zephyr/drivers/can/can_mcp2515.c
Jordan Yates 750ccd39dc can: mcp2515: Add chip select flags
Adds the chip select devicetree flags to the spi_cs_control instance.

Signed-off-by: Jordan Yates <jordan.yates@data61.csiro.au>
2020-07-01 16:40:03 -05:00

870 lines
23 KiB
C

/*
* Copyright (c) 2018 Karsten Koenig
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT microchip_mcp2515
#include <kernel.h>
#include <device.h>
#include <drivers/spi.h>
#include <drivers/gpio.h>
#define LOG_LEVEL CONFIG_CAN_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(mcp2515_can);
#include "can_mcp2515.h"
static int mcp2515_cmd_soft_reset(struct device *dev)
{
uint8_t cmd_buf[] = { MCP2515_OPCODE_RESET };
const struct spi_buf tx_buf = {
.buf = cmd_buf, .len = sizeof(cmd_buf),
};
const struct spi_buf_set tx = {
.buffers = &tx_buf, .count = 1U
};
return spi_write(DEV_DATA(dev)->spi, &DEV_DATA(dev)->spi_cfg, &tx);
}
static int mcp2515_cmd_bit_modify(struct device *dev, uint8_t reg_addr, uint8_t mask,
uint8_t data)
{
uint8_t cmd_buf[] = { MCP2515_OPCODE_BIT_MODIFY, reg_addr, mask, data };
const struct spi_buf tx_buf = {
.buf = cmd_buf, .len = sizeof(cmd_buf),
};
const struct spi_buf_set tx = {
.buffers = &tx_buf, .count = 1U
};
return spi_write(DEV_DATA(dev)->spi, &DEV_DATA(dev)->spi_cfg, &tx);
}
static int mcp2515_cmd_write_reg(struct device *dev, uint8_t reg_addr,
uint8_t *buf_data, uint8_t buf_len)
{
uint8_t cmd_buf[] = { MCP2515_OPCODE_WRITE, reg_addr };
struct spi_buf tx_buf[] = {
{ .buf = cmd_buf, .len = sizeof(cmd_buf) },
{ .buf = buf_data, .len = buf_len }
};
const struct spi_buf_set tx = {
.buffers = tx_buf, .count = ARRAY_SIZE(tx_buf)
};
return spi_write(DEV_DATA(dev)->spi, &DEV_DATA(dev)->spi_cfg, &tx);
}
/*
* Load TX buffer instruction
*
* When loading a transmit buffer, reduces the overhead of a normal WRITE
* command by placing the Address Pointer at one of six locations, as
* selected by parameter abc.
*
* 0: TX Buffer 0, Start at TXB0SIDH (0x31)
* 1: TX Buffer 0, Start at TXB0D0 (0x36)
* 2: TX Buffer 1, Start at TXB1SIDH (0x41)
* 3: TX Buffer 1, Start at TXB1D0 (0x46)
* 4: TX Buffer 2, Start at TXB2SIDH (0x51)
* 5: TX Buffer 2, Start at TXB2D0 (0x56)
*/
static int mcp2515_cmd_load_tx_buffer(struct device *dev, uint8_t abc,
uint8_t *buf_data, uint8_t buf_len)
{
__ASSERT(abc <= 5, "abc <= 5");
uint8_t cmd_buf[] = { MCP2515_OPCODE_LOAD_TX_BUFFER | abc };
struct spi_buf tx_buf[] = {
{ .buf = cmd_buf, .len = sizeof(cmd_buf) },
{ .buf = buf_data, .len = buf_len }
};
const struct spi_buf_set tx = {
.buffers = tx_buf, .count = ARRAY_SIZE(tx_buf)
};
return spi_write(DEV_DATA(dev)->spi, &DEV_DATA(dev)->spi_cfg, &tx);
}
/*
* Request-to-Send Instruction
*
* Parameter nnn is the combination of bits at positions 0, 1 and 2 in the RTS
* opcode that respectively initiate transmission for buffers TXB0, TXB1 and
* TXB2.
