zephyr/include/zephyr/sys/arch_interface.h
Carlo Caione 189cd1f4a2 cache: Rework cache API
The cache operations must be quick, optimized and possibly inlined. The
current API is clunky, functions are not inlined and passing parameters
around that are basically always known at compile time.

In this patch we rework the cache functions to allow us to get rid of
useless parameters and make inlining easier.

In particular this changeset is doing three things:

1. `CONFIG_HAS_ARCH_CACHE` is now `CONFIG_ARCH_CACHE` and
   `CONFIG_HAS_EXTERNAL_CACHE` is now `CONFIG_EXTERNAL_CACHE`

2. The cache API has been reworked.

3. Comments are added.

Signed-off-by: Carlo Caione <ccaione@baylibre.com>
2022-12-01 13:40:56 -05:00

1416 lines
41 KiB
C

/*
* Copyright (c) 2019 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @defgroup arch-interface Architecture Interface
* @brief Internal kernel APIs with public scope
*
* Any public kernel APIs that are implemented as inline functions and need to
* call architecture-specific API so will have the prototypes for the
* architecture-specific APIs here. Architecture APIs that aren't used in this
* way go in kernel/include/kernel_arch_interface.h.
*
* The set of architecture-specific APIs used internally by public macros and
* inline functions in public headers are also specified and documented.
*
* For all macros and inline function prototypes described herein, <arch/cpu.h>
* must eventually pull in full definitions for all of them (the actual macro
* defines and inline function bodies)
*
* include/kernel.h and other public headers depend on definitions in this
* header.
*/
#ifndef ZEPHYR_INCLUDE_SYS_ARCH_INTERFACE_H_
#define ZEPHYR_INCLUDE_SYS_ARCH_INTERFACE_H_
#ifndef _ASMLANGUAGE
#include <zephyr/toolchain.h>
#include <stddef.h>
#include <zephyr/types.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/irq_offload.h>
#ifdef __cplusplus
extern "C" {
#endif
/* NOTE: We cannot pull in kernel.h here, need some forward declarations */
struct k_thread;
struct k_mem_domain;
typedef struct z_thread_stack_element k_thread_stack_t;
typedef void (*k_thread_entry_t)(void *p1, void *p2, void *p3);
/**
* @defgroup arch-timing Architecture timing APIs
* @ingroup arch-interface
* @{
*/
/**
* Obtain the current cycle count, in units that are hardware-specific
*
* @see k_cycle_get_32()
*/
static inline uint32_t arch_k_cycle_get_32(void);
/**
* Obtain the current cycle count, in units that are hardware-specific
*
* @see k_cycle_get_64()
*/
static inline uint64_t arch_k_cycle_get_64(void);
/** @} */
/**
* @addtogroup arch-threads
* @{
*/
/**
* @def ARCH_THREAD_STACK_RESERVED
*
* @see K_THREAD_STACK_RESERVED
*/
/**
* @def ARCH_STACK_PTR_ALIGN
*
* Required alignment of the CPU's stack pointer register value, dictated by
* hardware constraints and the ABI calling convention.
*
* @see Z_STACK_PTR_ALIGN
*/
/**
* @def ARCH_THREAD_STACK_OBJ_ALIGN(size)
*
* Required alignment of the lowest address of a stack object.
*
* Optional definition.
*
* @see Z_THREAD_STACK_OBJ_ALIGN
*/
/**
* @def ARCH_THREAD_STACK_SIZE_ADJUST(size)
* @brief Round up a stack buffer size to alignment constraints
*
* Adjust a requested stack buffer size to the true size of its underlying
* buffer, defined as the area usable for thread stack context and thread-
* local storage.
*
* The size value passed here does not include storage reserved for platform
* data.
*
* The returned value is either the same size provided (if already properly
* aligned), or rounded up to satisfy alignment constraints. Calculations
* performed here *must* be idempotent.
*
* Optional definition. If undefined, stack buffer sizes are either:
* - Rounded up to the next power of two if user mode is enabled on an arch
* with an MPU that requires such alignment
* - Rounded up to ARCH_STACK_PTR_ALIGN
*
* @see Z_THREAD_STACK_SIZE_ADJUST
*/
/**
* @def ARCH_KERNEL_STACK_RESERVED
* @brief MPU guard size for kernel-only stacks
*
* If MPU stack guards are used to catch stack overflows, specify the
* amount of space reserved in kernel stack objects. If guard sizes are
* context dependent, this should be in the minimum guard size, with
* remaining space carved out if needed.
*
* Optional definition, defaults to 0.
*
* @see K_KERNEL_STACK_RESERVED
*/
/**
* @def ARCH_KERNEL_STACK_OBJ_ALIGN
* @brief Required alignment of the lowest address of a kernel-only stack.
*/
/** @} */
/**
* @addtogroup arch-pm
* @{
*/
/**
* @brief Power save idle routine
*
* This function will be called by the kernel idle loop or possibly within
* an implementation of z_pm_save_idle in the kernel when the
* '_pm_save_flag' variable is non-zero.
