zephyr/drivers/spi/spi_andes_atcspi200.c
Tom Burdick 4180d70439 dma: Fix error_callback enable/disable confusion
Previously the logic was inverted for error_callback_en where 0 was
enablement and 1 was disable. This was likely done so that the default,
sensibly so, was to enable the error callback if possible. A variety of
in tree users had confused the enable/disable value.

Change the name of the flag to error_callback_dis where the default
remains 0 (do not disable the callback!) and correct in tree uses of the
flag where it seemed incorrect.

Signed-off-by: Tom Burdick <thomas.burdick@intel.com>
2024-04-11 17:08:10 -04:00

974 lines
27 KiB
C

/*
* Copyright (c) 2022 Andes Technology Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "spi_andes_atcspi200.h"
#include <zephyr/irq.h>
#define DT_DRV_COMPAT andestech_atcspi200
typedef void (*atcspi200_cfg_func_t)(void);
#ifdef CONFIG_ANDES_SPI_DMA_MODE
#define ANDES_SPI_DMA_ERROR_FLAG 0x01
#define ANDES_SPI_DMA_RX_DONE_FLAG 0x02
#define ANDES_SPI_DMA_TX_DONE_FLAG 0x04
#define ANDES_SPI_DMA_DONE_FLAG \
(ANDES_SPI_DMA_RX_DONE_FLAG | ANDES_SPI_DMA_TX_DONE_FLAG)
struct stream {
const struct device *dma_dev;
uint32_t channel;
uint32_t block_idx;
struct dma_config dma_cfg;
struct dma_block_config dma_blk_cfg;
struct dma_block_config chain_block[MAX_CHAIN_SIZE];
uint8_t priority;
bool src_addr_increment;
bool dst_addr_increment;
};
#endif
struct spi_atcspi200_data {
struct spi_context ctx;
uint32_t tx_fifo_size;
uint32_t rx_fifo_size;
int tx_cnt;
size_t chunk_len;
bool busy;
#ifdef CONFIG_ANDES_SPI_DMA_MODE
struct stream dma_rx;
struct stream dma_tx;
#endif
};
struct spi_atcspi200_cfg {
atcspi200_cfg_func_t cfg_func;
uint32_t base;
uint32_t irq_num;
uint32_t f_sys;
bool xip;
};
/* API Functions */
static int spi_config(const struct device *dev,
const struct spi_config *config)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
uint32_t sclk_div, data_len;
/* Set the divisor for SPI interface sclk */
sclk_div = (cfg->f_sys / (config->frequency << 1)) - 1;
sys_clear_bits(SPI_TIMIN(cfg->base), TIMIN_SCLK_DIV_MSK);
sys_set_bits(SPI_TIMIN(cfg->base), sclk_div);
/* Set Master mode */
sys_clear_bits(SPI_TFMAT(cfg->base), TFMAT_SLVMODE_MSK);
/* Disable data merge mode */
sys_clear_bits(SPI_TFMAT(cfg->base), TFMAT_DATA_MERGE_MSK);
/* Set data length */
data_len = SPI_WORD_SIZE_GET(config->operation) - 1;
sys_clear_bits(SPI_TFMAT(cfg->base), TFMAT_DATA_LEN_MSK);
sys_set_bits(SPI_TFMAT(cfg->base), (data_len << TFMAT_DATA_LEN_OFFSET));
/* Set SPI frame format */
if (config->operation & SPI_MODE_CPHA) {
sys_set_bits(SPI_TFMAT(cfg->base), TFMAT_CPHA_MSK);
} else {
sys_clear_bits(SPI_TFMAT(cfg->base), TFMAT_CPHA_MSK);
}
if (config->operation & SPI_MODE_CPOL) {
sys_set_bits(SPI_TFMAT(cfg->base), TFMAT_CPOL_MSK);
} else {
sys_clear_bits(SPI_TFMAT(cfg->base), TFMAT_CPOL_MSK);
}
/* Set SPI bit order */
if (config->operation & SPI_TRANSFER_LSB) {
sys_set_bits(SPI_TFMAT(cfg->base), TFMAT_LSB_MSK);
} else {
sys_clear_bits(SPI_TFMAT(cfg->base), TFMAT_LSB_MSK);
}
/* Set TX/RX FIFO threshold */
sys_clear_bits(SPI_CTRL(cfg->base), CTRL_TX_THRES_MSK);
sys_clear_bits(SPI_CTRL(cfg->base), CTRL_RX_THRES_MSK);
sys_set_bits(SPI_CTRL(cfg->base), TX_FIFO_THRESHOLD << CTRL_TX_THRES_OFFSET);
sys_set_bits(SPI_CTRL(cfg->base), RX_FIFO_THRESHOLD << CTRL_RX_THRES_OFFSET);
return 0;
}
static int spi_transfer(const struct device *dev)
{
struct spi_atcspi200_data * const data = dev->data;