*/
static int mcp2515_cmd_rts(struct device *dev, uint8_t nnn)
{
__ASSERT(nnn < BIT(MCP2515_TX_CNT), "nnn < BIT(MCP2515_TX_CNT)");
uint8_t cmd_buf[] = { MCP2515_OPCODE_RTS | nnn };
struct spi_buf tx_buf[] = {
{ .buf = cmd_buf, .len = sizeof(cmd_buf) }
};
const struct spi_buf_set tx = {
.buffers = tx_buf, .count = ARRAY_SIZE(tx_buf)
};
return spi_write(DEV_DATA(dev)->spi, &DEV_DATA(dev)->spi_cfg, &tx);
}
static int mcp2515_cmd_read_reg(struct device *dev, uint8_t reg_addr,
uint8_t *buf_data, uint8_t buf_len)
{
uint8_t cmd_buf[] = { MCP2515_OPCODE_READ, reg_addr };
struct spi_buf tx_buf[] = {
{ .buf = cmd_buf, .len = sizeof(cmd_buf) },
{ .buf = NULL, .len = buf_len }
};
const struct spi_buf_set tx = {
.buffers = tx_buf, .count = ARRAY_SIZE(tx_buf)
};
struct spi_buf rx_buf[] = {
{ .buf = NULL, .len = sizeof(cmd_buf) },
{ .buf = buf_data, .len = buf_len }
};
const struct spi_buf_set rx = {
.buffers = rx_buf, .count = ARRAY_SIZE(rx_buf)
};
return spi_transceive(DEV_DATA(dev)->spi, &DEV_DATA(dev)->spi_cfg,
&tx, &rx);
}
/*
* Read RX Buffer instruction
*
* When reading a receive buffer, reduces the overhead of a normal READ
* command by placing the Address Pointer at one of four locations selected by
* parameter nm:
* 0: Receive Buffer 0, Start at RXB0SIDH (0x61)
* 1: Receive Buffer 0, Start at RXB0D0 (0x66)
* 2: Receive Buffer 1, Start at RXB1SIDH (0x71)
* 3: Receive Buffer 1, Start at RXB1D0 (0x76)
*/
static int mcp2515_cmd_read_rx_buffer(struct device *dev, uint8_t nm,
uint8_t *buf_data, uint8_t buf_len)
{
__ASSERT(nm <= 0x03, "nm <= 0x03");
uint8_t cmd_buf[] = { MCP2515_OPCODE_READ_RX_BUFFER | (nm << 1) };
struct spi_buf tx_buf[] = {
{ .buf = cmd_buf, .len = sizeof(cmd_buf) },
{ .buf = NULL, .len = buf_len }
};
const struct spi_buf_set tx = {
.buffers = tx_buf, .count = ARRAY_SIZE(tx_buf)
};
struct spi_buf rx_buf[] = {
{ .buf = NULL, .len = sizeof(cmd_buf) },
{ .buf = buf_data, .len = buf_len }
};
const struct spi_buf_set rx = {
.buffers = rx_buf, .count = ARRAY_SIZE(rx_buf)
};
return spi_transceive(DEV_DATA(dev)->spi, &DEV_DATA(dev)->spi_cfg,
&tx, &rx);
}
static uint8_t mcp2515_convert_canmode_to_mcp2515mode(enum can_mode mode)
{
switch (mode) {
case CAN_NORMAL_MODE:
return MCP2515_MODE_NORMAL;
case CAN_SILENT_MODE:
return MCP2515_MODE_SILENT;
case CAN_LOOPBACK_MODE:
return MCP2515_MODE_LOOPBACK;
default:
LOG_ERR("Unsupported CAN Mode %u", mode);
return MCP2515_MODE_SILENT;
}
}
static void mcp2515_convert_zcanframe_to_mcp2515frame(const struct zcan_frame
*source, uint8_t *target)
{
uint8_t rtr;
uint8_t dlc;
uint8_t data_idx = 0U;
if (source->id_type == CAN_STANDARD_IDENTIFIER) {
target[MCP2515_FRAME_OFFSET_SIDH] = source->std_id >> 3;
target[MCP2515_FRAME_OFFSET_SIDL] =
(source->std_id & 0x07) << 5;
} else {
target[MCP2515_FRAME_OFFSET_SIDH] = source->ext_id >> 21;