*
* Architectures that do not implement power management instructions may
* immediately return, otherwise a power-saving instruction should be
* issued to wait for an interrupt.
*
* @note The function is expected to return after the interrupt that has
* caused the CPU to exit power-saving mode has been serviced, although
* this is not a firm requirement.
*
* @see k_cpu_idle()
*/
void arch_cpu_idle(void);
/**
* @brief Atomically re-enable interrupts and enter low power mode
*
* The requirements for arch_cpu_atomic_idle() are as follows:
*
* -# Enabling interrupts and entering a low-power mode needs to be
* atomic, i.e. there should be no period of time where interrupts are
* enabled before the processor enters a low-power mode. See the comments
* in k_lifo_get(), for example, of the race condition that
* occurs if this requirement is not met.
*
* -# After waking up from the low-power mode, the interrupt lockout state
* must be restored as indicated in the 'key' input parameter.
*
* @see k_cpu_atomic_idle()
*
* @param key Lockout key returned by previous invocation of arch_irq_lock()
*/
void arch_cpu_atomic_idle(unsigned int key);
/** @} */
/**
* @addtogroup arch-smp
* @{
*/
/**
* Per-cpu entry function
*
* @param data context parameter, implementation specific
*/
typedef FUNC_NORETURN void (*arch_cpustart_t)(void *data);
/**
* @brief Start a numbered CPU on a MP-capable system
*
* This starts and initializes a specific CPU. The main thread on startup is
* running on CPU zero, other processors are numbered sequentially. On return
* from this function, the CPU is known to have begun operating and will enter
* the provided function. Its interrupts will be initialized but disabled such
* that irq_unlock() with the provided key will work to enable them.
*
* Normally, in SMP mode this function will be called by the kernel
* initialization and should not be used as a user API. But it is defined here
* for special-purpose apps which want Zephyr running on one core and to use
* others for design-specific processing.
*
* @param cpu_num Integer number of the CPU
* @param stack Stack memory for the CPU
* @param sz Stack buffer size, in bytes
* @param fn Function to begin running on the CPU.
* @param arg Untyped argument to be passed to "fn"
*/
void arch_start_cpu(int cpu_num, k_thread_stack_t *stack, int sz,
arch_cpustart_t fn, void *arg);
/**
* @brief Return CPU power status
*
* @param cpu_num Integer number of the CPU
*/
bool arch_cpu_active(int cpu_num);
/** @} */
/**
* @addtogroup arch-irq
* @{
*/
/**
* Lock interrupts on the current CPU
*
* @see irq_lock()
*/
static inline unsigned int arch_irq_lock(void);
/**
* Unlock interrupts on the current CPU
*
* @see irq_unlock()
*/
static inline void arch_irq_unlock(unsigned int key);
/**
* Test if calling arch_irq_unlock() with this key would unlock irqs
*
* @param key value returned by arch_irq_lock()
* @return true if interrupts were unlocked prior to the arch_irq_lock()
* call that produced the key argument.
*/
static inline bool arch_irq_unlocked(unsigned int key);
/**
* Disable the specified interrupt line
*
* @note: The behavior of interrupts that arrive after this call
* returns and before the corresponding call to arch_irq_enable() is
* undefined. The hardware is not required to latch and deliver such
* an interrupt, though on some architectures that may work. Other
* architectures will simply lose such an interrupt and never deliver
* it. Many drivers and subsystems are not tolerant of such dropped
* interrupts and it is the job of the application layer to ensure
* that behavior remains correct.
*
* @see irq_disable()
*/
void arch_irq_disable(unsigned int irq);
/**
* Enable the specified interrupt line
*
* @see irq_enable()
*/
void arch_irq_enable(unsigned int irq);
/**
* Test if an interrupt line is enabled
*
* @see irq_is_enabled()
*/
int arch_irq_is_enabled(unsigned int irq);
/**
* Arch-specific hook to install a dynamic interrupt.
*
* @param irq IRQ line number
* @param priority Interrupt priority
* @param routine Interrupt service routine
* @param parameter ISR parameter
* @param flags Arch-specific IRQ configuration flag
*
* @return The vector assigned to this interrupt
*/
int arch_irq_connect_dynamic(unsigned int irq, unsigned int priority,
void (*routine)(const void *parameter),
const void *parameter, uint32_t flags);
/**
* @def ARCH_IRQ_CONNECT(irq, pri, isr, arg, flags)
*
* @see IRQ_CONNECT()
*/
#ifdef CONFIG_PCIE
/**
* @def ARCH_PCIE_IRQ_CONNECT(bdf, irq, pri, isr, arg, flags)
*
* @see PCIE_IRQ_CONNECT()
*/
#endif /* CONFIG_PCIE */
/**
* @def ARCH_IRQ_DIRECT_CONNECT(irq_p, priority_p, isr_p, flags_p)
*
* @see IRQ_DIRECT_CONNECT()
*/
/**
* @def ARCH_ISR_DIRECT_PM()
*
* @see ISR_DIRECT_PM()
*/
/**
* @def ARCH_ISR_DIRECT_HEADER()
*
* @see ISR_DIRECT_HEADER()
*/
/**
* @def ARCH_ISR_DIRECT_FOOTER(swap)
*
* @see ISR_DIRECT_FOOTER()
*/
/**
* @def ARCH_ISR_DIRECT_DECLARE(name)
*
* @see ISR_DIRECT_DECLARE()
*/
#ifndef CONFIG_PCIE_CONTROLLER
/**
* @brief Arch-specific hook for allocating IRQs
*
* Note: disable/enable IRQ relevantly inside the implementation of such
* function to avoid concurrency issues. Also, an allocated IRQ is assumed
* to be used thus a following @see arch_irq_is_used() should return true.