const struct spi_atcspi200_cfg * const cfg = dev->config;
struct spi_context *ctx = &data->ctx;
uint32_t data_len, tctrl, int_msk;
if (data->chunk_len != 0) {
data_len = data->chunk_len - 1;
} else {
data_len = 0;
}
if (data_len > MAX_TRANSFER_CNT) {
return -EINVAL;
}
data->tx_cnt = 0;
if (!spi_context_rx_on(ctx)) {
tctrl = (TRNS_MODE_WRITE_ONLY << TCTRL_TRNS_MODE_OFFSET) |
(data_len << TCTRL_WR_TCNT_OFFSET);
int_msk = IEN_TX_FIFO_MSK | IEN_END_MSK;
} else if (!spi_context_tx_on(ctx)) {
tctrl = (TRNS_MODE_READ_ONLY << TCTRL_TRNS_MODE_OFFSET) |
(data_len << TCTRL_RD_TCNT_OFFSET);
int_msk = IEN_RX_FIFO_MSK | IEN_END_MSK;
} else {
tctrl = (TRNS_MODE_WRITE_READ << TCTRL_TRNS_MODE_OFFSET) |
(data_len << TCTRL_WR_TCNT_OFFSET) |
(data_len << TCTRL_RD_TCNT_OFFSET);
int_msk = IEN_TX_FIFO_MSK |
IEN_RX_FIFO_MSK |
IEN_END_MSK;
}
sys_write32(tctrl, SPI_TCTRL(cfg->base));
/* Enable TX/RX FIFO interrupts */
sys_write32(int_msk, SPI_INTEN(cfg->base));
/* Start transferring */
sys_write32(0, SPI_CMD(cfg->base));
return 0;
}
static int configure(const struct device *dev,
const struct spi_config *config)
{
struct spi_atcspi200_data * const data = dev->data;
struct spi_context *ctx = &(data->ctx);
if (spi_context_configured(ctx, config)) {
/* Already configured. No need to do it again. */
return 0;
}
if (SPI_OP_MODE_GET(config->operation) != SPI_OP_MODE_MASTER) {
LOG_ERR("Slave mode is not supported on %s",
dev->name);
return -EINVAL;
}
if (config->operation & SPI_MODE_LOOP) {
LOG_ERR("Loopback mode is not supported");
return -EINVAL;
}
if ((config->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
LOG_ERR("Only single line mode is supported");
return -EINVAL;
}
ctx->config = config;
/* SPI configuration */
spi_config(dev, config);
return 0;
}
#ifdef CONFIG_ANDES_SPI_DMA_MODE
static int spi_dma_tx_load(const struct device *dev);
static int spi_dma_rx_load(const struct device *dev);
static inline void spi_tx_dma_enable(const struct device *dev)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
/* Enable TX DMA */
sys_set_bits(SPI_CTRL(cfg->base), CTRL_TX_DMA_EN_MSK);
}
static inline void spi_tx_dma_disable(const struct device *dev)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
/* Disable TX DMA */
sys_clear_bits(SPI_CTRL(cfg->base), CTRL_TX_DMA_EN_MSK);
}
static inline void spi_rx_dma_enable(const struct device *dev)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
/* Enable RX DMA */
sys_set_bits(SPI_CTRL(cfg->base), CTRL_RX_DMA_EN_MSK);
}
static inline void spi_rx_dma_disable(const struct device *dev)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
/* Disable RX DMA */
sys_clear_bits(SPI_CTRL(cfg->base), CTRL_RX_DMA_EN_MSK);
}
static int spi_dma_move_buffers(const struct device *dev)
{
struct spi_atcspi200_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
uint32_t error = 0;
data->dma_rx.dma_blk_cfg.next_block = NULL;
data->dma_tx.dma_blk_cfg.next_block = NULL;
if (spi_context_tx_on(ctx)) {
error = spi_dma_tx_load(dev);
if (error != 0) {
return error;
}
}
if (spi_context_rx_on(ctx)) {
error = spi_dma_rx_load(dev);
if (error != 0) {
return error;
}
}
return 0;
}
static inline void dma_rx_callback(const struct device *dev, void *user_data,
uint32_t channel, int status)
{
const struct device *spi_dev = (struct device *)user_data;
struct spi_atcspi200_data *data = spi_dev->data;
struct spi_context *ctx = &data->ctx;
int error;
