zephyr/drivers/dma/dma_stm32.c
Jun Li 486dab02ec dma: stm32: implement get_status api
get_status api is not implemented in stm32 dma driver
but it will be used by others like async uart driver.

Signed-off-by: Jun Li <jun.r.li@intel.com>
2020-06-16 10:55:19 -05:00

742 lines
19 KiB
C

/*
* Copyright (c) 2016 Linaro Limited.
* Copyright (c) 2019 Song Qiang <songqiang1304521@gmail.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_stm32_dma
/**
* @brief Common part of DMA drivers for stm32.
* @note Functions named with stm32_dma_* are SoCs related functions
* implemented in dma_stm32_v*.c
*/
#include <soc.h>
#include <init.h>
#include <drivers/dma.h>
#include <drivers/clock_control.h>
#include <drivers/clock_control/stm32_clock_control.h>
#include "dma_stm32.h"
#include <logging/log.h>
LOG_MODULE_REGISTER(dma_stm32, CONFIG_DMA_LOG_LEVEL);
static uint32_t table_m_size[] = {
LL_DMA_MDATAALIGN_BYTE,
LL_DMA_MDATAALIGN_HALFWORD,
LL_DMA_MDATAALIGN_WORD,
};
static uint32_t table_p_size[] = {
LL_DMA_PDATAALIGN_BYTE,
LL_DMA_PDATAALIGN_HALFWORD,
LL_DMA_PDATAALIGN_WORD,
};
static void dma_stm32_dump_stream_irq(struct device *dev, uint32_t id)
{
const struct dma_stm32_config *config = dev->config_info;
DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
stm32_dma_dump_stream_irq(dma, id);
}
static void dma_stm32_clear_stream_irq(struct device *dev, uint32_t id)
{
const struct dma_stm32_config *config = dev->config_info;
DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
func_ll_clear_tc[id](dma);
func_ll_clear_ht[id](dma);
stm32_dma_clear_stream_irq(dma, id);
}
static void dma_stm32_irq_handler(void *arg)
{
struct device *dev = arg;
struct dma_stm32_data *data = dev->driver_data;
const struct dma_stm32_config *config = dev->config_info;
DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
struct dma_stm32_stream *stream;
int id;
for (id = 0; id < data->max_streams; id++) {
if (func_ll_is_active_tc[id](dma)) {
break;
}
if (stm32_dma_is_irq_happened(dma, id)) {
break;
}
}
if (id == data->max_streams) {
LOG_ERR("Unknown interrupt happened.");
return;
}
stream = &data->streams[id];
if (!IS_ENABLED(CONFIG_DMAMUX_STM32)) {
stream->busy = false;
}
/* the dma stream id is in range from STREAM_OFFSET..<dma-requests> */
if (func_ll_is_active_tc[id](dma)) {
func_ll_clear_tc[id](dma);
#ifdef CONFIG_DMAMUX_STM32
stream->busy = false;
/* the callback function expects the dmamux channel nb */
stream->dma_callback(stream->callback_arg,
stream->mux_channel, 0);
#else
stream->dma_callback(stream->callback_arg, id + STREAM_OFFSET,
0);
#endif /* CONFIG_DMAMUX_STM32 */
} else if (stm32_dma_is_unexpected_irq_happened(dma, id)) {
LOG_ERR("Unexpected irq happened.");
#ifdef CONFIG_DMAMUX_STM32
stream->dma_callback(stream->callback_arg,
stream->mux_channel, -EIO);
#else
stream->dma_callback(stream->callback_arg, id + STREAM_OFFSET,
-EIO);
#endif /* CONFIG_DMAMUX_STM32 */
} else {
LOG_ERR("Transfer Error.");
dma_stm32_dump_stream_irq(dev, id);
dma_stm32_clear_stream_irq(dev, id);
#ifdef CONFIG_DMAMUX_STM32
stream->dma_callback(stream->callback_arg,