*
* @return The newly allocated IRQ or UINT_MAX on error.
*/
unsigned int arch_irq_allocate(void);
/**
* @brief Arch-specific hook for declaring an IRQ being used
*
* Note: disable/enable IRQ relevantly inside the implementation of such
* function to avoid concurrency issues.
*
* @param irq the IRQ to declare being used
*/
void arch_irq_set_used(unsigned int irq);
/**
* @brief Arch-specific hook for checking if an IRQ is being used already
*
* @param irq the IRQ to check
*
* @return true if being, false otherwise
*/
bool arch_irq_is_used(unsigned int irq);
#endif /* CONFIG_PCIE_CONTROLLER */
/**
* @def ARCH_EXCEPT(reason_p)
*
* Generate a software induced fatal error.
*
* If the caller is running in user mode, only K_ERR_KERNEL_OOPS or
* K_ERR_STACK_CHK_FAIL may be induced.
*
* This should ideally generate a software trap, with exception context
* indicating state when this was invoked. General purpose register state at
* the time of trap should not be disturbed from the calling context.
*
* @param reason_p K_ERR_ scoped reason code for the fatal error.
*/
#ifdef CONFIG_IRQ_OFFLOAD
/**
* Run a function in interrupt context.
*
* Implementations should invoke an exception such that the kernel goes through
* its interrupt handling dispatch path, to include switching to the interrupt
* stack, and runs the provided routine and parameter.
*
* The only intended use-case for this function is for test code to simulate
* the correctness of kernel APIs in interrupt handling context. This API
* is not intended for real applications.
*
* @see irq_offload()
*
* @param routine Function to run in interrupt context
* @param parameter Value to pass to the function when invoked
*/
void arch_irq_offload(irq_offload_routine_t routine, const void *parameter);
#endif /* CONFIG_IRQ_OFFLOAD */
/** @} */
/**
* @defgroup arch-smp Architecture-specific SMP APIs
* @ingroup arch-interface
* @{
*/
#ifdef CONFIG_SMP
/** Return the CPU struct for the currently executing CPU */
static inline struct _cpu *arch_curr_cpu(void);
/**
* @brief Processor hardware ID
*
* Most multiprocessor architectures have a low-level unique ID value
* associated with the current CPU that can be retrieved rapidly and
* efficiently in kernel context. Note that while the numbering of
* the CPUs is guaranteed to be unique, the values are
* platform-defined. In particular, they are not guaranteed to match
* Zephyr's own sequential CPU IDs (even though on some platforms they
* do).
*
* @note There is an inherent race with this API: the system may
* preempt the current thread and migrate it to another CPU before the
* value is used. Safe usage requires knowing the migration is
* impossible (e.g. because the code is in interrupt context, holds a
* spinlock, or cannot migrate due to k_cpu_mask state).
*
* @return Unique ID for currently-executing CPU
*/
static inline uint32_t arch_proc_id(void);
/**
* Broadcast an interrupt to all CPUs
*
* This will invoke z_sched_ipi() on other CPUs in the system.
*/
void arch_sched_ipi(void);
#endif /* CONFIG_SMP */
/**
* @brief Returns the number of CPUs
*
* For most systems this will be the same as CONFIG_MP_MAX_NUM_CPUS,
* however some systems may determine this at runtime instead.
*
* @return the number of CPUs
*/
static inline unsigned int arch_num_cpus(void);
/** @} */
/**
* @defgroup arch-userspace Architecture-specific userspace APIs
* @ingroup arch-interface
* @{
*/
#ifdef CONFIG_USERSPACE
/**
* Invoke a system call with 0 arguments.
*
* No general-purpose register state other than return value may be preserved
* when transitioning from supervisor mode back down to user mode for
* security reasons.
*
* It is required that all arguments be stored in registers when elevating
* privileges from user to supervisor mode.
*
* Processing of the syscall takes place on a separate kernel stack. Interrupts
* should be enabled when invoking the system call marshallers from the
* dispatch table. Thread preemption may occur when handling system calls.
*
* Call ids are untrusted and must be bounds-checked, as the value is used to
* index the system call dispatch table, containing function pointers to the
* specific system call code.
*
* @param call_id System call ID
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline uintptr_t arch_syscall_invoke0(uintptr_t call_id);
/**
* Invoke a system call with 1 argument.
*
* @see arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline uintptr_t arch_syscall_invoke1(uintptr_t arg1,
uintptr_t call_id);
/**
* Invoke a system call with 2 arguments.
