zephyr/modules/canopennode/CO_driver.c
Henrik Brix Andersen f8a88cdb27 drivers: can: use flags fields for can_frame and can_filter structs
The can_frame and can_filter structs support a number of different flags
(standard/extended CAN ID type, Remote Transmission Request, CAN-FD format,
Bit Rate Switch, ...). Each of these flags is represented as a discrete bit
in the given structure.

This design pattern requires every user of these structs to initialize all
of these flags to either 0 or 1, which does not scale well for future flag
additions.

Some of these flags have associated enumerations to be used for assignment,
some do not. CAN drivers and protocols tend to rely on the logical value of
the flag instead of using the enumeration, leading to a very fragile
API. The enumerations are used inconsistently between the can_frame and
can_filter structures, which further complicates the API.

Instead, convert these flags to bitfields with separate flag definitions
for the can_frame and can_filter structures. This API allows for future
extensions without having to revisit existing users of the two
structures. Furthermore, this allows driver to easily check for unsupported
flags in the respective API calls.

As this change leads to the "id_mask" field of the can_filter to be the
only mask present in that structure, rename it to "mask" for simplicity.

Fixes: #50776

Signed-off-by: Henrik Brix Andersen <hebad@vestas.com>
2022-10-25 16:32:10 +02:00

517 lines
12 KiB
C

/*
* Copyright (c) 2019 Vestas Wind Systems A/S
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/drivers/can.h>
#include <zephyr/init.h>
#include <zephyr/sys/util.h>
#include <canopennode.h>
#define LOG_LEVEL CONFIG_CANOPEN_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(canopen_driver);
K_KERNEL_STACK_DEFINE(canopen_tx_workq_stack,
CONFIG_CANOPENNODE_TX_WORKQUEUE_STACK_SIZE);
struct k_work_q canopen_tx_workq;
struct canopen_tx_work_container {
struct k_work work;
CO_CANmodule_t *CANmodule;
};
struct canopen_tx_work_container canopen_tx_queue;
K_MUTEX_DEFINE(canopen_send_mutex);
K_MUTEX_DEFINE(canopen_emcy_mutex);
K_MUTEX_DEFINE(canopen_co_mutex);
inline void canopen_send_lock(void)
{
k_mutex_lock(&canopen_send_mutex, K_FOREVER);
}
inline void canopen_send_unlock(void)
{
k_mutex_unlock(&canopen_send_mutex);
}
inline void canopen_emcy_lock(void)
{
k_mutex_lock(&canopen_emcy_mutex, K_FOREVER);
}
inline void canopen_emcy_unlock(void)
{
k_mutex_unlock(&canopen_emcy_mutex);
}
inline void canopen_od_lock(void)
{
k_mutex_lock(&canopen_co_mutex, K_FOREVER);
}
inline void canopen_od_unlock(void)
{
k_mutex_unlock(&canopen_co_mutex);
}
static void canopen_detach_all_rx_filters(CO_CANmodule_t *CANmodule)
{
uint16_t i;
if (!CANmodule || !CANmodule->rx_array || !CANmodule->configured) {
return;
}
for (i = 0U; i < CANmodule->rx_size; i++) {
if (CANmodule->rx_array[i].filter_id != -ENOSPC) {
can_remove_rx_filter(CANmodule->dev,
CANmodule->rx_array[i].filter_id);
CANmodule->rx_array[i].filter_id = -ENOSPC;
}
}
}
static void canopen_rx_callback(const struct device *dev, struct can_frame *frame, void *arg)
{
CO_CANrx_t *buffer = (CO_CANrx_t *)arg;
CO_CANrxMsg_t rxMsg;
ARG_UNUSED(dev);