target[MCP2515_FRAME_OFFSET_SIDL] =
(((source->ext_id >> 18) & 0x07) << 5) | (BIT(3)) |
((source->ext_id >> 16) & 0x03);
target[MCP2515_FRAME_OFFSET_EID8] = source->ext_id >> 8;
target[MCP2515_FRAME_OFFSET_EID0] = source->ext_id;
}
rtr = (source->rtr == CAN_REMOTEREQUEST) ? BIT(6) : 0;
dlc = (source->dlc) & 0x0F;
target[MCP2515_FRAME_OFFSET_DLC] = rtr | dlc;
for (; data_idx < CAN_MAX_DLC; data_idx++) {
target[MCP2515_FRAME_OFFSET_D0 + data_idx] =
source->data[data_idx];
}
}
static void mcp2515_convert_mcp2515frame_to_zcanframe(const uint8_t *source,
struct zcan_frame *target)
{
uint8_t data_idx = 0U;
if (source[MCP2515_FRAME_OFFSET_SIDL] & BIT(3)) {
target->id_type = CAN_EXTENDED_IDENTIFIER;
target->ext_id =
(source[MCP2515_FRAME_OFFSET_SIDH] << 21) |
((source[MCP2515_FRAME_OFFSET_SIDL] >> 5) << 18) |
((source[MCP2515_FRAME_OFFSET_SIDL] & 0x03) << 16) |
(source[MCP2515_FRAME_OFFSET_EID8] << 8) |
source[MCP2515_FRAME_OFFSET_EID0];
} else {
target->id_type = CAN_STANDARD_IDENTIFIER;
target->std_id = (source[MCP2515_FRAME_OFFSET_SIDH] << 3) |
(source[MCP2515_FRAME_OFFSET_SIDL] >> 5);
}
target->dlc = source[MCP2515_FRAME_OFFSET_DLC] & 0x0F;
target->rtr = source[MCP2515_FRAME_OFFSET_DLC] & BIT(6) ?
CAN_REMOTEREQUEST : CAN_DATAFRAME;
for (; data_idx < CAN_MAX_DLC; data_idx++) {
target->data[data_idx] = source[MCP2515_FRAME_OFFSET_D0 +
data_idx];
}
}
const int mcp2515_set_mode(struct device *dev, uint8_t mcp2515_mode)
{
uint8_t canstat;
mcp2515_cmd_bit_modify(dev, MCP2515_ADDR_CANCTRL,
MCP2515_CANCTRL_MODE_MASK,
mcp2515_mode << MCP2515_CANCTRL_MODE_POS);
mcp2515_cmd_read_reg(dev, MCP2515_ADDR_CANSTAT, &canstat, 1);
if (((canstat & MCP2515_CANSTAT_MODE_MASK) >> MCP2515_CANSTAT_MODE_POS)
!= mcp2515_mode) {
LOG_ERR("Failed to set MCP2515 operation mode");
return -EIO;
}
return 0;
}
static int mcp2515_configure(struct device *dev, enum can_mode mode,
uint32_t bitrate)
{
const struct mcp2515_config *dev_cfg = DEV_CFG(dev);
struct mcp2515_data *dev_data = DEV_DATA(dev);
int ret;
/* CNF3, CNF2, CNF1, CANINTE */
uint8_t config_buf[4];
if (bitrate == 0) {
bitrate = dev_cfg->bus_speed;
}
const uint8_t bit_length = 1 + dev_cfg->tq_prop + dev_cfg->tq_bs1 +
dev_cfg->tq_bs2;
/* CNF1; SJW<7:6> | BRP<5:0> */
uint8_t brp = (dev_cfg->osc_freq / (bit_length * bitrate * 2)) - 1;
const uint8_t sjw = (dev_cfg->tq_sjw - 1) << 6;
uint8_t cnf1 = sjw | brp;
/* CNF2; BTLMODE<7>|SAM<6>|PHSEG1<5:3>|PRSEG<2:0> */
const uint8_t btlmode = 1 << 7;
const uint8_t sam = 0 << 6;
const uint8_t phseg1 = (dev_cfg->tq_bs1 - 1) << 3;
const uint8_t prseg = (dev_cfg->tq_prop - 1);
const uint8_t cnf2 = btlmode | sam | phseg1 | prseg;
/* CNF3; SOF<7>|WAKFIL<6>|UND<5:3>|PHSEG2<2:0> */
const uint8_t sof = 0 << 7;
const uint8_t wakfil = 0 << 6;
const uint8_t und = 0 << 3;