dma_stop(data->dma_rx.dma_dev, data->dma_rx.channel);
spi_rx_dma_disable(spi_dev);
if (spi_context_rx_on(ctx)) {
if (spi_dma_rx_load(spi_dev) != 0) {
return;
}
spi_rx_dma_enable(spi_dev);
error = dma_start(data->dma_rx.dma_dev, data->dma_rx.channel);
__ASSERT(error == 0, "dma_start was failed in rx callback");
}
}
static inline void dma_tx_callback(const struct device *dev, void *user_data,
uint32_t channel, int status)
{
const struct device *spi_dev = (struct device *)user_data;
struct spi_atcspi200_data *data = spi_dev->data;
struct spi_context *ctx = &data->ctx;
int error;
dma_stop(data->dma_tx.dma_dev, data->dma_tx.channel);
spi_tx_dma_disable(spi_dev);
if (spi_context_tx_on(ctx)) {
if (spi_dma_tx_load(spi_dev) != 0) {
return;
}
spi_tx_dma_enable(spi_dev);
error = dma_start(data->dma_tx.dma_dev, data->dma_tx.channel);
__ASSERT(error == 0, "dma_start was failed in tx callback");
}
}
/*
* dummy value used for transferring NOP when tx buf is null
* and use as dummy sink for when rx buf is null
*/
uint32_t dummy_rx_tx_buffer;
static int spi_dma_tx_load(const struct device *dev)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
struct spi_atcspi200_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
int remain_len, ret, dfs;
/* prepare the block for this TX DMA channel */
memset(&data->dma_tx.dma_blk_cfg, 0, sizeof(struct dma_block_config));
if (ctx->current_tx->len > data->chunk_len) {
data->dma_tx.dma_blk_cfg.block_size = data->chunk_len /
data->dma_tx.dma_cfg.dest_data_size;
} else {
data->dma_tx.dma_blk_cfg.block_size = ctx->current_tx->len /
data->dma_tx.dma_cfg.dest_data_size;
}
/* tx direction has memory as source and periph as dest. */
if (ctx->current_tx->buf == NULL) {
dummy_rx_tx_buffer = 0;
/* if tx buff is null, then sends NOP on the line. */
data->dma_tx.dma_blk_cfg.source_address = (uintptr_t)&dummy_rx_tx_buffer;
data->dma_tx.dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
} else {
data->dma_tx.dma_blk_cfg.source_address = (uintptr_t)ctx->current_tx->buf;
if (data->dma_tx.src_addr_increment) {
data->dma_tx.dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
data->dma_tx.dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
dfs = SPI_WORD_SIZE_GET(ctx->config->operation) >> 3;
remain_len = data->chunk_len - ctx->current_tx->len;
spi_context_update_tx(ctx, dfs, ctx->current_tx->len);
data->dma_tx.dma_blk_cfg.dest_address = (uint32_t)SPI_DATA(cfg->base);
/* fifo mode NOT USED there */
if (data->dma_tx.dst_addr_increment) {
data->dma_tx.dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
data->dma_tx.dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
/* direction is given by the DT */
data->dma_tx.dma_cfg.head_block = &data->dma_tx.dma_blk_cfg;
data->dma_tx.dma_cfg.head_block->next_block = NULL;
/* give the client dev as arg, as the callback comes from the dma */
data->dma_tx.dma_cfg.user_data = (void *)dev;
if (data->dma_tx.dma_cfg.source_chaining_en) {
data->dma_tx.dma_cfg.block_count = ctx->tx_count;
data->dma_tx.dma_cfg.dma_callback = NULL;
data->dma_tx.block_idx = 0;
struct dma_block_config *blk_cfg = &data->dma_tx.dma_blk_cfg;
const struct spi_buf *current_tx = ctx->current_tx;
while (remain_len > 0) {
struct dma_block_config *next_blk_cfg;
next_blk_cfg = &data->dma_tx.chain_block[data->dma_tx.block_idx];
data->dma_tx.block_idx += 1;
blk_cfg->next_block = next_blk_cfg;
current_tx = ctx->current_tx;
next_blk_cfg->block_size = current_tx->len /