*
* @see arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param arg2 Second argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline uintptr_t arch_syscall_invoke2(uintptr_t arg1, uintptr_t arg2,
uintptr_t call_id);
/**
* Invoke a system call with 3 arguments.
*
* @see arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param arg2 Second argument to the system call.
* @param arg3 Third argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline uintptr_t arch_syscall_invoke3(uintptr_t arg1, uintptr_t arg2,
uintptr_t arg3,
uintptr_t call_id);
/**
* Invoke a system call with 4 arguments.
*
* @see arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param arg2 Second argument to the system call.
* @param arg3 Third argument to the system call.
* @param arg4 Fourth argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline uintptr_t arch_syscall_invoke4(uintptr_t arg1, uintptr_t arg2,
uintptr_t arg3, uintptr_t arg4,
uintptr_t call_id);
/**
* Invoke a system call with 5 arguments.
*
* @see arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param arg2 Second argument to the system call.
* @param arg3 Third argument to the system call.
* @param arg4 Fourth argument to the system call.
* @param arg5 Fifth argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline uintptr_t arch_syscall_invoke5(uintptr_t arg1, uintptr_t arg2,
uintptr_t arg3, uintptr_t arg4,
uintptr_t arg5,
uintptr_t call_id);
/**
* Invoke a system call with 6 arguments.
*
* @see arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param arg2 Second argument to the system call.
* @param arg3 Third argument to the system call.
* @param arg4 Fourth argument to the system call.
* @param arg5 Fifth argument to the system call.
* @param arg6 Sixth argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline uintptr_t arch_syscall_invoke6(uintptr_t arg1, uintptr_t arg2,
uintptr_t arg3, uintptr_t arg4,
uintptr_t arg5, uintptr_t arg6,
uintptr_t call_id);
/**
* Indicate whether we are currently running in user mode
*
* @return true if the CPU is currently running with user permissions
*/
static inline bool arch_is_user_context(void);
/**
* @brief Get the maximum number of partitions for a memory domain
*
* @return Max number of partitions, or -1 if there is no limit
*/
int arch_mem_domain_max_partitions_get(void);
#ifdef CONFIG_ARCH_MEM_DOMAIN_DATA
/**
*
* @brief Architecture-specific hook for memory domain initialization
*
* Perform any tasks needed to initialize architecture-specific data within
* the memory domain, such as reserving memory for page tables. All members
* of the provided memory domain aside from `arch` will be initialized when
* this is called, but no threads will be a assigned yet.
*
* This function may fail if initializing the memory domain requires allocation,
* such as for page tables.
*
* The associated function k_mem_domain_init() documents that making
* multiple init calls to the same memory domain is undefined behavior,
* but has no assertions in place to check this. If this matters, it may be
* desirable to add checks for this in the implementation of this function.
*
* @param domain The memory domain to initialize
* @retval 0 Success
* @retval -ENOMEM Insufficient memory
*/
int arch_mem_domain_init(struct k_mem_domain *domain);
#endif /* CONFIG_ARCH_MEM_DOMAIN_DATA */
#ifdef CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API
/**
* @brief Add a thread to a memory domain (arch-specific)
*
* Architecture-specific hook to manage internal data structures or hardware
* state when the provided thread has been added to a memory domain.
*
* The thread->mem_domain_info.mem_domain pointer will be set to the domain to
* be added to before this is called. Implementations may assume that the
* thread is not already a member of this domain.
*
* @param thread Thread which needs to be configured.
*
* @retval 0 if successful
* @retval -EINVAL if invalid parameters supplied
* @retval -ENOSPC if running out of space in internal structures
* (e.g. translation tables)
*/
int arch_mem_domain_thread_add(struct k_thread *thread);
/**
* @brief Remove a thread from a memory domain (arch-specific)
*
* Architecture-specific hook to manage internal data structures or hardware
* state when the provided thread has been removed from a memory domain.
*
* The thread's memory domain pointer will be the domain that the thread
* is being removed from.
*
* @param thread Thread being removed from its memory domain
*
* @retval 0 if successful
* @retval -EINVAL if invalid parameters supplied
*/
int arch_mem_domain_thread_remove(struct k_thread *thread);
/**
* @brief Remove a partition from the memory domain (arch-specific)
*
* Architecture-specific hook to manage internal data structures or hardware
* state when a memory domain has had a partition removed.
*
* The partition index data, and the number of partitions configured, are not
* respectively cleared and decremented in the domain until after this function
* runs.
*
* @param domain The memory domain structure
* @param partition_id The partition index that needs to be deleted
*
* @retval 0 if successful
* @retval -EINVAL if invalid parameters supplied
* @retval -ENOENT if no matching partition found
*/
int arch_mem_domain_partition_remove(struct k_mem_domain *domain,
uint32_t partition_id);
/**
* @brief Add a partition to the memory domain
*
* Architecture-specific hook to manage internal data structures or hardware
* state when a memory domain has a partition added.