const uint8_t phseg2 = (dev_cfg->tq_bs2 - 1);
const uint8_t cnf3 = sof | wakfil | und | phseg2;
const uint8_t caninte = MCP2515_INTE_RX0IE | MCP2515_INTE_RX1IE |
MCP2515_INTE_TX0IE | MCP2515_INTE_TX1IE |
MCP2515_INTE_TX2IE | MCP2515_INTE_ERRIE;
/* Receive everything, filtering done in driver, RXB0 roll over into
* RXB1 */
const uint8_t rx0_ctrl = BIT(6) | BIT(5) | BIT(2);
const uint8_t rx1_ctrl = BIT(6) | BIT(5);
__ASSERT((dev_cfg->tq_sjw >= 1) && (dev_cfg->tq_sjw <= 4),
"1 <= SJW <= 4");
__ASSERT((dev_cfg->tq_prop >= 1) && (dev_cfg->tq_prop <= 8),
"1 <= PROP <= 8");
__ASSERT((dev_cfg->tq_bs1 >= 1) && (dev_cfg->tq_bs1 <= 8),
"1 <= BS1 <= 8");
__ASSERT((dev_cfg->tq_bs2 >= 2) && (dev_cfg->tq_bs2 <= 8),
"2 <= BS2 <= 8");
__ASSERT(dev_cfg->tq_prop + dev_cfg->tq_bs1 >= dev_cfg->tq_bs2,
"PROP + BS1 >= BS2");
__ASSERT(dev_cfg->tq_bs2 > dev_cfg->tq_sjw, "BS2 > SJW");
if (dev_cfg->osc_freq % (bit_length * bitrate * 2)) {
LOG_ERR("Prescaler is not a natural number! "
"prescaler = osc_rate / ((PROP + SEG1 + SEG2 + 1) "
"* bitrate * 2)\n"
"prescaler = %d / ((%d + %d + %d + 1) * %d * 2)",
dev_cfg->osc_freq, dev_cfg->tq_prop,
dev_cfg->tq_bs1, dev_cfg->tq_bs2, bitrate);
}
config_buf[0] = cnf3;
config_buf[1] = cnf2;
config_buf[2] = cnf1;
config_buf[3] = caninte;
k_mutex_lock(&dev_data->mutex, K_FOREVER);
/* will enter configuration mode automatically */
ret = mcp2515_cmd_soft_reset(dev);
if (ret < 0) {
LOG_ERR("Failed to reset the device [%d]", ret);
goto done;
}
ret = mcp2515_cmd_write_reg(dev, MCP2515_ADDR_CNF3, config_buf,
sizeof(config_buf));
if (ret < 0) {
LOG_ERR("Failed to write the configuration [%d]", ret);
}
ret = mcp2515_cmd_bit_modify(dev, MCP2515_ADDR_RXB0CTRL, rx0_ctrl,
rx0_ctrl);
if (ret < 0) {
LOG_ERR("Failed to write RXB0CTRL [%d]", ret);
}
ret = mcp2515_cmd_bit_modify(dev, MCP2515_ADDR_RXB1CTRL, rx1_ctrl,
rx1_ctrl);
if (ret < 0) {
LOG_ERR("Failed to write RXB1CTRL [%d]", ret);
}
done:
ret = mcp2515_set_mode(dev,
mcp2515_convert_canmode_to_mcp2515mode(mode));
if (ret < 0) {
LOG_ERR("Failed to set the mode [%d]", ret);
}
k_mutex_unlock(&dev_data->mutex);
return ret;
}
static int mcp2515_send(struct device *dev, const struct zcan_frame *msg,
k_timeout_t timeout, can_tx_callback_t callback,
void *callback_arg)
{
struct mcp2515_data *dev_data = DEV_DATA(dev);
uint8_t tx_idx = 0U;
uint8_t abc;
uint8_t nnn;
uint8_t len;
uint8_t tx_frame[MCP2515_FRAME_LEN];
if (msg->dlc > CAN_MAX_DLC) {
LOG_ERR("DLC of %d exceeds maximum (%d)",
msg->dlc, CAN_MAX_DLC);
return CAN_TX_EINVAL;
}
if (k_sem_take(&dev_data->tx_sem, timeout) != 0) {
return CAN_TIMEOUT;
}
k_mutex_lock(&dev_data->mutex, K_FOREVER);
/* find a free tx slot */
for (; tx_idx < MCP2515_TX_CNT; tx_idx++) {
if ((BIT(tx_idx) & dev_data->tx_busy_map) == 0) {
dev_data->tx_busy_map |= BIT(tx_idx);
break;
}