if (!buffer || !buffer->pFunct) {
LOG_ERR("failed to process CAN rx callback");
return;
}
rxMsg.ident = frame->id;
rxMsg.DLC = frame->dlc;
memcpy(rxMsg.data, frame->data, frame->dlc);
buffer->pFunct(buffer->object, &rxMsg);
}
static void canopen_tx_callback(const struct device *dev, int error, void *arg)
{
CO_CANmodule_t *CANmodule = arg;
ARG_UNUSED(dev);
if (!CANmodule) {
LOG_ERR("failed to process CAN tx callback");
return;
}
if (error == 0) {
CANmodule->first_tx_msg = false;
}
k_work_submit_to_queue(&canopen_tx_workq, &canopen_tx_queue.work);
}
static void canopen_tx_retry(struct k_work *item)
{
struct canopen_tx_work_container *container =
CONTAINER_OF(item, struct canopen_tx_work_container, work);
CO_CANmodule_t *CANmodule = container->CANmodule;
struct can_frame frame;
CO_CANtx_t *buffer;
int err;
uint16_t i;
memset(&frame, 0, sizeof(frame));
CO_LOCK_CAN_SEND();
for (i = 0; i < CANmodule->tx_size; i++) {
buffer = &CANmodule->tx_array[i];
if (buffer->bufferFull) {
frame.id = buffer->ident;
frame.dlc = buffer->DLC;
frame.flags |= (buffer->rtr ? CAN_FRAME_RTR : 0);
memcpy(frame.data, buffer->data, buffer->DLC);
err = can_send(CANmodule->dev, &frame, K_NO_WAIT,
canopen_tx_callback, CANmodule);
if (err == -EAGAIN) {
break;
} else if (err != 0) {
LOG_ERR("failed to send CAN frame (err %d)",
err);
CO_errorReport(CANmodule->em,
CO_EM_GENERIC_SOFTWARE_ERROR,
CO_EMC_COMMUNICATION, 0);
}
buffer->bufferFull = false;
}
}
CO_UNLOCK_CAN_SEND();
}
void CO_CANsetConfigurationMode(void *CANdriverState)
{
struct canopen_context *ctx = (struct canopen_context *)CANdriverState;
int err;
err = can_stop(ctx->dev);
if (err != 0 && err != -EALREADY) {
LOG_ERR("failed to stop CAN interface (err %d)", err);
}
}
void CO_CANsetNormalMode(CO_CANmodule_t *CANmodule)
{
int err;
err = can_start(CANmodule->dev);
if (err != 0 && err != -EALREADY) {
LOG_ERR("failed to start CAN interface (err %d)", err);
return;
}
CANmodule->CANnormal = true;
}
CO_ReturnError_t CO_CANmodule_init(CO_CANmodule_t *CANmodule,
void *CANdriverState,
CO_CANrx_t rxArray[], uint16_t rxSize,
CO_CANtx_t txArray[], uint16_t txSize,
uint16_t CANbitRate)
{
struct canopen_context *ctx = (struct canopen_context *)CANdriverState;
uint16_t i;
int err;
int max_filters;
LOG_DBG("rxSize = %d, txSize = %d", rxSize, txSize);
if (!CANmodule || !rxArray || !txArray || !CANdriverState) {
LOG_ERR("failed to initialize CAN module");
return CO_ERROR_ILLEGAL_ARGUMENT;
}
max_filters = can_get_max_filters(ctx->dev, false);
if (max_filters != -ENOSYS) {
if (max_filters < 0) {
LOG_ERR("unable to determine number of CAN RX filters");
return CO_ERROR_SYSCALL;
}
if (rxSize > max_filters) {
LOG_ERR("insufficient number of concurrent CAN RX filters"
" (needs %d, %d available)", rxSize, max_filters);
return CO_ERROR_OUT_OF_MEMORY;
} else if (rxSize < max_filters) {
LOG_DBG("excessive number of concurrent CAN RX filters enabled"
" (needs %d, %d available)", rxSize, max_filters);
}
}
canopen_detach_all_rx_filters(CANmodule);
canopen_tx_queue.CANmodule = CANmodule;
CANmodule->dev = ctx->dev;
CANmodule->rx_array = rxArray;
CANmodule->rx_size = rxSize;
CANmodule->tx_array = txArray;
CANmodule->tx_size = txSize;
CANmodule->CANnormal = false;