*
* @param domain The memory domain structure
* @param partition_id The partition that needs to be added
*
* @retval 0 if successful
* @retval -EINVAL if invalid parameters supplied
*/
int arch_mem_domain_partition_add(struct k_mem_domain *domain,
uint32_t partition_id);
#endif /* CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API */
/**
* @brief Check memory region permissions
*
* Given a memory region, return whether the current memory management hardware
* configuration would allow a user thread to read/write that region. Used by
* system calls to validate buffers coming in from userspace.
*
* Notes:
* The function is guaranteed to never return validation success, if the entire
* buffer area is not user accessible.
*
* The function is guaranteed to correctly validate the permissions of the
* supplied buffer, if the user access permissions of the entire buffer are
* enforced by a single, enabled memory management region.
*
* In some architectures the validation will always return failure
* if the supplied memory buffer spans multiple enabled memory management
* regions (even if all such regions permit user access).
*
* @warning 0 size buffer has undefined behavior.
*
* @param addr start address of the buffer
* @param size the size of the buffer
* @param write If nonzero, additionally check if the area is writable.
* Otherwise, just check if the memory can be read.
*
* @return nonzero if the permissions don't match.
*/
int arch_buffer_validate(void *addr, size_t size, int write);
/**
* Get the optimal virtual region alignment to optimize the MMU table layout
*
* Some MMU HW requires some region to be aligned to some of the intermediate
* block alignment in order to reduce table usage.
* This call returns the optimal virtual address alignment in order to permit
* such optimization in the following MMU mapping call.
*
* @param[in] phys Physical address of region to be mapped, aligned to MMU_PAGE_SIZE
* @param[in] size Size of region to be mapped, aligned to MMU_PAGE_SIZE
*
* @retval alignment to apply on the virtual address of this region
*/
size_t arch_virt_region_align(uintptr_t phys, size_t size);
/**
* Perform a one-way transition from supervisor to kernel mode.
*
* Implementations of this function must do the following:
*
* - Reset the thread's stack pointer to a suitable initial value. We do not
* need any prior context since this is a one-way operation.
* - Set up any kernel stack region for the CPU to use during privilege
* elevation
* - Put the CPU in whatever its equivalent of user mode is
* - Transfer execution to arch_new_thread() passing along all the supplied
* arguments, in user mode.
*
* @param user_entry Entry point to start executing as a user thread
* @param p1 1st parameter to user thread
* @param p2 2nd parameter to user thread
* @param p3 3rd parameter to user thread
*/
FUNC_NORETURN void arch_user_mode_enter(k_thread_entry_t user_entry,
void *p1, void *p2, void *p3);
/**
* @brief Induce a kernel oops that appears to come from a specific location
*
* Normally, k_oops() generates an exception that appears to come from the
* call site of the k_oops() itself.
*
* However, when validating arguments to a system call, if there are problems
* we want the oops to appear to come from where the system call was invoked
* and not inside the validation function.
*
* @param ssf System call stack frame pointer. This gets passed as an argument
* to _k_syscall_handler_t functions and its contents are completely
* architecture specific.
*/
FUNC_NORETURN void arch_syscall_oops(void *ssf);
/**
* @brief Safely take the length of a potentially bad string
*
* This must not fault, instead the err parameter must have -1 written to it.
* This function otherwise should work exactly like libc strnlen(). On success
* *err should be set to 0.
*
* @param s String to measure
* @param maxsize Max length of the string
* @param err Error value to write
* @return Length of the string, not counting NULL byte, up to maxsize
*/
size_t arch_user_string_nlen(const char *s, size_t maxsize, int *err);
#endif /* CONFIG_USERSPACE */
/**
* @brief Detect memory coherence type
*
* Required when ARCH_HAS_COHERENCE is true. This function returns
* true if the byte pointed to lies within an architecture-defined
* "coherence region" (typically implemented with uncached memory) and
* can safely be used in multiprocessor code without explicit flush or
* invalidate operations.
*
* @note The result is for only the single byte at the specified
* address, this API is not required to check region boundaries or to
* expect aligned pointers. The expectation is that the code above
* will have queried the appropriate address(es).
*/
#ifndef CONFIG_ARCH_HAS_COHERENCE
static inline bool arch_mem_coherent(void *ptr)
{
ARG_UNUSED(ptr);
return true;
}
#endif
/**
* @brief Ensure cache coherence prior to context switch
*
* Required when ARCH_HAS_COHERENCE is true. On cache-incoherent
* multiprocessor architectures, thread stacks are cached by default
* for performance reasons. They must therefore be flushed
* appropriately on context switch. The rules are:
*
* 1. The region containing live data in the old stack (generally the
* bytes between the current stack pointer and the top of the stack
* memory) must be flushed to underlying storage so a new CPU that
* runs the same thread sees the correct data. This must happen
* before the assignment of the switch_handle field in the thread
* struct which signals the completion of context switch.
*
* 2. Any data areas to be read from the new stack (generally the same
* as the live region when it was saved) should be invalidated (and
* NOT flushed!) in the data cache. This is because another CPU
* may have run or re-initialized the thread since this CPU
* suspended it, and any data present in cache will be stale.