data->dma_tx.dma_cfg.dest_data_size;
/* tx direction has memory as source and periph as dest. */
if (current_tx->buf == NULL) {
dummy_rx_tx_buffer = 0;
/* if tx buff is null, then sends NOP on the line. */
next_blk_cfg->source_address = (uintptr_t)&dummy_rx_tx_buffer;
next_blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
} else {
next_blk_cfg->source_address = (uintptr_t)current_tx->buf;
if (data->dma_tx.src_addr_increment) {
next_blk_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
next_blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
next_blk_cfg->dest_address = (uint32_t)SPI_DATA(cfg->base);
/* fifo mode NOT USED there */
if (data->dma_tx.dst_addr_increment) {
next_blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
next_blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
blk_cfg = next_blk_cfg;
next_blk_cfg->next_block = NULL;
remain_len -= ctx->current_tx->len;
spi_context_update_tx(ctx, dfs, ctx->current_tx->len);
}
} else {
data->dma_tx.dma_blk_cfg.next_block = NULL;
data->dma_tx.dma_cfg.block_count = 1;
data->dma_tx.dma_cfg.dma_callback = dma_tx_callback;
}
/* pass our client origin to the dma: data->dma_tx.dma_channel */
ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.channel,
&data->dma_tx.dma_cfg);
/* the channel is the actual stream from 0 */
if (ret != 0) {
data->dma_tx.block_idx = 0;
data->dma_tx.dma_blk_cfg.next_block = NULL;
return ret;
}
return 0;
}
static int spi_dma_rx_load(const struct device *dev)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
struct spi_atcspi200_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
int remain_len, ret, dfs;
/* prepare the block for this RX DMA channel */
memset(&data->dma_rx.dma_blk_cfg, 0, sizeof(struct dma_block_config));
if (ctx->current_rx->len > data->chunk_len) {
data->dma_rx.dma_blk_cfg.block_size = data->chunk_len /
data->dma_rx.dma_cfg.dest_data_size;
} else {
data->dma_rx.dma_blk_cfg.block_size = ctx->current_rx->len /
data->dma_rx.dma_cfg.dest_data_size;
}
/* rx direction has periph as source and mem as dest. */
if (ctx->current_rx->buf == NULL) {
/* if rx buff is null, then write data to dummy address. */
data->dma_rx.dma_blk_cfg.dest_address = (uintptr_t)&dummy_rx_tx_buffer;
data->dma_rx.dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
} else {
data->dma_rx.dma_blk_cfg.dest_address = (uintptr_t)ctx->current_rx->buf;
if (data->dma_rx.dst_addr_increment) {
data->dma_rx.dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
data->dma_rx.dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
dfs = SPI_WORD_SIZE_GET(ctx->config->operation) >> 3;
remain_len = data->chunk_len - ctx->current_rx->len;
spi_context_update_rx(ctx, dfs, ctx->current_rx->len);
data->dma_rx.dma_blk_cfg.source_address = (uint32_t)SPI_DATA(cfg->base);
if (data->dma_rx.src_addr_increment) {
data->dma_rx.dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
data->dma_rx.dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
data->dma_rx.dma_cfg.head_block = &data->dma_rx.dma_blk_cfg;
data->dma_rx.dma_cfg.head_block->next_block = NULL;
data->dma_rx.dma_cfg.user_data = (void *)dev;
if (data->dma_rx.dma_cfg.source_chaining_en) {
data->dma_rx.dma_cfg.block_count = ctx->rx_count;
data->dma_rx.dma_cfg.dma_callback = NULL;
data->dma_rx.block_idx = 0;
struct dma_block_config *blk_cfg = &data->dma_rx.dma_blk_cfg;
const struct spi_buf *current_rx = ctx->current_rx;
while (remain_len > 0) {
struct dma_block_config *next_blk_cfg;