CANmodule->first_tx_msg = true;
CANmodule->errors = 0;
CANmodule->em = NULL;
for (i = 0U; i < rxSize; i++) {
rxArray[i].ident = 0U;
rxArray[i].pFunct = NULL;
rxArray[i].filter_id = -ENOSPC;
}
for (i = 0U; i < txSize; i++) {
txArray[i].bufferFull = false;
}
err = can_set_bitrate(CANmodule->dev, KHZ(CANbitRate));
if (err) {
LOG_ERR("failed to configure CAN bitrate (err %d)", err);
return CO_ERROR_ILLEGAL_ARGUMENT;
}
err = can_set_mode(CANmodule->dev, CAN_MODE_NORMAL);
if (err) {
LOG_ERR("failed to configure CAN interface (err %d)", err);
return CO_ERROR_ILLEGAL_ARGUMENT;
}
CANmodule->configured = true;
return CO_ERROR_NO;
}
void CO_CANmodule_disable(CO_CANmodule_t *CANmodule)
{
int err;
if (!CANmodule || !CANmodule->dev) {
return;
}
canopen_detach_all_rx_filters(CANmodule);
err = can_stop(CANmodule->dev);
if (err != 0 && err != -EALREADY) {
LOG_ERR("failed to disable CAN interface (err %d)", err);
}
}
uint16_t CO_CANrxMsg_readIdent(const CO_CANrxMsg_t *rxMsg)
{
return rxMsg->ident;
}
CO_ReturnError_t CO_CANrxBufferInit(CO_CANmodule_t *CANmodule, uint16_t index,
uint16_t ident, uint16_t mask, bool_t rtr,
void *object,
CO_CANrxBufferCallback_t pFunct)
{
struct can_filter filter;
CO_CANrx_t *buffer;
if (CANmodule == NULL) {
return CO_ERROR_ILLEGAL_ARGUMENT;
}
if (!pFunct || (index >= CANmodule->rx_size)) {
LOG_ERR("failed to initialize CAN rx buffer, illegal argument");
CO_errorReport(CANmodule->em, CO_EM_GENERIC_SOFTWARE_ERROR,
CO_EMC_SOFTWARE_INTERNAL, 0);
return CO_ERROR_ILLEGAL_ARGUMENT;
}
buffer = &CANmodule->rx_array[index];
buffer->object = object;
buffer->pFunct = pFunct;
filter.flags = (rtr ? CAN_FILTER_RTR : CAN_FILTER_DATA);
filter.id = ident;
filter.mask = mask;
if (buffer->filter_id != -ENOSPC) {
can_remove_rx_filter(CANmodule->dev, buffer->filter_id);
}
buffer->filter_id = can_add_rx_filter(CANmodule->dev,
canopen_rx_callback,
buffer, &filter);
if (buffer->filter_id == -ENOSPC) {
LOG_ERR("failed to add CAN rx callback, no free filter");
CO_errorReport(CANmodule->em, CO_EM_MEMORY_ALLOCATION_ERROR,
CO_EMC_SOFTWARE_INTERNAL, 0);
return CO_ERROR_OUT_OF_MEMORY;
}
return CO_ERROR_NO;
}
CO_CANtx_t *CO_CANtxBufferInit(CO_CANmodule_t *CANmodule, uint16_t index,
uint16_t ident, bool_t rtr, uint8_t noOfBytes,
bool_t syncFlag)
{
CO_CANtx_t *buffer;
if (CANmodule == NULL) {
return NULL;
}
if (index >= CANmodule->tx_size) {
LOG_ERR("failed to initialize CAN rx buffer, illegal argument");
CO_errorReport(CANmodule->em, CO_EM_GENERIC_SOFTWARE_ERROR,
CO_EMC_SOFTWARE_INTERNAL, 0);
return NULL;
}
buffer = &CANmodule->tx_array[index];
buffer->ident = ident;
buffer->rtr = rtr;
buffer->DLC = noOfBytes;
buffer->bufferFull = false;
buffer->syncFlag = syncFlag;
return buffer;
}
CO_ReturnError_t CO_CANsend(CO_CANmodule_t *CANmodule, CO_CANtx_t *buffer)
{
CO_ReturnError_t ret = CO_ERROR_NO;
struct can_frame frame;
int err;
if (!CANmodule || !CANmodule->dev || !buffer) {
return CO_ERROR_ILLEGAL_ARGUMENT;
}
memset(&frame, 0, sizeof(frame));
CO_LOCK_CAN_SEND();
if (buffer->bufferFull) {
if (!CANmodule->first_tx_msg) {
CO_errorReport(CANmodule->em, CO_EM_CAN_TX_OVERFLOW,
CO_EMC_CAN_OVERRUN, buffer->ident);
}
buffer->bufferFull = false;
ret = CO_ERROR_TX_OVERFLOW;
}
