST_LABEL(0), nrf_flash_init,
NULL, NULL, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&flash_nrf_api);
#if defined(CONFIG_SOC_FLASH_NRF_RADIO_SYNC)
static inline int _ticker_stop(uint8_t inst_idx, uint8_t u_id, uint8_t tic_id)
{
int ret = ticker_stop(inst_idx, u_id, tic_id, NULL, NULL);
if (ret != TICKER_STATUS_SUCCESS &&
ret != TICKER_STATUS_BUSY) {
__ASSERT(0, "Failed to stop ticker.\n");
}
return ret;
}
static void time_slot_callback_work(uint32_t ticks_at_expire, uint32_t remainder,
uint16_t lazy, void *context)
{
struct flash_op_desc *op_desc;
uint8_t instance_index;
uint8_t ticker_id;
__ASSERT(ll_radio_state_is_idle(),
"Radio is on during flash operation.\n");
op_desc = context;
if (op_desc->handler(op_desc->context) == FLASH_OP_DONE) {
ll_timeslice_ticker_id_get(&instance_index, &ticker_id);
/* Stop the time slot ticker */
_ticker_stop(instance_index, 0, ticker_id);
((struct flash_op_desc *)context)->result = 0;
/* notify thread that data is available */
k_sem_give(&sem_sync);
}
}
static void time_slot_delay(uint32_t ticks_at_expire, uint32_t ticks_delay,
ticker_timeout_func callback, void *context)
{
uint8_t instance_index;
uint8_t ticker_id;
int err;
ll_timeslice_ticker_id_get(&instance_index, &ticker_id);
/* start a secondary one-shot ticker after ticks_delay,
* this will let any radio role to gracefully abort and release the
* Radio h/w.
*/
err = ticker_start(instance_index, /* Radio instance ticker */
0, /* user_id */
(ticker_id + 1), /* ticker_id */
ticks_at_expire, /* current tick */
ticks_delay, /* one-shot delayed timeout */
0, /* periodic timeout */
0, /* periodic remainder */
0, /* lazy, voluntary skips */
0,
callback, /* handler for executing radio abort or */
/* flash work */
context, /* the context for the flash operation */
NULL, /* no op callback */
NULL);
if (err != TICKER_STATUS_SUCCESS && err != TICKER_STATUS_BUSY) {
((struct flash_op_desc *)context)->result = -ECANCELED;
/* abort flash timeslots */
_ticker_stop(instance_index, 0, ticker_id);
/* notify thread that data is available */
k_sem_give(&sem_sync);
}
}
static void time_slot_callback_abort(uint32_t ticks_at_expire, uint32_t remainder,
uint16_t lazy, void *context)
{
ll_radio_state_abort();
time_slot_delay(ticks_at_expire,
HAL_TICKER_US_TO_TICKS(FLASH_RADIO_WORK_DELAY_US),
time_slot_callback_work,
context);
}
static void time_slot_callback_prepare(uint32_t ticks_at_expire, uint32_t remainder,
uint16_t lazy, void *context)
{
time_slot_delay(ticks_at_expire,
HAL_TICKER_US_TO_TICKS(FLASH_RADIO_ABORT_DELAY_US),
time_slot_callback_abort,
context);
}
static int work_in_time_slice(struct flash_op_desc *p_flash_op_desc)
{
uint8_t instance_index;
uint8_t ticker_id;
int result;
uint32_t err;
struct flash_context *context = p_flash_op_desc->context;
ll_timeslice_ticker_id_get(&instance_index, &ticker_id);
err = ticker_start(instance_index,
3, /* user id for thread mode */
/* (MAYFLY_CALL_ID_PROGRAM) */