next_blk_cfg = &data->dma_rx.chain_block[data->dma_rx.block_idx];
data->dma_rx.block_idx += 1;
blk_cfg->next_block = next_blk_cfg;
current_rx = ctx->current_rx;
next_blk_cfg->block_size = current_rx->len /
data->dma_rx.dma_cfg.dest_data_size;
/* rx direction has periph as source and mem as dest. */
if (current_rx->buf == NULL) {
/* if rx buff is null, then write data to dummy address. */
next_blk_cfg->dest_address = (uintptr_t)&dummy_rx_tx_buffer;
next_blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
} else {
next_blk_cfg->dest_address = (uintptr_t)current_rx->buf;
if (data->dma_rx.dst_addr_increment) {
next_blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
next_blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
next_blk_cfg->source_address = (uint32_t)SPI_DATA(cfg->base);
if (data->dma_rx.src_addr_increment) {
next_blk_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
next_blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
blk_cfg = next_blk_cfg;
next_blk_cfg->next_block = NULL;
remain_len -= ctx->current_rx->len;
spi_context_update_rx(ctx, dfs, ctx->current_rx->len);
}
} else {
data->dma_rx.dma_blk_cfg.next_block = NULL;
data->dma_rx.dma_cfg.block_count = 1;
data->dma_rx.dma_cfg.dma_callback = dma_rx_callback;
}
/* pass our client origin to the dma: data->dma_rx.channel */
ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.channel,
&data->dma_rx.dma_cfg);
/* the channel is the actual stream from 0 */
if (ret != 0) {
data->dma_rx.block_idx = 0;
data->dma_rx.dma_blk_cfg.next_block = NULL;
return ret;
}
return 0;
}
static int spi_transfer_dma(const struct device *dev)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
struct spi_atcspi200_data * const data = dev->data;
struct spi_context *ctx = &data->ctx;
uint32_t data_len, tctrl, dma_rx_enable, dma_tx_enable;
int error = 0;
data_len = data->chunk_len - 1;
if (data_len > MAX_TRANSFER_CNT) {
return -EINVAL;
}
if (!spi_context_rx_on(ctx)) {
tctrl = (TRNS_MODE_WRITE_ONLY << TCTRL_TRNS_MODE_OFFSET) |
(data_len << TCTRL_WR_TCNT_OFFSET);
dma_rx_enable = 0;
dma_tx_enable = 1;
} else if (!spi_context_tx_on(ctx)) {
tctrl = (TRNS_MODE_READ_ONLY << TCTRL_TRNS_MODE_OFFSET) |
(data_len << TCTRL_RD_TCNT_OFFSET);
dma_rx_enable = 1;
dma_tx_enable = 0;
} else {
tctrl = (TRNS_MODE_WRITE_READ << TCTRL_TRNS_MODE_OFFSET) |
(data_len << TCTRL_WR_TCNT_OFFSET) |
(data_len << TCTRL_RD_TCNT_OFFSET);
dma_rx_enable = 1;
dma_tx_enable = 1;
}
sys_write32(tctrl, SPI_TCTRL(cfg->base));
/* Set sclk_div to zero */
sys_clear_bits(SPI_TIMIN(cfg->base), 0xff);
/* Enable END Interrupts */
sys_write32(IEN_END_MSK, SPI_INTEN(cfg->base));
/* Setting DMA config*/
error = spi_dma_move_buffers(dev);
if (error != 0) {
return error;
}
/* Start transferring */
sys_write32(0, SPI_CMD(cfg->base));
if (dma_rx_enable) {
spi_rx_dma_enable(dev);
error = dma_start(data->dma_rx.dma_dev, data->dma_rx.channel);
if (error != 0) {
return error;
}
}
if (dma_tx_enable) {
spi_tx_dma_enable(dev);
error = dma_start(data->dma_tx.dma_dev, data->dma_tx.channel);
if (error != 0) {
return error;
}
}
return 0;
}
#endif
static int transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *userdata)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
struct spi_atcspi200_data * const data = dev->data;
struct spi_context *ctx = &data->ctx;
int error, dfs;
size_t chunk_len;
spi_context_lock(ctx, asynchronous, cb, userdata, config);