*
* @note The kernel will call this function during interrupt exit when
* a new thread has been chosen to run, and also immediately before
* entering arch_switch() to effect a code-driven context switch. In
* the latter case, it is very likely that more data will be written
* to the old_thread stack region after this function returns but
* before the completion of the switch. Simply flushing naively here
* is not sufficient on many architectures and coordination with the
* arch_switch() implementation is likely required.
*
* @arg old_thread The old thread to be flushed before being allowed
* to run on other CPUs.
* @arg old_switch_handle The switch handle to be stored into
* old_thread (it will not be valid until the
* cache is flushed so is not present yet).
* This will be NULL if inside z_swap()
* (because the arch_switch() has not saved it
* yet).
* @arg new_thread The new thread to be invalidated before it runs locally.
*/
#ifndef CONFIG_KERNEL_COHERENCE
static inline void arch_cohere_stacks(struct k_thread *old_thread,
void *old_switch_handle,
struct k_thread *new_thread)
{
ARG_UNUSED(old_thread);
ARG_UNUSED(old_switch_handle);
ARG_UNUSED(new_thread);
}
#endif
/** @} */
/**
* @defgroup arch-gdbstub Architecture-specific gdbstub APIs
* @ingroup arch-interface
* @{
*/
#ifdef CONFIG_GDBSTUB
struct gdb_ctx;
/**
* @brief Architecture layer debug start
*
* This function is called by @c gdb_init()
*/
void arch_gdb_init(void);
/**
* @brief Continue running program
*
* Continue software execution.
*/
void arch_gdb_continue(void);
/**
* @brief Continue with one step
*
* Continue software execution until reaches the next statement.
*/
void arch_gdb_step(void);
/**
* @brief Read all registers, and outputs as hexadecimal string.
*
* This reads all CPU registers and outputs as hexadecimal string.
* The output string must be parsable by GDB.
*
* @param ctx GDB context
* @param buf Buffer to output hexadecimal string.
* @param buflen Length of buffer.
*
* @return Length of hexadecimal string written.
* Return 0 if error or not supported.
*/
size_t arch_gdb_reg_readall(struct gdb_ctx *ctx, uint8_t *buf, size_t buflen);
/**
* @brief Take a hexadecimal string and update all registers.
*
* This takes in a hexadecimal string as presented from GDB,
* and updates all CPU registers with new values.
*
* @param ctx GDB context
* @param hex Input hexadecimal string.
* @param hexlen Length of hexadecimal string.
*
* @return Length of hexadecimal string parsed.
* Return 0 if error or not supported.
*/
size_t arch_gdb_reg_writeall(struct gdb_ctx *ctx, uint8_t *hex, size_t hexlen);
/**
* @brief Read one register, and outputs as hexadecimal string.
*
* This reads one CPU register and outputs as hexadecimal string.
* The output string must be parsable by GDB.
*
* @param ctx GDB context
* @param buf Buffer to output hexadecimal string.
* @param buflen Length of buffer.
* @param regno Register number
*
* @return Length of hexadecimal string written.
* Return 0 if error or not supported.
*/
size_t arch_gdb_reg_readone(struct gdb_ctx *ctx, uint8_t *buf, size_t buflen,
uint32_t regno);
/**
* @brief Take a hexadecimal string and update one register.
*
* This takes in a hexadecimal string as presented from GDB,
* and updates one CPU registers with new value.
*
* @param ctx GDB context
* @param hex Input hexadecimal string.
* @param hexlen Length of hexadecimal string.
* @param regno Register number
*
* @return Length of hexadecimal string parsed.
* Return 0 if error or not supported.
*/
size_t arch_gdb_reg_writeone(struct gdb_ctx *ctx, uint8_t *hex, size_t hexlen,
uint32_t regno);
/**
* @brief Add breakpoint or watchpoint.
*
* @param ctx GDB context
* @param type Breakpoint or watchpoint type
* @param addr Address of breakpoint or watchpoint
* @param kind Size of breakpoint/watchpoint in bytes
*
* @retval 0 Operation successful
* @retval -1 Error encountered
* @retval -2 Not supported
*/
int arch_gdb_add_breakpoint(struct gdb_ctx *ctx, uint8_t type,
uintptr_t addr, uint32_t kind);
/**
* @brief Remove breakpoint or watchpoint.
*
* @param ctx GDB context
* @param type Breakpoint or watchpoint type
* @param addr Address of breakpoint or watchpoint
* @param kind Size of breakpoint/watchpoint in bytes
*
* @retval 0 Operation successful
* @retval -1 Error encountered
* @retval -2 Not supported
*/
int arch_gdb_remove_breakpoint(struct gdb_ctx *ctx, uint8_t type,
uintptr_t addr, uint32_t kind);
#endif
/** @} */
/**
* @defgroup arch_cache Architecture-specific cache functions
* @ingroup arch-interface
* @{
*/
#if defined(CONFIG_CACHE_MANAGEMENT) && defined(CONFIG_ARCH_CACHE)
#if defined(CONFIG_DCACHE)
/**
* @brief Enable the d-cache
*
* Enable the data cache.
*/
void arch_dcache_enable(void);
/**
* @brief Disable the d-cache
*
* Disable the data cache.