}
k_mutex_unlock(&dev_data->mutex);
if (tx_idx == MCP2515_TX_CNT) {
LOG_WRN("no free tx slot available");
return CAN_TX_ERR;
}
dev_data->tx_cb[tx_idx].cb = callback;
dev_data->tx_cb[tx_idx].cb_arg = callback_arg;
mcp2515_convert_zcanframe_to_mcp2515frame(msg, tx_frame);
/* Address Pointer selection */
abc = 2 * tx_idx;
/* Calculate minimum length to transfer */
len = sizeof(tx_frame) - CAN_MAX_DLC + msg->dlc;
mcp2515_cmd_load_tx_buffer(dev, abc, tx_frame, len);
/* request tx slot transmission */
nnn = BIT(tx_idx);
mcp2515_cmd_rts(dev, nnn);
if (callback == NULL) {
k_sem_take(&dev_data->tx_cb[tx_idx].sem, K_FOREVER);
}
return 0;
}
static int mcp2515_attach_isr(struct device *dev, can_rx_callback_t rx_cb,
void *cb_arg,
const struct zcan_filter *filter)
{
struct mcp2515_data *dev_data = DEV_DATA(dev);
int filter_idx = 0;
__ASSERT(rx_cb != NULL, "response_ptr can not be null");
k_mutex_lock(&dev_data->mutex, K_FOREVER);
/* find free filter */
while ((BIT(filter_idx) & dev_data->filter_usage)
&& (filter_idx < CONFIG_CAN_MCP2515_MAX_FILTER)) {
filter_idx++;
}
/* setup filter */
if (filter_idx < CONFIG_CAN_MCP2515_MAX_FILTER) {
dev_data->filter_usage |= BIT(filter_idx);
dev_data->filter[filter_idx] = *filter;
dev_data->rx_cb[filter_idx] = rx_cb;
dev_data->cb_arg[filter_idx] = cb_arg;
} else {
filter_idx = CAN_NO_FREE_FILTER;
}
k_mutex_unlock(&dev_data->mutex);
return filter_idx;
}
static void mcp2515_detach(struct device *dev, int filter_nr)
{
struct mcp2515_data *dev_data = DEV_DATA(dev);
k_mutex_lock(&dev_data->mutex, K_FOREVER);
dev_data->filter_usage &= ~BIT(filter_nr);
k_mutex_unlock(&dev_data->mutex);
}
static void mcp2515_register_state_change_isr(struct device *dev,
can_state_change_isr_t isr)
{
struct mcp2515_data *dev_data = DEV_DATA(dev);
dev_data->state_change_isr = isr;
}
static uint8_t mcp2515_filter_match(struct zcan_frame *msg,
struct zcan_filter *filter)
{
if (msg->id_type != filter->id_type) {
return 0;
}
if ((msg->rtr ^ filter->rtr) & filter->rtr_mask) {
return 0;
}
if (msg->id_type == CAN_STANDARD_IDENTIFIER) {
if ((msg->std_id ^ filter->std_id) & filter->std_id_mask) {
return 0;
}
} else {
if ((msg->ext_id ^ filter->ext_id) & filter->ext_id_mask) {
return 0;
}
}
return 1;
}
static void mcp2515_rx_filter(struct device *dev, struct zcan_frame *msg)
{
struct mcp2515_data *dev_data = DEV_DATA(dev);
uint8_t filter_idx = 0U;
can_rx_callback_t callback;
struct zcan_frame tmp_msg;
k_mutex_lock(&dev_data->mutex, K_FOREVER);
for (; filter_idx < CONFIG_CAN_MCP2515_MAX_FILTER; filter_idx++) {
if (!(BIT(filter_idx) & dev_data->filter_usage)) {
continue; /* filter slot empty */
}
if (!mcp2515_filter_match(msg,
&dev_data->filter[filter_idx])) {
continue; /* filter did not match */
}
callback = dev_data->rx_cb[filter_idx];