frame.id = buffer->ident;
frame.dlc = buffer->DLC;
frame.flags = (buffer->rtr ? CAN_FRAME_RTR : 0);
memcpy(frame.data, buffer->data, buffer->DLC);
err = can_send(CANmodule->dev, &frame, K_NO_WAIT, canopen_tx_callback,
CANmodule);
if (err == -EAGAIN) {
buffer->bufferFull = true;
} else if (err != 0) {
LOG_ERR("failed to send CAN frame (err %d)", err);
CO_errorReport(CANmodule->em, CO_EM_GENERIC_SOFTWARE_ERROR,
CO_EMC_COMMUNICATION, 0);
ret = CO_ERROR_TX_UNCONFIGURED;
}
CO_UNLOCK_CAN_SEND();
return ret;
}
void CO_CANclearPendingSyncPDOs(CO_CANmodule_t *CANmodule)
{
bool_t tpdoDeleted = false;
CO_CANtx_t *buffer;
uint16_t i;
if (!CANmodule) {
return;
}
CO_LOCK_CAN_SEND();
for (i = 0; i < CANmodule->tx_size; i++) {
buffer = &CANmodule->tx_array[i];
if (buffer->bufferFull && buffer->syncFlag) {
buffer->bufferFull = false;
tpdoDeleted = true;
}
}
CO_UNLOCK_CAN_SEND();
if (tpdoDeleted) {
CO_errorReport(CANmodule->em, CO_EM_TPDO_OUTSIDE_WINDOW,
CO_EMC_COMMUNICATION, 0);
}
}
void CO_CANverifyErrors(CO_CANmodule_t *CANmodule)
{
CO_EM_t *em = (CO_EM_t *)CANmodule->em;
struct can_bus_err_cnt err_cnt;
enum can_state state;
uint8_t rx_overflows;
uint32_t errors;
int err;
/*
* TODO: Zephyr lacks an API for reading the rx mailbox
* overflow counter.
*/
rx_overflows = 0;
err = can_get_state(CANmodule->dev, &state, &err_cnt);
if (err != 0) {
LOG_ERR("failed to get CAN controller state (err %d)", err);
return;
}
errors = ((uint32_t)err_cnt.tx_err_cnt << 16) |
((uint32_t)err_cnt.rx_err_cnt << 8) |
rx_overflows;
if (errors != CANmodule->errors) {
CANmodule->errors = errors;
if (state == CAN_STATE_BUS_OFF) {
/* Bus off */
CO_errorReport(em, CO_EM_CAN_TX_BUS_OFF,
CO_EMC_BUS_OFF_RECOVERED, errors);
} else {
/* Bus not off */
CO_errorReset(em, CO_EM_CAN_TX_BUS_OFF, errors);
if ((err_cnt.rx_err_cnt >= 96U) ||
(err_cnt.tx_err_cnt >= 96U)) {
/* Bus warning */
CO_errorReport(em, CO_EM_CAN_BUS_WARNING,
CO_EMC_NO_ERROR, errors);
} else {
/* Bus not warning */
CO_errorReset(em, CO_EM_CAN_BUS_WARNING,
errors);
}
if (err_cnt.rx_err_cnt >= 128U) {
/* Bus rx passive */
CO_errorReport(em, CO_EM_CAN_RX_BUS_PASSIVE,
CO_EMC_CAN_PASSIVE, errors);
} else {
/* Bus not rx passive */
CO_errorReset(em, CO_EM_CAN_RX_BUS_PASSIVE,
errors);
}
if (err_cnt.tx_err_cnt >= 128U &&
!CANmodule->first_tx_msg) {
/* Bus tx passive */
CO_errorReport(em, CO_EM_CAN_TX_BUS_PASSIVE,
CO_EMC_CAN_PASSIVE, errors);
} else if (CO_isError(em, CO_EM_CAN_TX_BUS_PASSIVE)) {
/* Bus not tx passive */
CO_errorReset(em, CO_EM_CAN_TX_BUS_PASSIVE,
errors);
CO_errorReset(em, CO_EM_CAN_TX_OVERFLOW,
errors);
}
}
/* This code can be activated if we can read the overflows*/
if (false && rx_overflows != 0U) {
CO_errorReport(em, CO_EM_CAN_RXB_OVERFLOW,
CO_EMC_CAN_OVERRUN, errors);
}
}
}
static int canopen_init(const struct device *dev)
{
ARG_UNUSED(dev);
k_work_queue_start(&canopen_tx_workq, canopen_tx_workq_stack,
K_KERNEL_STACK_SIZEOF(canopen_tx_workq_stack),
CONFIG_CANOPENNODE_TX_WORKQUEUE_PRIORITY, NULL);
k_thread_name_set(&canopen_tx_workq.thread, "canopen_tx_workq");
k_work_init(&canopen_tx_queue.work, canopen_tx_retry);
return 0;
}
SYS_INIT(canopen_init, APPLICATION, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);