ticker_id, /* flash ticker id */
ticker_ticks_now_get(), /* current tick */
0, /* first int. immediately */
/* period */
HAL_TICKER_US_TO_TICKS(context->interval),
/* period remainder */
HAL_TICKER_REMAINDER(context->interval),
0, /* lazy, voluntary skips */
HAL_TICKER_US_TO_TICKS(context->slot),
time_slot_callback_prepare,
p_flash_op_desc,
NULL, /* no op callback */
NULL);
if (err != TICKER_STATUS_SUCCESS && err != TICKER_STATUS_BUSY) {
result = -ECANCELED;
} else if (k_sem_take(&sem_sync, K_MSEC(FLASH_TIMEOUT_MS)) != 0) {
/* Stop any scheduled jobs */
_ticker_stop(instance_index, 3, ticker_id);
/* wait for operation's complete overrun*/
result = -ETIMEDOUT;
} else {
result = p_flash_op_desc->result;
}
return result;
}
static int erase_in_timeslice(uint32_t addr, uint32_t size)
{
struct flash_context context = {
.flash_addr = addr,
.len = size,
.enable_time_limit = 1, /* enable time limit */
.interval = FLASH_INTERVAL_ERASE,
.slot = FLASH_SLOT_ERASE,
#if defined(CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE)
.flash_addr_next = addr
#endif
};
struct flash_op_desc flash_op_desc = {
.handler = erase_op,
.context = &context
};
return work_in_time_slice(&flash_op_desc);
}
static int write_in_timeslice(off_t addr, const void *data, size_t len)
{
struct flash_context context = {
.data_addr = (uint32_t) data,
.flash_addr = addr,
.len = len,
.enable_time_limit = 1, /* enable time limit */
.interval = FLASH_INTERVAL_WRITE,
.slot = FLASH_SLOT_WRITE
};
struct flash_op_desc flash_op_desc = {
.handler = write_op,
.context = &context
};
return work_in_time_slice(&flash_op_desc);
}
#endif /* CONFIG_SOC_FLASH_NRF_RADIO_SYNC */
static int erase_op(void *context)
{
uint32_t pg_size = nrfx_nvmc_flash_page_size_get();
struct flash_context *e_ctx = context;
#if defined(CONFIG_SOC_FLASH_NRF_RADIO_SYNC)
uint32_t ticks_begin = 0U;
uint32_t ticks_diff;
uint32_t i = 0U;
if (e_ctx->enable_time_limit) {
ticks_begin = ticker_ticks_now_get();
}
#endif /* CONFIG_SOC_FLASH_NRF_RADIO_SYNC */
#ifdef CONFIG_SOC_FLASH_NRF_UICR
if (e_ctx->flash_addr == (off_t)NRF_UICR) {
(void)nrfx_nvmc_uicr_erase();
return FLASH_OP_DONE;
}
#endif
do {
#if defined(CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE)
if (e_ctx->flash_addr == e_ctx->flash_addr_next) {
nrfx_nvmc_page_partial_erase_init(e_ctx->flash_addr,
CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE_MS);
e_ctx->flash_addr_next += pg_size;
}
if (nrfx_nvmc_page_partial_erase_continue()) {
e_ctx->len -= pg_size;
e_ctx->flash_addr += pg_size;
}
#else
(void)nrfx_nvmc_page_erase(e_ctx->flash_addr);
e_ctx->len -= pg_size;
e_ctx->flash_addr += pg_size;
#endif /* CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE */
#if defined(CONFIG_SOC_FLASH_NRF_RADIO_SYNC)
i++;
if (e_ctx->enable_time_limit) {
ticks_diff =
ticker_ticks_diff_get(ticker_ticks_now_get(),
ticks_begin);
if (ticks_diff + ticks_diff/i >
HAL_TICKER_US_TO_TICKS(e_ctx->slot)) {
break;
}
}