error = configure(dev, config);
if (error == 0) {
data->busy = true;
dfs = SPI_WORD_SIZE_GET(ctx->config->operation) >> 3;
spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, dfs);
spi_context_cs_control(ctx, true);
sys_set_bits(SPI_CTRL(cfg->base), CTRL_TX_FIFO_RST_MSK);
sys_set_bits(SPI_CTRL(cfg->base), CTRL_RX_FIFO_RST_MSK);
if (!spi_context_rx_on(ctx)) {
chunk_len = spi_context_total_tx_len(ctx);
} else if (!spi_context_tx_on(ctx)) {
chunk_len = spi_context_total_rx_len(ctx);
} else {
size_t rx_len = spi_context_total_rx_len(ctx);
size_t tx_len = spi_context_total_tx_len(ctx);
chunk_len = MIN(rx_len, tx_len);
}
data->chunk_len = chunk_len;
#ifdef CONFIG_ANDES_SPI_DMA_MODE
if ((data->dma_tx.dma_dev != NULL) && (data->dma_rx.dma_dev != NULL)) {
error = spi_transfer_dma(dev);
if (error != 0) {
return error;
}
} else {
#endif /* CONFIG_ANDES_SPI_DMA_MODE */
error = spi_transfer(dev);
if (error != 0) {
return error;
}
#ifdef CONFIG_ANDES_SPI_DMA_MODE
}
#endif /* CONFIG_ANDES_SPI_DMA_MODE */
error = spi_context_wait_for_completion(ctx);
spi_context_cs_control(ctx, false);
}
spi_context_release(ctx, error);
return error;
}
int spi_atcspi200_transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
int spi_atcspi200_transceive_async(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
return transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif
int spi_atcspi200_release(const struct device *dev,
const struct spi_config *config)
{
struct spi_atcspi200_data * const data = dev->data;
if (data->busy) {
return -EBUSY;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
int spi_atcspi200_init(const struct device *dev)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
struct spi_atcspi200_data * const data = dev->data;
int err = 0;
/* we should not configure the device we are running on */
if (cfg->xip) {
return -EINVAL;
}
spi_context_unlock_unconditionally(&data->ctx);
#ifdef CONFIG_ANDES_SPI_DMA_MODE
if (!data->dma_tx.dma_dev) {
LOG_ERR("DMA device not found");
return -ENODEV;
}
if (!data->dma_rx.dma_dev) {
LOG_ERR("DMA device not found");
return -ENODEV;
}
#endif
/* Get the TX/RX FIFO size of this device */
data->tx_fifo_size = TX_FIFO_SIZE(cfg->base);
data->rx_fifo_size = RX_FIFO_SIZE(cfg->base);
cfg->cfg_func();
irq_enable(cfg->irq_num);
err = spi_context_cs_configure_all(&data->ctx);
if (err < 0) {
return err;
}
return 0;
}
static const struct spi_driver_api spi_atcspi200_api = {
.transceive = spi_atcspi200_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_atcspi200_transceive_async,
#endif
.release = spi_atcspi200_release
};
static void spi_atcspi200_irq_handler(void *arg)
{
const struct device * const dev = (const struct device *) arg;
const struct spi_atcspi200_cfg * const cfg = dev->config;
struct spi_atcspi200_data * const data = dev->data;
struct spi_context *ctx = &data->ctx;
uint32_t rx_data, cur_tx_fifo_num, cur_rx_fifo_num;
uint32_t i, dfs, intr_status, spi_status;
uint32_t tx_num = 0, tx_data = 0;
int error = 0;
intr_status = sys_read32(SPI_INTST(cfg->base));
dfs = SPI_WORD_SIZE_GET(ctx->config->operation) >> 3;
if ((intr_status & INTST_TX_FIFO_INT_MSK) &&
!(intr_status & INTST_END_INT_MSK)) {
spi_status = sys_read32(SPI_STAT(cfg->base));
cur_tx_fifo_num = GET_TX_NUM(cfg->base);
tx_num = data->tx_fifo_size - cur_tx_fifo_num;
for (i = tx_num; i > 0; i--) {
if (data->tx_cnt >= data->chunk_len) {
/* Have already sent a chunk of data, so stop
* sending data!