*/
void arch_dcache_disable(void);
/**
* @brief Flush the d-cache
*
* Flush the whole data cache.
*
* @retval 0 If succeeded.
* @retval -ENOTSUP If not supported.
* @retval -errno Negative errno for other failures.
*/
int arch_dcache_flush_all(void);
/**
* @brief Invalidate the d-cache
*
* Invalidate the whole data cache.
*
* @retval 0 If succeeded.
* @retval -ENOTSUP If not supported.
* @retval -errno Negative errno for other failures.
*/
int arch_dcache_invd_all(void);
/**
* @brief Flush and Invalidate the d-cache
*
* Flush and Invalidate the whole data cache.
*
* @retval 0 If succeeded.
* @retval -ENOTSUP If not supported.
* @retval -errno Negative errno for other failures.
*/
int arch_dcache_flush_and_invd_all(void);
/**
* @brief Flush an address range in the d-cache
*
* Flush the specified address range of the data cache.
*
* @param addr Starting address to flush.
* @param size Range size.
*
* @retval 0 If succeeded.
* @retval -ENOTSUP If not supported.
* @retval -errno Negative errno for other failures.
*/
int arch_dcache_flush_range(void *addr, size_t size);
/**
* @brief Invalidate an address range in the d-cache
*
* Invalidate the specified address range of the data cache.
*
* @param addr Starting address to invalidate.
* @param size Range size.
*
* @retval 0 If succeeded.
* @retval -ENOTSUP If not supported.
* @retval -errno Negative errno for other failures.
*/
int arch_dcache_invd_range(void *addr, size_t size);
/**
* @brief Flush and Invalidate an address range in the d-cache
*
* Flush and Invalidate the specified address range of the data cache.
*
* @param addr Starting address to flush and invalidate.
* @param size Range size.
*
* @retval 0 If succeeded.
* @retval -ENOTSUP If not supported.
* @retval -errno Negative errno for other failures.
*/
int arch_dcache_flush_and_invd_range(void *addr, size_t size);
#if defined(CONFIG_DCACHE_LINE_SIZE_DETECT)
/**
*
* @brief Get the the d-cache line size.
*
* The API is provided to dynamically detect the data cache line size at run
* time.
*
* The function must be implemented only when CONFIG_DCACHE_LINE_SIZE_DETECT is
* defined.
*
* @retval size Size of the d-cache line.
* @retval 0 If the d-cache is not enabled.
*/
size_t arch_dcache_line_size_get(void);
#endif /* CONFIG_DCACHE_LINE_SIZE_DETECT */
#endif /* CONFIG_DCACHE */
#if defined(CONFIG_ICACHE)
/**
* @brief Enable the i-cache
*
* Enable the instruction cache.
*/
void arch_icache_enable(void);
/**
* @brief Disable the i-cache
*
* Disable the instruction cache.
*/
void arch_icache_disable(void);
/**
* @brief Flush the i-cache
*
* Flush the whole instruction cache.
*
* @retval 0 If succeeded.
* @retval -ENOTSUP If not supported.
* @retval -errno Negative errno for other failures.
*/
int arch_icache_flush_all(void);
/**
* @brief Invalidate the i-cache
*
* Invalidate the whole instruction cache.
*
* @retval 0 If succeeded.
* @retval -ENOTSUP If not supported.
* @retval -errno Negative errno for other failures.
*/
int arch_icache_invd_all(void);
/**
* @brief Flush and Invalidate the i-cache
*
* Flush and Invalidate the whole instruction cache.
*
* @retval 0 If succeeded.
* @retval -ENOTSUP If not supported.
* @retval -errno Negative errno for other failures.
*/
int arch_icache_flush_and_invd_all(void);
/**
* @brief Flush an address range in the i-cache
*
* Flush the specified address range of the instruction cache.
*
* @param addr Starting address to flush.
* @param size Range size.
*
* @retval 0 If succeeded.
* @retval -ENOTSUP If not supported.
* @retval -errno Negative errno for other failures.
*/
int arch_icache_flush_range(void *addr, size_t size);
/**
* @brief Invalidate an address range in the i-cache
*
* Invalidate the specified address range of the instruction cache.
*
* @param addr Starting address to invalidate.
* @param size Range size.
*
* @retval 0 If succeeded.
* @retval -ENOTSUP If not supported.
* @retval -errno Negative errno for other failures.
*/
int arch_icache_invd_range(void *addr, size_t size);
/**
* @brief Flush and Invalidate an address range in the i-cache
*
* Flush and Invalidate the specified address range of the instruction cache.
*
* @param addr Starting address to flush and invalidate.
* @param size Range size.
*
* @retval 0 If succeeded.
* @retval -ENOTSUP If not supported.
* @retval -errno Negative errno for other failures.
*/
int arch_icache_flush_and_invd_range(void *addr, size_t size);
#if defined(CONFIG_ICACHE_LINE_SIZE_DETECT)
/**
*
* @brief Get the the i-cache line size.
*
* The API is provided to dynamically detect the instruction cache line size at
* run time.
*
* The function must be implemented only when CONFIG_ICACHE_LINE_SIZE_DETECT is
* defined.