/*Make a temporary copy in case the user modifies the message*/
tmp_msg = *msg;
callback(&tmp_msg, dev_data->cb_arg[filter_idx]);
}
k_mutex_unlock(&dev_data->mutex);
}
static void mcp2515_rx(struct device *dev, uint8_t rx_idx)
{
__ASSERT(rx_idx < MCP2515_RX_CNT, "rx_idx < MCP2515_RX_CNT");
struct zcan_frame msg;
uint8_t rx_frame[MCP2515_FRAME_LEN];
uint8_t nm;
/* Address Pointer selection */
nm = 2 * rx_idx;
/* Fetch rx buffer */
mcp2515_cmd_read_rx_buffer(dev, nm, rx_frame, sizeof(rx_frame));
mcp2515_convert_mcp2515frame_to_zcanframe(rx_frame, &msg);
mcp2515_rx_filter(dev, &msg);
}
static void mcp2515_tx_done(struct device *dev, uint8_t tx_idx)
{
struct mcp2515_data *dev_data = DEV_DATA(dev);
if (dev_data->tx_cb[tx_idx].cb == NULL) {
k_sem_give(&dev_data->tx_cb[tx_idx].sem);
} else {
dev_data->tx_cb[tx_idx].cb(0, dev_data->tx_cb[tx_idx].cb_arg);
}
k_mutex_lock(&dev_data->mutex, K_FOREVER);
dev_data->tx_busy_map &= ~BIT(tx_idx);
k_mutex_unlock(&dev_data->mutex);
k_sem_give(&dev_data->tx_sem);
}
static enum can_state mcp2515_get_state(struct device *dev,
struct can_bus_err_cnt *err_cnt)
{
uint8_t eflg;
uint8_t err_cnt_buf[2];
int ret;
ret = mcp2515_cmd_read_reg(dev, MCP2515_ADDR_EFLG, &eflg, sizeof(eflg));
if (ret < 0) {
LOG_ERR("Failed to read error register [%d]", ret);
return CAN_BUS_UNKNOWN;
}
if (err_cnt) {
ret = mcp2515_cmd_read_reg(dev, MCP2515_ADDR_TEC, err_cnt_buf,
sizeof(err_cnt_buf));
if (ret < 0) {
LOG_ERR("Failed to read error counters [%d]", ret);
return CAN_BUS_UNKNOWN;
}
err_cnt->tx_err_cnt = err_cnt_buf[0];
err_cnt->rx_err_cnt = err_cnt_buf[1];
}
if (eflg & MCP2515_EFLG_TXBO) {
return CAN_BUS_OFF;
}
if ((eflg & MCP2515_EFLG_RXEP) || (eflg & MCP2515_EFLG_TXEP)) {
return CAN_ERROR_PASSIVE;
}
return CAN_ERROR_ACTIVE;
}
static void mcp2515_handle_errors(struct device *dev)
{
struct mcp2515_data *dev_data = DEV_DATA(dev);
can_state_change_isr_t state_change_isr = dev_data->state_change_isr;
enum can_state state;
struct can_bus_err_cnt err_cnt;
state = mcp2515_get_state(dev, state_change_isr ? &err_cnt : NULL);
if (state_change_isr && dev_data->old_state != state) {
dev_data->old_state = state;
state_change_isr(state, err_cnt);
}
}
#ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
static void mcp2515_recover(struct device *dev, k_timeout_t timeout)
{
ARG_UNUSED(dev);
ARG_UNUSED(timeout);
}
#endif
static void mcp2515_handle_interrupts(struct device *dev)
{
const struct mcp2515_config *dev_cfg = DEV_CFG(dev);
struct mcp2515_data *dev_data = DEV_DATA(dev);
int ret;
uint8_t canintf;
/* Loop until INT pin is inactive (all interrupt flags handled) */
while (1) {
ret = mcp2515_cmd_read_reg(dev, MCP2515_ADDR_CANINTF,
&canintf, 1);
if (ret != 0) {
LOG_ERR("Couldn't read INTF register %d", ret);
continue;
}
if (canintf == 0) {
/* No interrupt flags set */