#endif /* CONFIG_SOC_FLASH_NRF_RADIO_SYNC */
} while (e_ctx->len > 0);
return (e_ctx->len > 0) ? FLASH_OP_ONGOING : FLASH_OP_DONE;
}
static void shift_write_context(uint32_t shift, struct flash_context *w_ctx)
{
w_ctx->flash_addr += shift;
w_ctx->data_addr += shift;
w_ctx->len -= shift;
}
static int write_op(void *context)
{
struct flash_context *w_ctx = context;
#if defined(CONFIG_SOC_FLASH_NRF_RADIO_SYNC)
uint32_t ticks_begin = 0U;
uint32_t ticks_diff;
uint32_t i = 1U;
if (w_ctx->enable_time_limit) {
ticks_begin = ticker_ticks_now_get();
}
#endif /* CONFIG_SOC_FLASH_NRF_RADIO_SYNC */
#if IS_ENABLED(CONFIG_SOC_FLASH_NRF_EMULATE_ONE_BYTE_WRITE_ACCESS)
/* If not aligned, write unaligned beginning */
if (!is_aligned_32(w_ctx->flash_addr)) {
uint32_t count = sizeof(uint32_t) - (w_ctx->flash_addr & 0x3);
if (count > w_ctx->len) {
count = w_ctx->len;
}
nrfx_nvmc_bytes_write(w_ctx->flash_addr,
(const void *)w_ctx->data_addr,
count);
shift_write_context(count, w_ctx);
#if defined(CONFIG_SOC_FLASH_NRF_RADIO_SYNC)
if (w_ctx->enable_time_limit) {
ticks_diff =
ticker_ticks_diff_get(ticker_ticks_now_get(),
ticks_begin);
if (ticks_diff * 2U >
HAL_TICKER_US_TO_TICKS(w_ctx->slot)) {
nvmc_wait_ready();
return FLASH_OP_ONGOING;
}
}
#endif /* CONFIG_SOC_FLASH_NRF_RADIO_SYNC */
}
#endif /* CONFIG_SOC_FLASH_NRF_EMULATE_ONE_BYTE_WRITE_ACCESS */
/* Write all the 4-byte aligned data */
while (w_ctx->len >= sizeof(uint32_t)) {
nrfx_nvmc_word_write(w_ctx->flash_addr,
UNALIGNED_GET((uint32_t *)w_ctx->data_addr));
shift_write_context(sizeof(uint32_t), w_ctx);
#if defined(CONFIG_SOC_FLASH_NRF_RADIO_SYNC)
i++;
if (w_ctx->enable_time_limit) {
ticks_diff =
ticker_ticks_diff_get(ticker_ticks_now_get(),
ticks_begin);
if (ticks_diff + ticks_diff/i >
HAL_TICKER_US_TO_TICKS(w_ctx->slot)) {
nvmc_wait_ready();
return FLASH_OP_ONGOING;
}
}
#endif /* CONFIG_SOC_FLASH_NRF_RADIO_SYNC */
}
#if IS_ENABLED(CONFIG_SOC_FLASH_NRF_EMULATE_ONE_BYTE_WRITE_ACCESS)
/* Write remaining unaligned data */
if (w_ctx->len) {
nrfx_nvmc_bytes_write(w_ctx->flash_addr,
(const void *)w_ctx->data_addr,
w_ctx->len);
shift_write_context(w_ctx->len, w_ctx);
}
#endif /* CONFIG_SOC_FLASH_NRF_EMULATE_ONE_BYTE_WRITE_ACCESS */
nvmc_wait_ready();
return FLASH_OP_DONE;
}
static int erase(uint32_t addr, uint32_t size)
{
struct flash_context context = {
.flash_addr = addr,
.len = size,
#if defined(CONFIG_SOC_FLASH_NRF_RADIO_SYNC)
.enable_time_limit = 0, /* disable time limit */
#endif /* CONFIG_SOC_FLASH_NRF_RADIO_SYNC */
#if defined(CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE)
.flash_addr_next = addr
#endif
};
return erase_op(&context);
}
static int write(off_t addr, const void *data, size_t len)
{
struct flash_context context = {
.data_addr = (uint32_t) data,
.flash_addr = addr,
.len = len,
#if defined(CONFIG_SOC_FLASH_NRF_RADIO_SYNC)
.enable_time_limit = 0 /* disable time limit */
#endif /* CONFIG_SOC_FLASH_NRF_RADIO_SYNC */
};
return write_op(&context);
}