stream->mux_channel, -EIO);
#else
stream->dma_callback(stream->callback_arg, id + STREAM_OFFSET,
-EIO);
#endif /* CONFIG_DMAMUX_STM32 */
}
}
static int dma_stm32_width_config(struct dma_config *config,
bool source_periph,
DMA_TypeDef *dma,
LL_DMA_InitTypeDef *DMA_InitStruct,
uint32_t id)
{
uint32_t periph, memory;
uint32_t m_size = 0, p_size = 0;
if (source_periph) {
periph = config->source_data_size;
memory = config->dest_data_size;
} else {
periph = config->dest_data_size;
memory = config->source_data_size;
}
int index = find_lsb_set(config->source_data_size) - 1;
m_size = table_m_size[index];
index = find_lsb_set(config->dest_data_size) - 1;
p_size = table_p_size[index];
DMA_InitStruct->PeriphOrM2MSrcDataSize = p_size;
DMA_InitStruct->MemoryOrM2MDstDataSize = m_size;
return 0;
}
static int dma_stm32_get_priority(uint8_t priority, uint32_t *ll_priority)
{
switch (priority) {
case 0x0:
*ll_priority = LL_DMA_PRIORITY_LOW;
break;
case 0x1:
*ll_priority = LL_DMA_PRIORITY_MEDIUM;
break;
case 0x2:
*ll_priority = LL_DMA_PRIORITY_HIGH;
break;
case 0x3:
*ll_priority = LL_DMA_PRIORITY_VERYHIGH;
break;
default:
LOG_ERR("Priority error. %d", priority);
return -EINVAL;
}
return 0;
}
static int dma_stm32_get_direction(enum dma_channel_direction direction,
uint32_t *ll_direction)
{
switch (direction) {
case MEMORY_TO_MEMORY:
*ll_direction = LL_DMA_DIRECTION_MEMORY_TO_MEMORY;
break;
case MEMORY_TO_PERIPHERAL:
*ll_direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
break;
case PERIPHERAL_TO_MEMORY:
*ll_direction = LL_DMA_DIRECTION_PERIPH_TO_MEMORY;
break;
default:
LOG_ERR("Direction error. %d", direction);
return -EINVAL;
}
return 0;
}
static int dma_stm32_get_memory_increment(enum dma_addr_adj increment,
uint32_t *ll_increment)
{
switch (increment) {
case DMA_ADDR_ADJ_INCREMENT:
*ll_increment = LL_DMA_MEMORY_INCREMENT;
break;
case DMA_ADDR_ADJ_NO_CHANGE:
*ll_increment = LL_DMA_MEMORY_NOINCREMENT;
break;
case DMA_ADDR_ADJ_DECREMENT:
return -ENOTSUP;
default:
LOG_ERR("Memory increment error. %d", increment);
return -EINVAL;
}
return 0;
}
static int dma_stm32_get_periph_increment(enum dma_addr_adj increment,
uint32_t *ll_increment)
{
switch (increment) {
case DMA_ADDR_ADJ_INCREMENT:
*ll_increment = LL_DMA_PERIPH_INCREMENT;
break;
case DMA_ADDR_ADJ_NO_CHANGE:
*ll_increment = LL_DMA_PERIPH_NOINCREMENT;
break;
case DMA_ADDR_ADJ_DECREMENT:
return -ENOTSUP;
default:
LOG_ERR("Periph increment error. %d", increment);
return -EINVAL;
}
return 0;
}
#ifdef CONFIG_DMAMUX_STM32
int dma_stm32_configure(struct device *dev, uint32_t id,
struct dma_config *config)
#else
static int dma_stm32_configure(struct device *dev, uint32_t id,
struct dma_config *config)
#endif /* CONFIG_DMAMUX_STM32 */
{
struct dma_stm32_data *data = dev->driver_data;
struct dma_stm32_stream *stream = &data->streams[id - STREAM_OFFSET];
const struct dma_stm32_config *dev_config =
dev->config_info;
DMA_TypeDef *dma = (DMA_TypeDef *)dev_config->base;
LL_DMA_InitTypeDef DMA_InitStruct;
uint32_t msize;
int ret;
/* give channel from index 0 */
id = id - STREAM_OFFSET;