break;
}
if (canintf & MCP2515_CANINTF_RX0IF) {
mcp2515_rx(dev, 0);
/* RX0IF flag cleared automatically during read */
canintf &= ~MCP2515_CANINTF_RX0IF;
}
if (canintf & MCP2515_CANINTF_RX1IF) {
mcp2515_rx(dev, 1);
/* RX1IF flag cleared automatically during read */
canintf &= ~MCP2515_CANINTF_RX1IF;
}
if (canintf & MCP2515_CANINTF_TX0IF) {
mcp2515_tx_done(dev, 0);
}
if (canintf & MCP2515_CANINTF_TX1IF) {
mcp2515_tx_done(dev, 1);
}
if (canintf & MCP2515_CANINTF_TX2IF) {
mcp2515_tx_done(dev, 2);
}
if (canintf & MCP2515_CANINTF_ERRIF) {
mcp2515_handle_errors(dev);
}
if (canintf != 0) {
/* Clear remaining flags */
mcp2515_cmd_bit_modify(dev, MCP2515_ADDR_CANINTF,
canintf, ~canintf);
}
/* Break from loop if INT pin is inactive */
ret = gpio_pin_get(dev_data->int_gpio, dev_cfg->int_pin);
if (ret < 0) {
LOG_ERR("Couldn't read INT pin");
} else if (ret == 0) {
/* All interrupt flags handled */
break;
}
}
}
static void mcp2515_int_thread(struct device *dev)
{
struct mcp2515_data *dev_data = DEV_DATA(dev);
while (1) {
k_sem_take(&dev_data->int_sem, K_FOREVER);
mcp2515_handle_interrupts(dev);
}
}
static void mcp2515_int_gpio_callback(struct device *dev,
struct gpio_callback *cb, uint32_t pins)
{
struct mcp2515_data *dev_data =
CONTAINER_OF(cb, struct mcp2515_data, int_gpio_cb);
k_sem_give(&dev_data->int_sem);
}
static const struct can_driver_api can_api_funcs = {
.configure = mcp2515_configure,
.send = mcp2515_send,
.attach_isr = mcp2515_attach_isr,
.detach = mcp2515_detach,
.get_state = mcp2515_get_state,
#ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
.recover = mcp2515_recover,
#endif
.register_state_change_isr = mcp2515_register_state_change_isr
};
static int mcp2515_init(struct device *dev)
{
const struct mcp2515_config *dev_cfg = DEV_CFG(dev);
struct mcp2515_data *dev_data = DEV_DATA(dev);
int ret;
k_sem_init(&dev_data->int_sem, 0, 1);
k_mutex_init(&dev_data->mutex);
k_sem_init(&dev_data->tx_sem, MCP2515_TX_CNT, MCP2515_TX_CNT);
k_sem_init(&dev_data->tx_cb[0].sem, 0, 1);
k_sem_init(&dev_data->tx_cb[1].sem, 0, 1);
k_sem_init(&dev_data->tx_cb[2].sem, 0, 1);
/* SPI config */
dev_data->spi_cfg.operation = SPI_WORD_SET(8);
dev_data->spi_cfg.frequency = dev_cfg->spi_freq;
dev_data->spi_cfg.slave = dev_cfg->spi_slave;
dev_data->spi = device_get_binding(dev_cfg->spi_port);
if (!dev_data->spi) {
LOG_ERR("SPI master port %s not found", dev_cfg->spi_port);
return -EINVAL;
}
#if DT_INST_SPI_DEV_HAS_CS_GPIOS(0)
dev_data->spi_cs_ctrl.gpio_dev =
device_get_binding(dev_cfg->spi_cs_port);
if (!dev_data->spi_cs_ctrl.gpio_dev) {
LOG_ERR("Unable to get GPIO SPI CS device");
return -ENODEV;
}
dev_data->spi_cs_ctrl.gpio_pin = dev_cfg->spi_cs_pin;
dev_data->spi_cs_ctrl.gpio_dt_flags = dev_cfg->spi_cs_flags;
dev_data->spi_cs_ctrl.delay = 0U;
dev_data->spi_cfg.cs = &dev_data->spi_cs_ctrl;