*/
sys_clear_bits(SPI_INTEN(cfg->base), IEN_TX_FIFO_MSK);
break;
}
if (spi_context_tx_buf_on(ctx)) {
switch (dfs) {
case 1:
tx_data = *ctx->tx_buf;
break;
case 2:
tx_data = *(uint16_t *)ctx->tx_buf;
break;
}
} else if (spi_context_tx_on(ctx)) {
tx_data = 0;
} else {
sys_clear_bits(SPI_INTEN(cfg->base), IEN_TX_FIFO_MSK);
break;
}
sys_write32(tx_data, SPI_DATA(cfg->base));
spi_context_update_tx(ctx, dfs, 1);
data->tx_cnt++;
}
sys_write32(INTST_TX_FIFO_INT_MSK, SPI_INTST(cfg->base));
}
if (intr_status & INTST_RX_FIFO_INT_MSK) {
cur_rx_fifo_num = GET_RX_NUM(cfg->base);
for (i = cur_rx_fifo_num; i > 0; i--) {
rx_data = sys_read32(SPI_DATA(cfg->base));
if (spi_context_rx_buf_on(ctx)) {
switch (dfs) {
case 1:
*ctx->rx_buf = rx_data;
break;
case 2:
*(uint16_t *)ctx->rx_buf = rx_data;
break;
}
} else if (!spi_context_rx_on(ctx)) {
sys_clear_bits(SPI_INTEN(cfg->base), IEN_RX_FIFO_MSK);
}
spi_context_update_rx(ctx, dfs, 1);
}
sys_write32(INTST_RX_FIFO_INT_MSK, SPI_INTST(cfg->base));
}
if (intr_status & INTST_END_INT_MSK) {
/* Clear end interrupt */
sys_write32(INTST_END_INT_MSK, SPI_INTST(cfg->base));
/* Disable all SPI interrupts */
sys_write32(0, SPI_INTEN(cfg->base));
#ifdef CONFIG_ANDES_SPI_DMA_MODE
if ((data->dma_tx.dma_dev != NULL) && data->dma_tx.dma_cfg.source_chaining_en) {
spi_tx_dma_disable(dev);
dma_stop(data->dma_tx.dma_dev, data->dma_tx.channel);
data->dma_tx.block_idx = 0;
data->dma_tx.dma_blk_cfg.next_block = NULL;
}
if ((data->dma_rx.dma_dev != NULL) && data->dma_rx.dma_cfg.source_chaining_en) {
spi_rx_dma_disable(dev);
dma_stop(data->dma_rx.dma_dev, data->dma_rx.channel);
data->dma_rx.block_idx = 0;
data->dma_rx.dma_blk_cfg.next_block = NULL;
}
#endif /* CONFIG_ANDES_SPI_DMA_MODE */
data->busy = false;
spi_context_complete(ctx, dev, error);
}
}
#if CONFIG_ANDES_SPI_DMA_MODE
#define ANDES_DMA_CONFIG_DIRECTION(config) (FIELD_GET(GENMASK(1, 0), config))
#define ANDES_DMA_CONFIG_PERIPHERAL_ADDR_INC(config) (FIELD_GET(BIT(2), config))
#define ANDES_DMA_CONFIG_MEMORY_ADDR_INC(config) (FIELD_GET(BIT(3), config))
#define ANDES_DMA_CONFIG_PERIPHERAL_DATA_SIZE(config) (1 << (FIELD_GET(GENMASK(6, 4), config)))
#define ANDES_DMA_CONFIG_MEMORY_DATA_SIZE(config) (1 << (FIELD_GET(GENMASK(9, 7), config)))
#define ANDES_DMA_CONFIG_PRIORITY(config) (FIELD_GET(BIT(10), config))
#define DMA_CHANNEL_CONFIG(id, dir) \
DT_INST_DMAS_CELL_BY_NAME(id, dir, channel_config)
#define SPI_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \
.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(index, dir)), \
.channel = \
DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \
.dma_cfg = { \
.dma_slot = \
DT_INST_DMAS_CELL_BY_NAME(index, dir, slot), \
.channel_direction = ANDES_DMA_CONFIG_DIRECTION( \
DMA_CHANNEL_CONFIG(index, dir)), \
.complete_callback_en = 0, \
.error_callback_dis = 0, \
.source_data_size = \
ANDES_DMA_CONFIG_##src_dev##_DATA_SIZE( \
DMA_CHANNEL_CONFIG(index, dir) \
), \
.dest_data_size = \
ANDES_DMA_CONFIG_##dest_dev##_DATA_SIZE( \
DMA_CHANNEL_CONFIG(index, dir) \
), \
.source_burst_length = 1, /* SINGLE transfer */ \
.dest_burst_length = 1, /* SINGLE transfer */ \
.channel_priority = ANDES_DMA_CONFIG_PRIORITY( \
DMA_CHANNEL_CONFIG(index, dir) \
), \
.source_chaining_en = DT_PROP(DT_INST_DMAS_CTLR_BY_NAME( \
index, dir), chain_transfer), \
.dest_chaining_en = DT_PROP(DT_INST_DMAS_CTLR_BY_NAME( \
index, dir), chain_transfer), \
}, \
.src_addr_increment = \
ANDES_DMA_CONFIG_##src_dev##_ADDR_INC( \
DMA_CHANNEL_CONFIG(index, dir) \
), \
.dst_addr_increment = \
ANDES_DMA_CONFIG_##dest_dev##_ADDR_INC( \
DMA_CHANNEL_CONFIG(index, dir) \
)
#define SPI_DMA_CHANNEL(id, dir, DIR, src, dest) \
.dma_##dir = { \
COND_CODE_1(DT_INST_DMAS_HAS_NAME(id, dir), \
(SPI_DMA_CHANNEL_INIT(id, dir, DIR, src, dest)), \
(NULL)) \
},
#else
#define SPI_DMA_CHANNEL(id, dir, DIR, src, dest)
#endif
#define SPI_BUSY_INIT .busy = false,
#if (CONFIG_XIP)
#define SPI_ROM_CFG_XIP(node_id) DT_SAME_NODE(node_id, DT_BUS(DT_CHOSEN(zephyr_flash)))
#else
#define SPI_ROM_CFG_XIP(node_id) false
#endif
#define SPI_INIT(n) \
static struct spi_atcspi200_data spi_atcspi200_dev_data_##n = { \
SPI_CONTEXT_INIT_LOCK(spi_atcspi200_dev_data_##n, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_atcspi200_dev_data_##n, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \
SPI_BUSY_INIT \
SPI_DMA_CHANNEL(n, rx, RX, PERIPHERAL, MEMORY) \
SPI_DMA_CHANNEL(n, tx, TX, MEMORY, PERIPHERAL) \
}; \
static void spi_atcspi200_cfg_##n(void); \
static struct spi_atcspi200_cfg spi_atcspi200_dev_cfg_##n = { \
.cfg_func = spi_atcspi200_cfg_##n, \
.base = DT_INST_REG_ADDR(n), \
.irq_num = DT_INST_IRQN(n), \
.f_sys = DT_INST_PROP(n, clock_frequency), \
.xip = SPI_ROM_CFG_XIP(DT_DRV_INST(n)), \
}; \
\
DEVICE_DT_INST_DEFINE(n, \
spi_atcspi200_init, \
NULL, \
&spi_atcspi200_dev_data_##n, \
&spi_atcspi200_dev_cfg_##n, \
POST_KERNEL, \
CONFIG_SPI_INIT_PRIORITY, \
&spi_atcspi200_api); \
\
static void spi_atcspi200_cfg_##n(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
spi_atcspi200_irq_handler, \
DEVICE_DT_INST_GET(n), \
0); \
};
DT_INST_FOREACH_STATUS_OKAY(SPI_INIT)