if (id >= data->max_streams) {
LOG_ERR("cannot configure the dma stream %d.", id);
return -EINVAL;
}
if (stream->busy) {
LOG_ERR("dma stream %d is busy.", id);
return -EBUSY;
}
stm32_dma_disable_stream(dma, id);
dma_stm32_clear_stream_irq(dev, id);
if (config->head_block->block_size > DMA_STM32_MAX_DATA_ITEMS) {
LOG_ERR("Data size too big: %d\n",
config->head_block->block_size);
return -EINVAL;
}
#ifdef CONFIG_DMA_STM32_V1
if ((config->channel_direction == MEMORY_TO_MEMORY) &&
(!dev_config->support_m2m)) {
LOG_ERR("Memcopy not supported for device %s",
dev->name);
return -ENOTSUP;
}
#endif /* CONFIG_DMA_STM32_V1 */
if (config->source_data_size != 4U &&
config->source_data_size != 2U &&
config->source_data_size != 1U) {
LOG_ERR("Source unit size error, %d",
config->source_data_size);
return -EINVAL;
}
if (config->dest_data_size != 4U &&
config->dest_data_size != 2U &&
config->dest_data_size != 1U) {
LOG_ERR("Dest unit size error, %d",
config->dest_data_size);
return -EINVAL;
}
/*
* STM32's circular mode will auto reset both source address
* counter and destination address counter.
*/
if (config->head_block->source_reload_en !=
config->head_block->dest_reload_en) {
LOG_ERR("source_reload_en and dest_reload_en must "
"be the same.");
return -EINVAL;
}
stream->busy = true;
stream->dma_callback = config->dma_callback;
stream->direction = config->channel_direction;
stream->callback_arg = config->callback_arg;
stream->src_size = config->source_data_size;
stream->dst_size = config->dest_data_size;
/* check dest or source memory address, warn if 0 */
if ((config->head_block->source_address == 0)) {
LOG_WRN("source_buffer address is null.");
}
if ((config->head_block->dest_address == 0)) {
LOG_WRN("dest_buffer address is null.");
}
if (stream->direction == MEMORY_TO_PERIPHERAL) {
DMA_InitStruct.MemoryOrM2MDstAddress =
config->head_block->source_address;
DMA_InitStruct.PeriphOrM2MSrcAddress =
config->head_block->dest_address;
} else {
DMA_InitStruct.PeriphOrM2MSrcAddress =
config->head_block->source_address;
DMA_InitStruct.MemoryOrM2MDstAddress =
config->head_block->dest_address;
}
uint16_t memory_addr_adj = 0, periph_addr_adj = 0;
ret = dma_stm32_get_priority(config->channel_priority,
&DMA_InitStruct.Priority);
if (ret < 0) {
return ret;
}
ret = dma_stm32_get_direction(config->channel_direction,
&DMA_InitStruct.Direction);
if (ret < 0) {
return ret;
}
switch (config->channel_direction) {
case MEMORY_TO_MEMORY:
case PERIPHERAL_TO_MEMORY:
memory_addr_adj = config->head_block->dest_addr_adj;
periph_addr_adj = config->head_block->source_addr_adj;
break;
case MEMORY_TO_PERIPHERAL:
memory_addr_adj = config->head_block->source_addr_adj;
periph_addr_adj = config->head_block->dest_addr_adj;
break;
/* Direction has been asserted in dma_stm32_get_direction. */
default:
LOG_ERR("Channel direction error (%d).",
config->channel_direction);
return -EINVAL;
}
ret = dma_stm32_get_memory_increment(memory_addr_adj,
&DMA_InitStruct.MemoryOrM2MDstIncMode);
if (ret < 0) {
return ret;
}
ret = dma_stm32_get_periph_increment(periph_addr_adj,