*
* @retval size Size of the d-cache line.
* @retval 0 If the d-cache is not enabled.
*/
size_t arch_icache_line_size_get(void);
#endif /* CONFIG_ICACHE_LINE_SIZE_DETECT */
#endif /* CONFIG_ICACHE */
#endif /* CONFIG_CACHE_MANAGEMENT && CONFIG_ARCH_CACHE */
/** @} */
#ifdef CONFIG_TIMING_FUNCTIONS
#include <zephyr/timing/types.h>
/**
* @ingroup arch-timing
* @{
*/
/**
* @brief Initialize the timing subsystem.
*
* Perform the necessary steps to initialize the timing subsystem.
*
* @see timing_init()
*/
void arch_timing_init(void);
/**
* @brief Signal the start of the timing information gathering.
*
* Signal to the timing subsystem that timing information
* will be gathered from this point forward.
*
* @note Any call to arch_timing_counter_get() must be done between
* calls to arch_timing_start() and arch_timing_stop(), and on the
* same CPU core.
*
* @see timing_start()
*/
void arch_timing_start(void);
/**
* @brief Signal the end of the timing information gathering.
*
* Signal to the timing subsystem that timing information
* is no longer being gathered from this point forward.
*
* @note Any call to arch_timing_counter_get() must be done between
* calls to arch_timing_start() and arch_timing_stop(), and on the
* same CPU core.
*
* @see timing_stop()
*/
void arch_timing_stop(void);
/**
* @brief Return timing counter.
*
* @note Any call to arch_timing_counter_get() must be done between
* calls to arch_timing_start() and arch_timing_stop(), and on the
* same CPU core.
*
* @note Not all platforms have a timing counter with 64 bit precision. It
* is possible to see this value "go backwards" due to internal
* rollover. Timing code must be prepared to address the rollover
* (with platform-dependent code, e.g. by casting to a uint32_t before
* subtraction) or by using arch_timing_cycles_get() which is required
* to understand the distinction.
*
* @return Timing counter.
*
* @see timing_counter_get()
*/
timing_t arch_timing_counter_get(void);
/**
* @brief Get number of cycles between @p start and @p end.
*
* For some architectures or SoCs, the raw numbers from counter need
* to be scaled to obtain actual number of cycles, or may roll over
* internally. This function computes a positive-definite interval
* between two returned cycle values.
*
* @param start Pointer to counter at start of a measured execution.
* @param end Pointer to counter at stop of a measured execution.
* @return Number of cycles between start and end.
*
* @see timing_cycles_get()
*/
uint64_t arch_timing_cycles_get(volatile timing_t *const start,
volatile timing_t *const end);
/**
* @brief Get frequency of counter used (in Hz).
*
* @return Frequency of counter used for timing in Hz.
*
* @see timing_freq_get()
*/
uint64_t arch_timing_freq_get(void);
/**
* @brief Convert number of @p cycles into nanoseconds.
*
* @param cycles Number of cycles
* @return Converted time value
*
* @see timing_cycles_to_ns()
*/
uint64_t arch_timing_cycles_to_ns(uint64_t cycles);
/**
* @brief Convert number of @p cycles into nanoseconds with averaging.
*
* @param cycles Number of cycles
* @param count Times of accumulated cycles to average over
* @return Converted time value
*
* @see timing_cycles_to_ns_avg()
*/
uint64_t arch_timing_cycles_to_ns_avg(uint64_t cycles, uint32_t count);
/**
* @brief Get frequency of counter used (in MHz).
*
* @return Frequency of counter used for timing in MHz.
*
* @see timing_freq_get_mhz()
*/
uint32_t arch_timing_freq_get_mhz(void);
/** @} */
#endif /* CONFIG_TIMING_FUNCTIONS */
#ifdef CONFIG_PCIE_MSI_MULTI_VECTOR
struct msi_vector;
typedef struct msi_vector msi_vector_t;
/**
* @brief Allocate vector(s) for the endpoint MSI message(s).
*
* @param priority the MSI vectors base interrupt priority
* @param vectors an array to fill with allocated MSI vectors
* @param n_vector the size of MSI vectors array
*
* @return The number of allocated MSI vectors
*/
uint8_t arch_pcie_msi_vectors_allocate(unsigned int priority,
msi_vector_t *vectors,
uint8_t n_vector);
/**
* @brief Connect an MSI vector to the given routine
*
* @param vector The MSI vector to connect to
* @param routine Interrupt service routine
* @param parameter ISR parameter
* @param flags Arch-specific IRQ configuration flag
*
* @return True on success, false otherwise
*/
bool arch_pcie_msi_vector_connect(msi_vector_t *vector,
void (*routine)(const void *parameter),
const void *parameter,
uint32_t flags);
#endif /* CONFIG_PCIE_MSI_MULTI_VECTOR */
#ifdef __cplusplus
}
#endif /* __cplusplus */
#include <zephyr/arch/arch_inlines.h>
#endif /* _ASMLANGUAGE */
#endif /* ZEPHYR_INCLUDE_SYS_ARCH_INTERFACE_H_ */