#else
dev_data->spi_cfg.cs = NULL;
#endif /* DT_INST_SPI_DEV_HAS_CS_GPIOS(0) */
/* Reset MCP2515 */
if (mcp2515_cmd_soft_reset(dev)) {
LOG_ERR("Soft-reset failed");
return -EIO;
}
/* Initialize interrupt handling */
dev_data->int_gpio = device_get_binding(dev_cfg->int_port);
if (dev_data->int_gpio == NULL) {
LOG_ERR("GPIO port %s not found", dev_cfg->int_port);
return -EINVAL;
}
if (gpio_pin_configure(dev_data->int_gpio, dev_cfg->int_pin,
(GPIO_INPUT |
DT_INST_GPIO_FLAGS(0, int_gpios)))) {
LOG_ERR("Unable to configure GPIO pin %u", dev_cfg->int_pin);
return -EINVAL;
}
gpio_init_callback(&(dev_data->int_gpio_cb), mcp2515_int_gpio_callback,
BIT(dev_cfg->int_pin));
if (gpio_add_callback(dev_data->int_gpio, &(dev_data->int_gpio_cb))) {
return -EINVAL;
}
if (gpio_pin_interrupt_configure(dev_data->int_gpio, dev_cfg->int_pin,
GPIO_INT_EDGE_TO_ACTIVE)) {
return -EINVAL;
}
k_thread_create(&dev_data->int_thread, dev_data->int_thread_stack,
dev_cfg->int_thread_stack_size,
(k_thread_entry_t) mcp2515_int_thread, (void *)dev,
NULL, NULL, K_PRIO_COOP(dev_cfg->int_thread_priority),
0, K_NO_WAIT);
(void)memset(dev_data->rx_cb, 0, sizeof(dev_data->rx_cb));
(void)memset(dev_data->filter, 0, sizeof(dev_data->filter));
dev_data->old_state = CAN_ERROR_ACTIVE;
ret = mcp2515_configure(dev, CAN_NORMAL_MODE, dev_cfg->bus_speed);
return ret;
}
#if DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay)
static K_THREAD_STACK_DEFINE(mcp2515_int_thread_stack,
CONFIG_CAN_MCP2515_INT_THREAD_STACK_SIZE);
static struct mcp2515_data mcp2515_data_1 = {
.int_thread_stack = mcp2515_int_thread_stack,
.tx_cb[0].cb = NULL,
.tx_cb[1].cb = NULL,
.tx_cb[2].cb = NULL,
.tx_busy_map = 0U,
.filter_usage = 0U,
};
static const struct mcp2515_config mcp2515_config_1 = {
.spi_port = DT_INST_BUS_LABEL(0),
.spi_freq = DT_INST_PROP(0, spi_max_frequency),
.spi_slave = DT_INST_REG_ADDR(0),
.int_pin = DT_INST_GPIO_PIN(0, int_gpios),
.int_port = DT_INST_GPIO_LABEL(0, int_gpios),
.int_thread_stack_size = CONFIG_CAN_MCP2515_INT_THREAD_STACK_SIZE,
.int_thread_priority = CONFIG_CAN_MCP2515_INT_THREAD_PRIO,
#if DT_INST_SPI_DEV_HAS_CS_GPIOS(0)
.spi_cs_pin = DT_INST_SPI_DEV_CS_GPIOS_PIN(0),
.spi_cs_port = DT_INST_SPI_DEV_CS_GPIOS_LABEL(0),
.spi_cs_flags = DT_INST_SPI_DEV_CS_GPIOS_FLAGS(0),
#endif /* DT_INST_SPI_DEV_HAS_CS_GPIOS(0) */
.tq_sjw = DT_INST_PROP(0, sjw),
.tq_prop = DT_INST_PROP(0, prop_seg),
.tq_bs1 = DT_INST_PROP(0, phase_seg1),
.tq_bs2 = DT_INST_PROP(0, phase_seg2),
.bus_speed = DT_INST_PROP(0, bus_speed),
.osc_freq = DT_INST_PROP(0, osc_freq)
};
DEVICE_AND_API_INIT(can_mcp2515_1, DT_INST_LABEL(0), &mcp2515_init,
&mcp2515_data_1, &mcp2515_config_1, POST_KERNEL,
CONFIG_CAN_MCP2515_INIT_PRIORITY, &can_api_funcs);
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay) */