&DMA_InitStruct.PeriphOrM2MSrcIncMode);
if (ret < 0) {
return ret;
}
if (config->head_block->source_reload_en) {
DMA_InitStruct.Mode = LL_DMA_MODE_CIRCULAR;
} else {
DMA_InitStruct.Mode = LL_DMA_MODE_NORMAL;
}
stream->source_periph = stream->direction == MEMORY_TO_PERIPHERAL;
ret = dma_stm32_width_config(config, stream->source_periph, dma,
&DMA_InitStruct, id);
if (ret < 0) {
return ret;
}
msize = DMA_InitStruct.MemoryOrM2MDstDataSize;
#if defined(CONFIG_DMA_STM32_V1)
DMA_InitStruct.MemBurst = stm32_dma_get_mburst(config,
stream->source_periph);
DMA_InitStruct.PeriphBurst = stm32_dma_get_pburst(config,
stream->source_periph);
if (config->channel_direction != MEMORY_TO_MEMORY) {
if (config->dma_slot >= 8) {
LOG_ERR("dma slot error.");
return -EINVAL;
}
} else {
if (config->dma_slot >= 8) {
LOG_ERR("dma slot is too big, using 0 as default.");
config->dma_slot = 0;
}
}
DMA_InitStruct.Channel = table_ll_channel[config->dma_slot];
DMA_InitStruct.FIFOThreshold = stm32_dma_get_fifo_threshold(
config->head_block->fifo_mode_control);
if (stm32_dma_check_fifo_mburst(&DMA_InitStruct)) {
DMA_InitStruct.FIFOMode = LL_DMA_FIFOMODE_ENABLE;
} else {
DMA_InitStruct.FIFOMode = LL_DMA_FIFOMODE_DISABLE;
}
#endif
if (stream->source_periph) {
DMA_InitStruct.NbData = config->head_block->block_size /
config->source_data_size;
} else {
DMA_InitStruct.NbData = config->head_block->block_size /
config->dest_data_size;
}
#if defined(CONFIG_DMA_STM32_V2) || defined(CONFIG_DMAMUX_STM32)
/*
* the with dma V2 and dma mux,
* the request ID is stored in the dma_slot
*/
DMA_InitStruct.PeriphRequest = config->dma_slot;
#endif
LL_DMA_Init(dma, table_ll_stream[id], &DMA_InitStruct);
LL_DMA_EnableIT_TC(dma, table_ll_stream[id]);
/* Half-Transfer irq is not handled */
#if defined(CONFIG_DMA_STM32_V1)
if (DMA_InitStruct.FIFOMode == LL_DMA_FIFOMODE_ENABLE) {
LL_DMA_EnableFifoMode(dma, table_ll_stream[id]);
LL_DMA_EnableIT_FE(dma, table_ll_stream[id]);
} else {
LL_DMA_DisableFifoMode(dma, table_ll_stream[id]);
LL_DMA_DisableIT_FE(dma, table_ll_stream[id]);
}
#endif
return ret;
}
static int dma_stm32_disable_stream(DMA_TypeDef *dma, uint32_t id)
{
int count = 0;
for (;;) {
if (!stm32_dma_disable_stream(dma, id)) {
return 0;
}
/* After trying for 5 seconds, give up */
if (count++ > (5 * 1000)) {
return -EBUSY;
}
k_sleep(K_MSEC(1));
}
return 0;
}
#ifdef CONFIG_DMAMUX_STM32
int dma_stm32_reload(struct device *dev, uint32_t id,
uint32_t src, uint32_t dst, size_t size)
#else
static int dma_stm32_reload(struct device *dev, uint32_t id,
uint32_t src, uint32_t dst, size_t size)
#endif /* CONFIG_DMAMUX_STM32 */
{
const struct dma_stm32_config *config = dev->config_info;
DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
struct dma_stm32_data *data = dev->driver_data;
struct dma_stm32_stream *stream = &data->streams[id - STREAM_OFFSET];
/* give channel from index 0 */
id = id - STREAM_OFFSET;
if (id >= data->max_streams) {
return -EINVAL;
}
stm32_dma_disable_stream(dma, id);
switch (stream->direction) {
case MEMORY_TO_PERIPHERAL:
LL_DMA_SetMemoryAddress(dma, table_ll_stream[id], src);
LL_DMA_SetPeriphAddress(dma, table_ll_stream[id], dst);
break;
case MEMORY_TO_MEMORY:
case PERIPHERAL_TO_MEMORY:
LL_DMA_SetPeriphAddress(dma, table_ll_stream[id], src);
LL_DMA_SetMemoryAddress(dma, table_ll_stream[id], dst);
break;
default:
return -EINVAL;
}
if (stream->source_periph) {
LL_DMA_SetDataLength(dma, table_ll_stream[id],
size / stream->src_size);
} else {
LL_DMA_SetDataLength(dma, table_ll_stream[id],
size / stream->dst_size);
}
stm32_dma_enable_stream(dma, id);
return 0;
}
#ifdef CONFIG_DMAMUX_STM32
int dma_stm32_start(struct device *dev, uint32_t id)
#else
static int dma_stm32_start(struct device *dev, uint32_t id)
#endif /* CONFIG_DMAMUX_STM32 */
{
const struct dma_stm32_config *config = dev->config_info;
DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
struct dma_stm32_data *data = dev->driver_data;
/* give channel from index 0 */
id = id - STREAM_OFFSET;
/* Only M2P or M2M mode can be started manually. */
if (id >= data->max_streams) {
return -EINVAL;
}
dma_stm32_clear_stream_irq(dev, id);
stm32_dma_enable_stream(dma, id);
return 0;
}
#ifdef CONFIG_DMAMUX_STM32
int dma_stm32_stop(struct device *dev, uint32_t id)
#else
static int dma_stm32_stop(struct device *dev, uint32_t id)
#endif /* CONFIG_DMAMUX_STM32 */
{
struct dma_stm32_data *data = dev->driver_data;
struct dma_stm32_stream *stream = &data->streams[id - STREAM_OFFSET];
const struct dma_stm32_config *config =
dev->config_info;
DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
/* give channel from index 0 */
id = id - STREAM_OFFSET;
if (id >= data->max_streams) {
return -EINVAL;
}
#ifndef CONFIG_DMAMUX_STM32
LL_DMA_DisableIT_TC(dma, table_ll_stream[id]);
#endif /* CONFIG_DMAMUX_STM32 */
#if defined(CONFIG_DMA_STM32_V1)
stm32_dma_disable_fifo_irq(dma, id);
#endif
dma_stm32_disable_stream(dma, id);
dma_stm32_clear_stream_irq(dev, id);
/* Finally, flag stream as free */
stream->busy = false;
return 0;
}
struct k_mem_block block;
static int dma_stm32_init(struct device *dev)
{
struct dma_stm32_data *data = dev->driver_data;
const struct dma_stm32_config *config = dev->config_info;
struct device *clk =
device_get_binding(STM32_CLOCK_CONTROL_NAME);
if (clock_control_on(clk,
(clock_control_subsys_t *) &config->pclken) != 0) {
LOG_ERR("clock op failed\n");
return -EIO;
}
config->config_irq(dev);
int size_stream =
sizeof(struct dma_stm32_stream) * data->max_streams;
data->streams = k_malloc(size_stream);
if (!data->streams) {
LOG_ERR("HEAP_MEM_POOL_SIZE is too small");
return -ENOMEM;
}
memset(data->streams, 0, size_stream);
#ifdef CONFIG_DMAMUX_STM32
int offset = ((dev == device_get_binding((const char *)"DMA_1"))
? 0 : data->max_streams);
#endif /* CONFIG_DMAMUX_STM32 */
for (int i = 0; i < data->max_streams; i++) {
data->streams[i].busy = false;
#ifdef CONFIG_DMAMUX_STM32
/* each further stream->mux_channel is fixed here */
data->streams[i].mux_channel = i + offset;
#endif /* CONFIG_DMAMUX_STM32 */
}
return 0;
}
static int dma_stm32_get_status(struct device *dev, uint32_t id,
struct dma_status *stat)
{
const struct dma_stm32_config *config = dev->config_info;
DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
struct dma_stm32_data *data = dev->driver_data;
struct dma_stm32_stream *stream;
/* give channel from index 0 */
id = id - STREAM_OFFSET;
if (id >= data->max_streams) {
return -EINVAL;
}
stream = &data->streams[id];
stat->pending_length = LL_DMA_GetDataLength(dma, table_ll_stream[id]);
stat->dir = stream->direction;
stat->busy = stream->busy;
return 0;
}
static const struct dma_driver_api dma_funcs = {
.reload = dma_stm32_reload,
.config = dma_stm32_configure,
.start = dma_stm32_start,
.stop = dma_stm32_stop,
.get_status = dma_stm32_get_status,
};
#define DMA_INIT(index) \
static void dma_stm32_config_irq_##index(struct device *dev); \
\
const struct dma_stm32_config dma_stm32_config_##index = { \
.pclken = { .bus = DT_INST_CLOCKS_CELL(index, bus), \
.enr = DT_INST_CLOCKS_CELL(index, bits) }, \
.config_irq = dma_stm32_config_irq_##index, \
.base = DT_INST_REG_ADDR(index), \
.support_m2m = DT_INST_PROP(index, st_mem2mem), \
}; \
\
static struct dma_stm32_data dma_stm32_data_##index = { \
.max_streams = 0, \
.streams = NULL, \
}; \
\
DEVICE_AND_API_INIT(dma_##index, DT_INST_LABEL(index), \
&dma_stm32_init, \
&dma_stm32_data_##index, &dma_stm32_config_##index, \
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, \
&dma_funcs)
#define irq_func(chan) \
static void dma_stm32_irq_##chan(void *arg) \
{ \
dma_stm32_irq_handler(arg, chan); \
}
#define IRQ_INIT(dma, chan) \
do { \
if (!irq_is_enabled(DT_INST_IRQ_BY_IDX(dma, chan, irq))) { \
irq_connect_dynamic(DT_INST_IRQ_BY_IDX(dma, chan, irq), \
DT_INST_IRQ_BY_IDX(dma, chan, priority), \
dma_stm32_irq_handler, dev, 0); \
irq_enable(DT_INST_IRQ_BY_IDX(dma, chan, irq)); \
} \
data->max_streams++; \
} while (0)
#if DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay)
DMA_INIT(0);
static void dma_stm32_config_irq_0(struct device *dev)
{
struct dma_stm32_data *data = dev->driver_data;
IRQ_INIT(0, 0);
IRQ_INIT(0, 1);
IRQ_INIT(0, 2);
IRQ_INIT(0, 3);
IRQ_INIT(0, 4);
#if DT_INST_IRQ_HAS_IDX(0, 5)
IRQ_INIT(0, 5);
#if DT_INST_IRQ_HAS_IDX(0, 6)
IRQ_INIT(0, 6);
#if DT_INST_IRQ_HAS_IDX(0, 7)
IRQ_INIT(0, 7);
#endif /* DT_INST_IRQ_HAS_IDX(0, 5) */
#endif /* DT_INST_IRQ_HAS_IDX(0, 6) */
#endif /* DT_INST_IRQ_HAS_IDX(0, 7) */
/* Either 5 or 6 or 7 or 8 channels for DMA across all stm32 series. */
}
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay) */
#if DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay)
DMA_INIT(1);
static void dma_stm32_config_irq_1(struct device *dev)
{
struct dma_stm32_data *data = dev->driver_data;
IRQ_INIT(1, 0);
IRQ_INIT(1, 1);
IRQ_INIT(1, 2);
IRQ_INIT(1, 3);
IRQ_INIT(1, 4);
#if DT_INST_IRQ_HAS_IDX(1, 5)
IRQ_INIT(1, 5);
#if DT_INST_IRQ_HAS_IDX(1, 6)
IRQ_INIT(1, 6);
#if DT_INST_IRQ_HAS_IDX(1, 7)
IRQ_INIT(1, 7);
#endif /* DT_INST_IRQ_HAS_IDX(1, 5) */
#endif /* DT_INST_IRQ_HAS_IDX(1, 6) */
#endif /* DT_INST_IRQ_HAS_IDX(1, 7) */
/* Either 5 or 6 or 7 or 8 channels for DMA across all stm32 series. */
}
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay) */